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Abstract: Osteoporosis is an asymptomatic bone condition that affects a large proportion of the elderly
population around the world, resulting in increased bone fragility and increased risk of fracture.
Previous studies had shown that the vibroacoustic response of bone can indicate the quality of the
bone condition. Therefore, the aim of the authors’ project is to develop a new method to exploit this
phenomenon to improve detection of osteoporosis in individuals. In this paper a method is described
that uses a reflex hammer to exert testing stimuli on a patient’s tibia and an electronic stethoscope to
acquire the impulse responses. The signals are processed as mel frequency cepstrum coefficients and
passed through an artificial neural network to determine the likelihood of osteoporosis from the tibia’s
impulse responses. Following some discussions of the mechanism and procedure, this paper details
the signal acquisition using the stethoscope and the subsequent signal processing and the statistical
machine learning algorithm. Pilot testing with 12 patients achieved over 80% sensitivity with a false
positive rate below 30% and accuracies in the region of 70%. An extended dataset of 110 patients
achieved an error rate of 30% with some room for improvement in the algorithm. By using common
clinical apparatus and strategic machine learning, this method might be suitable as a large population
screening test for the early diagnosis of osteoporosis, thus avoiding secondary complications.

Keywords: osteoporosis; electronic stethoscope; vibro-acoustics; machine learning; resonant
frequency; impulse response; signal processing; pattern recognition; classification

1. Introduction

Osteoporosis (OP) is an asymptomatic disease that affects the bone re-modelling process.
This results from a period of bone loss which leads to increased skeletal fragility and an increased
risk of fracture. Osteoporosis is significantly prevalent in people over the age of 50, and affects
post-menopausal women earlier. One in three women and one in five men over the age of 50 will sustain
a fracture attributable to osteoporosis, according to the International Osteoporosis Foundation [1].
Globally, osteoporosis affects more than 200 million people worldwide, being the cause of more than
8.9 million fractures annually [2,3]. Healthcare services are heavily burdened by the costs of treating
fractures and their complications due to undetected and untreated osteoporosis, and the quality of life
of such patients is considerably compromised or detrimentally degraded. Healthcare professionals
have shown that early diagnosis and timely treatment is the way of preventing further complications

Bioengineering 2018, 5, 107; doi:10.3390/bioengineering5040107 www.mdpi.com/journal/bioengineering

http://www.mdpi.com/journal/bioengineering
http://www.mdpi.com
https://orcid.org/0000-0002-8859-2631
http://www.mdpi.com/2306-5354/5/4/107?type=check_update&version=1
http://dx.doi.org/10.3390/bioengineering5040107
http://www.mdpi.com/journal/bioengineering


Bioengineering 2018, 5, 107 2 of 16

and fractures. However the lack of a simple and practical screening test has been a major concern,
with current methods not fit for this purpose.

The most common diagnostic method to detect OP is using dual energy X-ray absorptiometry
(DEXA/DXA) to measure bone mineral density (BMD), although it is arguable if the BMD is an
accurate diagnostic metric [4]. The World Health Organisation (WHO) recommended a statistical
measure based on DEXA called the “t-score” as a diagnostic criterion [5]. The t-score is a comparison of
one’s BMD with that of a population of healthy 30-year-old pre-menopausal women and is reported in
standard deviations (SD). A t-score below −2.5 SD is deemed as being osteoporotic. A t-score between
−1.0 to −2.5 is labeled as osteopenia, meaning that the BMD is notably below a normal measure but
not fully osteoporotic. However, the BMD is not a reliable measure of the bone’s strength and can
only imply bone quality [6,7]. DEXA scans are not readily accessible to general practitioners’ (GPs)
clinics for screening testing but are only available in general hospitals via primary care professionals’
referrals, and often have long waiting lists [8–10].

One can tap on the surface of a structure or material to determine its solidity. Similarly, percussion
or tapping techniques are used by doctors in clinical examinations to determine density or cavity
and assess certain conditions of the thorax and abdomen [11]. They can also be used for assessing
conditions in other parts of the body. Percussion sound transmitted through bones, listened through
the chest using a stethoscope, was reported to be used to detect osteoporosis [12]. A close correlation
between bone resonant frequencies and the BMD was confirmed recently [13]. The lowest resonant
frequency of tibia and other physiological information were mapped onto the fracture risk assessment
tool (FRAX) algorithm to give a diagnosis of osteoporosis [14]. More recently, the authors proposed a
machine learning method to differentiate vibro-acoustic signals and detect osteoporosis [15].

Therefore, the aim of the project is to identify and use these parameters from the bone’s impulse
response (IR) to classify individuals which likely have OP from the general population.

This aim will be supported with the following hypotheses: the parameters can be reliably
generated and detected using common clinical equipment, and the machine learning algorithm
can learn the trends of the populations and classify them correctly.

This paper details a new vibro-acoustic method with the potential to diagnose osteoporosis from
the impulse responses of the tibia in vivo and presents an additional machine learning approach and
results. The method is illustrated in Figure 1. A clinician taps on a patient’s proximal tibia bone with
a Taylor reflex hammer and an electronic stethoscope picks up the induced sound at the midpoint
and/or the distal end of the tibia. The signal is transmitted via a Bluetooth datalink to a computer
for further signal processing and pattern recognition, leading eventually to a diagnostic decision.
By utilizing common clinical devices and apparatus, the method has considerable potential to be used
by primary care providers as a screening test for whole populations, thus enabling early detection
of osteoporosis.
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The diagnostic decision-making mechanism of the proposed method is based on statistical
machine learning from a large number of recordings. The machine learning algorithm maps the
individual impulse responses to a continuous output, which is then split into two classes: healthy (OK)
and osteoporotic (OP). This is based on the doctors’ diagnoses of the patients, taking into account
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DEXA t-scores and other physiological parameters and aspects. The development of such a signal
pattern recognition method is effectively a hypothesis testing process. This is based on the assumption
that information about bone mineral density, porosity and other determining factors of osteoporosis is
contained in the impulse responses of the tibia. It follows that this information is adequate to make it
possible to separate osteoporotic cases when data is projected onto a suitable high dimensional space.
Heuristically, one can find many reasons to postulate that osteoporosis might be detected from tibia
impulse responses in vivo and machine learning is a possible solution to diagnostic decision-making.

The lowest resonant frequency is closely related to the bending stiffness of the bone and, therefore,
the quality of the bone [16,17]. This is in line with what is found in a simple rod model:

f0 =

√
k
m

(1)

where k (N/m) is the stiffness of the rod, m (kg) is the mass and f0 (Hz) is the fundamental frequency.
Reduced stiffness results in a lowered fundamental frequency. While having osteoporosis does result
in reduced stiffness of the bone, it also removes mass from the bone [18]. Such a decrease in the mass
will counteract the reduction of the lowest resonant frequency. It is also observed that the pores formed
due to bone losses are filled with fat and other body substances, and, therefore, the mass reduction
is not as significant as just forming cavities. Much of the research indicated that lowered resonant
frequencies and shifting in modal frequencies’ distribution are associated with osteoporosis, although
the strict proportional relation between the resonant frequency and the square root of stiffness does
not hold, due to the fact that mass is a yet another dependent variable [19–23].

Clear correlation relationships between resonant frequencies of long bones and whole body BMDs
are evident, which has recently been confirmed [13]. There are other successful paradigms of using
precession techniques and so acquired impulse responses in vivo to detect osteoporosis, e.g., [12,24].
However, a more thorough meta-analysis would be needed to investigate the effects of different
physical parameters on the bone’s frequency response, especially the bone length, bending stiffness etc.

Bone has a complex anisotropic internal structure, which is made of two main layers: a surface
layer of calcium and an internal network formed by trabeculae: a porous mass of rods and branches.
The trabeculae are arranged in cross-connected plates along the bone to give strength in typical load
directions [25]. Modes of vibration found in a long bone, therefore, depend on their axis and type,
each with a different stiffness. The complexity and diversity in the bony structures of individuals
make accurate mathematical modeling and analytical solutions of the governing equations extremely
difficult. Machine learning methods for this type of complex problems are a sensible choice if a large
number of examples and reliable “teacher” values can be made available.

Impulse responses acquired in vivo using percussion techniques have artifacts: The Taylor reflex
hammer has a semi-rigid rubber head and the soft-tissue layers introduce a damping effect. Therefore,
the impulse responses include convolved components of these damping/soft layers, which vary
considerably in a population. Feature extraction methods that can de-convolve complex signals might
be beneficial. Machine learning may be expected to learn from a large number of examples to disregard
these components found in signals.

2. Materials and Methods

2.1. Impact Source and Vibro-Acoustic Transducer

A standard method to study vibration phenomena and the characteristics of a mechanical structure
is to measure the impulse responses using an impact hammer to generate an impulsive stimulus and
accelerometers as transducers at various excitations and receiving positions to pick up vibro-acoustic
signals. Previous studies of resonant frequencies of the long bones, both in vivo and in vitro, used
accelerometers exclusively to pick up signals. For in vitro studies, impact hammers or the like were
used; alternative impact sources were used in vivo, e.g., a 20 g glass ball suspended from a 20 cm
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cotton string [13]. However, standard accelerometers are not suitable for clinical adoption, owing to
their unfamiliarity to healthcare professionals and difficulty in mounting.

To ease the vibro-acoustic data acquisition in a primary care clinical setting, the use of reflex
hammer as an electronic-stethoscope was first proposed by the authors [15]. To exploit the full
bandwidth of the electronic stethoscope, the “extended range” filter mode is selected in the StethAssist
software on exporting the audio files. To explore the frequency response of the stethoscope, an
experiment was set up to understand its response to vibration signals from a broadband shaker (Ling
Dynamic Systems V101/2—PA 25E [26]) driven by a white noise (Siglent SDG 1050 [27]) alongside
an accelerometer (Brüel and Kjær Type 4507-B-004 [28]), with the accelerometer as the reference.
Figure 2a,b displays the results. It was noted that there are a substantial resonances in the 10–40 Hz
region; the frequency response is generally flat till 600 Hz.
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This is followed by a −24 dB/Oct rolling off, extending to 1.2 kHz. Spectral components above
1 kHz are heavily attenuated in impulse responses measured in vivo due to soft tissues and can hardly
be usefully detected even with accelerometers. This suggests that the percussion method examines only
resonant frequencies in a relatively low audible frequency range, and the electronic stethoscope seems
adequate for the purpose of the current study. If preferred, the frequency response can be equalized.

The recorded stethoscope signal is the convolution of the impulse responses of the bone, the soft
tissue as well as all the devices in the signal chain:

y(t) = B(t)
⊗

Sti(t)
⊗

H(t)
⊗

Sth(t) (2)

where y is the recorded signal, B is the bone response, Sti is the soft tissue response, H is the Taylor
hammer and Sth is the stethoscope response. (Modelling soft-tissue as a linear sub-system by an
impulse response may not be accurate, due to non-linearity). To isolate the sound of the bone and
soft tissue, the response of the signal chain has to be removed. This can be done by taking an impulse
response of the devices in the chain, and filtering their responses in the frequency domain.

Y(F) = B(F)× Sti(F)× H(F)× Sth(F) (3)

B(F)× Sti(F) =
Y(F)

H(F)× Sth(F)
(4)

This can be simplified by grouping the signals into:

L(F) =
Y(F)
C(F)

(5)

where L represents the whole limb (bone and soft tissue) and C is the signal chain (the hammer
and stethoscope). Straightforward division in the frequency domain is not preferred due to its high
sensitivities to noise found in the denominator. A linear phase (symmetrical) finite impulse response
filter with 63 taps was found to be adequate to offer a reasonable equalisation.

2.2. Dataset

Recordings of 110 patients were made by Rakoczy in 2016 and 2018 following the method
described in Figure 1. A summary of the patient statistics is given in Table 1. These recordings were
taken from the midpoint of the tibia and are processed by a MATLAB script to extract the individual
impulse responses (IR). The IR are transformed into the time-frequency domain by Fast Fourier
Transform (FFT) and expressed as Mel Frequency Cepstrum Coefficients (MFCCs), the parameters of
which are described in Table 2.

Table 1. Population Statistics.

Parameter Mean [Min, Max]

Gender M: 19; W: 90
t-score −1.33 [−3.5, 0.6]

No. Osteoporosis (OP) Cases 34
No. Healthy (OK) Cases 76

Table 2. Dataset parameters.

Parameter Size Unit

Impulse Responses (IR) Sample Length 800 samples
Fast Fourier Transform (FFT) Window Length 8192 points

FFT Output Spectra Size 100 points
Mel Frequency Cepstrum Coefficients (MFCC) Window Length 0.03 s

MFCC Window Overlap 0.02 s
MFCC Total 378 points
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2.3. Signal Pre-Processing

The recordings of the IR are too large and noisy to be used as-is. Therefore pre-processing is
needed to extract and collect the individual IR for further analysis. This is done with a two stage
process using the waveform gradient and amplitude envelope to find the IR from the recording and
discard the rest. A simple error checking stage then removes low frequency rumble and short impulses
from the selections. This can be broken by loud impulses or clicks similar to the IR of the bone, but is
able to correctly extract at least 80%of the total IR from a recording. The responses are collected and
displayed in Figure 3a.
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The signals are transformed into the frequency domain using the FFTW algorithm to compare the
recordings with the literature findings [29]. Owing to the very short sample length of the impulses
and the low sample rate, the window length of the algorithm is made much larger by zero padding to
increase the frequency resolution. The results are shown in Figure 3b. There is a peak in the very low
frequency region, which we assume to be the resonance of the stethoscope as described previously.
A region of peaks is found at 75–110 Hz, followed by a cluster of much more damped peaks in the
200–250 Hz region. These regions are consistent with the literature [13–20,22,23], but there is not a
clear change in the peak position to suggest a strong correlation. The decrease in t-score did not result
in a reliable decrease in the resonant frequency. Therefore, using the fundamental frequency alone was
deemed insufficient to be used for this study.

To reduce the data points and mitigate the complexity of machine learning, time-frequency
domain representations, namely MFCCs, are used to capture the features and resonance patterns.
The MFCCs have found popular use in speech recognition and music classification, but are used for
this project for both the cepstrum de-convolution properties and the Mel Frequency filterbanks. The
Mel scale is the subjective measurement of pitch from frequency as studied in psychoacoustics. The
coefficients in MFCC represent the energy in each filterbank, and for this project 21 coefficients are used.
The filterbank shape and distribution is described in Figure 4. Each set of MFCCs has 21 coefficients,
taken over 18 time windows. This produces 378 coefficients arranged as a column vector to input into
the artificial neural network (ANN). The visual sum of all the IR together is displayed in Figure 5, with
a clipped colour bar to improve reduce the influence of peaks in the MFCC.

Filtering can be applied at different stages of the extraction process, but this is not necessary because
the ANN will be able to ignore any common low frequency effect in the recording. This is also made
redundant from the de-convolution from transforming into the cepstrum domain. Any consistently low
value coefficient in the MFCC can be considered irrelevant and removed from the input to the ANN.
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2.4. Machine Learning Methods

Machine learning (ML) can be thought of as an error reduction algorithm which maps input data
in a non-linear fashion to desired or statistically significant outputs. There are several ML algorithms
such as decision trees and support vector machines and ANN. For this project, the ANN was chosen
for its fast learning capabilities and convenience.

ANNs are made from a large number of interconnected neuron models which allow a learning
capability [30]. The neuron features a weighted input sum from the other neurons, which is then
passed to an activation function. The activation function then shapes the summed and weighted inputs
into a single output, either as binary logic via a threshold or as a sigmoid function for a continuous
output bounded in the interval (0, 1). A continuous sigmoid function is used in this study.

ai =
1

1 + e−ui
(6)

where ai is the output of the ith neuron, and ui is the weighted sum of the inputs into that neuron.
The input layer contains single neurons for each data point with only one input. The hidden

layers reduce the data and manipulate the weights to find the optimal solution. The output layer then
takes the outputs of the last hidden layer and sums them for a final result. The network was built with
378 neurons for the input layer, 120 for one hidden layer and 1 output neuron. For larger datasets,
this is modified to include a second hidden layer of 40 neurons.

The ANN starts with random weights and the MFCC is passed through the ANN. The output of
the network is compared with the doctor’s diagnosis (“teacher value”) and the error between them is
calculated. The teacher values are: 0 for osteoporotic (OP) patients; 1 for healthy (OK) subjects. The
teacher values are informed by senior doctors’ diagnoses of the patient in question, which are generally
in line with the aforementioned WHO guidelines i.e., t-scores below −2.5 as osteoporotic. But some
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other conditions and aspects are included in the diagnosis such as lifestyle and family history, which
becomes part of the teacher value. The aim of training is to minimise the total square error E as defined
in Equation (7) over all training examples:

E =
1
2

M

∑
m=1

[
o(m) − t(m)

]2
(7)

where o is the ANN output t is teacher value m is example number.
This error is then used in the back-propagation algorithm which updates the weights for each

neuron [30]. This process means that the most important or distinctive data points in each layer are
weighted more heavily in the sums and decisions than other points, reducing the data required to
represent the information.

2.5. Classification and Voting Stage

The ANN is designed with a continuous output for the following reason: while the aim of using
machine learning algorithms is to separate the OP cases from the healthy through a binary classifier,
the third WHO classification of osteopenia means there is a need for a greater resolution of results.
Therefore, the output of the ANN is passed through a post-hoc stage which classifies the output on the
error within a threshold of the teacher value. This is best explained in Figure 6:
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The IR is deemed as being OK or OP if its error from the teacher value is within 0.4. If the error is
substantial then it is classified as a false positive or negative. A score in the middle of the scale of 0.5
is ambiguous as to if a decision has been made, and so is removed from the decisions on the overall
patient. The results from this stage for each patient’s IR are collected and the diagnosis of the patient is
made from the majority of decisions made. This voting stage is key to deciding the overall diagnosis
of the patient, as it removes the emphasis on individual IR decisions.

2.6. Training and Validation

The dataset is split between training dataset and validation dataset. The former teaches the ANN
on examples which have teacher values in order to reduce the error. The latter tests the network on
examples it has not “seen,” proving the ANN is able to be used on new data. For the initial pilot study
with 12 patients, the training set includes 48 impulse responses and the validation set contains 46.

The algorithm is being judged on how many OP cases it can accurately detect while having a
reasonable false positive rate. For a screening test, the emphasis is to find as many cases as possible
from a population, and so false negatives have to be reduced, at the expense of false positives rising.
Therefore, three main parameters are to be calculated: true positive rate (TPR), false positive rate (FPR),
and accuracy (ACC). The first parameter is described as the sensitivity (SEN) in medical terminology,
defined as:

TPR = SEN =
TP
P

(8)

where TP is the number of true positives, and P is the number of actual positive cases.
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The second term, false positive rate, is calculated as:

FPR =
FP
N

(9)

where FP is the number of false positives and N is the total number of negatives cases in the population.
However this statistic is better understood as the ratio of true negatives to real negatives, described in
medical terms as the specificity (SPC), which is defined thus:

TNR = SPC =
TN
N

= 1 − FPR (10)

where TN is the number of true negatives, and N is the total number of real negative cases.
Finally, accuracy describes the balance between true positives and true negatives. This can be a very

useful metric for when the number of positive and negative cases are not equal. This is expressed as:

ACC =
TP + TN

P + N
(11)

where the definitions follow as before.
Lastly, a ratio between the FPR and TPR was made to judge the performance of the algorithm and

be used as a way of recording the maximum sensitivity and minimum FPR together.

r =
FPR
TPR

(12)

r is calculated both on an individual IR level and on a patient level. Therefore, it will separately judge
the performance of the algorithm on individual datapoints and entire cases.

Criteria were set to judge the algorithm’s performance, and when they are reached the current
state of the ANN is saved (i.e., weights, bias and training time). These would apply for every run of
the algorithm training. The three criteria are:

• When the ratio between false positives over true positives reaches a minimum (initiated when it
falls below 0.7).

• When maximum accuracy is reached.
• When the training error dropped below a threshold.

The first criterion is to establish that the method can be used as a screening method to detect
OP cases accurately. The second is to investigate if the method is able to differentiate the healthy
subjects well enough and reduce the false negatives and positives. The third is the stop criterion of the
algorithm, and will indicate when overfitting is beginning to occur.

The patients are decided by the thresholds described in Figure 6. These were set to avoid
ambiguity in interpreting outputs around 0.5, and to imply that there is space for a third category in
the future. However, for this investigation it was useful to see if the above criteria are affected by a
change in the thresholds that define the OP and OK population. Therefore, the training was repeated
by offsetting the thresholds to range from 0.2 and 0.6 to 0.5 in 0.005 increments.

3. Results

The algorithm’ error over time is given below in Figure 7a–c for different learning rates and
selected runs. The time was calculated in the MATLAB script running on a Panasonic CF-52 laptop
(2 CPU cores@2.4 GHz with 4 GB RAM). The error was calculated as the half error energy defined in
Equation (7).

The training and validation follow a similar curve in the very early stages of the training,
but diverge after a moderate time (400–1000 epochs) into the run. On some runs, the validation
error will greatly increase as the algorithm begins to fall into overfitting.



Bioengineering 2018, 5, 107 10 of 16

Bioengineering 2019, 6 FOR PEER REVIEW  10 

(2 CPU cores@2.4 GHz with 4 GB RAM). The error was calculated as the half error energy defined in 
Equation (7). 

 
(a) (b) (c) 

Figure 7. (a) Training and validation dataset error falling together. (b) Errors begin to diverge. (c) 
Training error starts to overfit, while validation error converges to an error energy of 4. 

The training and validation follow a similar curve in the very early stages of the training, but 
diverge after a moderate time (400–1000 epochs) into the run. On some runs, the validation error will 
greatly increase as the algorithm begins to fall into overfitting. 

It is useful to show the relationship between SEN and 1-SPC using a continuous receiver 
operating characteristic (ROC) graph to illustrate the algorithm’s detection performance. Because of 
the limited computing power of the laptop only a limited number of points could be made which 
meant a quasi-ROC graph had to be made using discrete scatter points. While this is not ideal, it is 
more convenient for using the limited power available. Also, since the performance of a single 
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Figure 7. (a) Training and validation dataset error falling together. (b) Errors begin to diverge.
(c) Training error starts to overfit, while validation error converges to an error energy of 4.

It is useful to show the relationship between SEN and 1-SPC using a continuous receiver operating
characteristic (ROC) graph to illustrate the algorithm’s detection performance. Because of the limited
computing power of the laptop only a limited number of points could be made which meant a
quasi-ROC graph had to be made using discrete scatter points. While this is not ideal, it is more
convenient for using the limited power available. Also, since the performance of a single algorithym is
taken, there is no need to calculate the area under the graph, so discrete quasi-ROC is more appropriate.
Each 0.005 change in the threshold is indicated on a colour bar like in Figure 8. The darker shades
indicate “smaller” thresholds (0.2 and 0.8 to detect OP/OK subjects) while the red colour is closer to a
complete binary decision (0.5).
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The discrete ROC plot for individual IR is shown in Figure 9. The small dataset and random
initial weights means there are occasionally repeated results, so at some point only the result from the
higher threshold, the lighter colour, is shown.

The lower thresholds (dark crosses) result in the poor sensitivity, and with higher thresholds
(redder crosses) the sensitivity increases with a small decrease in specificity. However it can be seen
that the best result (blue arrow) is not the highest threshold, and there is some foldback with regard
to the results (green circle). Since the change in threshold does not result in a linear improvement
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with sensitivity/specificity, there is no attempt to apply regression curve techniques between points.
However, it is clear that all the results are highly specific, being on the far left of the plot. A likely line
of best fit is shown as the dashed black line, showing high specificity with improving sensitivity.
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Figure 10 gives the results for the sensitivity and specificity of detecting OP/OK patients by the
algorithm. The results are much more promising, with a “perfect” result of 100% sensitivity to 0% FPR.
With a small dataset of 12 patients, this is more likely to be possible and, therefore, should not be taken
to mean that the algorithm has achieved the goal. Indeed while the result does indicate that the ANN
is able to find the population trend between OP and OK subjects, the patient result is due to the post
hoc rules (Section 2.5) weighted against incorrect IR predictions. Therefore, a larger dataset should be
tested on to see if similar results are indicated. Overall, in summary, lower thresholds tend to give
worse sensitivities for both IR and patients, while higher thresholds closest to 0.5 improve sensitivity
but this is not consistent.

A larger dataset was available to test the ANN and develop the method, containing 110 patients:
34 OP and the rest healthy. The total number of impulse responses used was 660:330 for training and
330 for validation. A block updating technique was adapted, in which the weights were updated and
error calculated after presenting the whole set of training data. The algorithm found a reasonably
good minimum fairly quickly in validation testing then started to over-fit, as shown in Figure 11a,b.
This indicates that the dataset could contain some noise or irrelevant information, and might benefit
from some better signal conditioning or a more robust feature space. However, it is worth noting
that a minimum error below 50 is generally guaranteed, which is calculated from validation testing
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over 330 examples by Equation (7). This gives a maximum error rate of 30% or a minimum correct
recognition rate of 70%. These are in line with the results from the small-scale study with 12 patients.Bioengineering 2019, 6 FOR PEER REVIEW  12 
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A summary of a selection of results are given in Table 3:
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Table 3. Summary of Parameters for Selected Thresholds.

Threshold rIR rPAT

(0.050 increments for table) TRP FPR TRP FPR

0.200 0.5455 0.0571 0.6667 0
0.250 0.4545 0.0571 0.6667 0
0.300 0.0909 0 0.3333 0
0.350 0.0909 0 0.3333 0
0.400 0.4545 0.0571 1.0000 0.1111
0.450 0.4545 0.0571 0.3333 0
0.500 0.7273 0.1143 1.0000 0.1111

4. Discussion

The pilot study comprised of a limited training and validation dataset, but there are some
promising results to indicate that the machine learning approach using the MFC is the right approach.
Firstly, the training error converges in less than 5000 epochs, while the validation error in the same span
of time varies but converges in the same way. While not a perfect cross-validation, it does indicate that
the ANN can find the features in the dataset which can be used to separate the healthy subjects from
the osteoporotic patients. The 12 patient training and validation datasets were linked by being from
the same patients, which was a compromise with the small number of patients available. Therefore,
the statistical power is poor and trends not very clear. However, this does allow for more informed
individual analysis of ANN results which could not be realistically done with a much larger dataset.
This can be done to see which IR or patients are always successful or give the algorithm difficulty.

From the ROC graphs, it is clear that the sensitivity to individual IR is limited but avoids
a high number of false positives. However, this low level does not affect the sensitivity of the
patient predictions, meaning that the algorithm does not require every impulse from a patient’s
recording to indicate osteoporosis. Instead this allows for some minor misclassification to occur
without jeopardizing the diagnosis of the patient. The change in threshold shows that capturing
more of the impulses that are between the two classification catchment areas (0.4–0.6) improves the
sensitivity without a large increase in FPR. However a more detailed investigation would be needed to
see if the threshold change consistently gave better predictions.

The results indicate that the algorithm was able to have 100% patient sensitivity without any false
positives. It should be noted that a limitation of the results is with such a small dataset, the patient
sensitivity result is not indicative of performance with a larger dataset. However, it does show
promise, and with the larger dataset of patients and revision to the ANN architecture this could show
promising results.

For a screening test, the results here indicate that this method could be suitable for use once the
development has reached the right point. Firstly the test is non-invasive which is patient friendly.
The clinician carrying out the method needs only a computer running the client-side software, and the
hammer with the electronic stethoscope, while the training can be done centrally. The test and results
seem not to be sensitive to the variation in impacts, but this ought to be confirmed in experimental trials.

Overall, there is potential in this method and many areas which can be taken further. The priority
in future work is to improve the size of the dataset to continue to decrease the validation error as the
number of examples increase. Cross-validation will be carried out more formally by using a designed
test set to improve the generality of the algorithm on an independent dataset. This will improve the
machine learning foundation of the method, while other areas will be optimising the data processing
and experimental technique.

The results so far indicate that the ANN is able to identify and weight the trends of the OP and
OK populations differently, which is a key step in the right direction. To the author’s best knowledge,
there has not been a similar result from another device or method which is able to diagnose the OP
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from the OK while using clinical tools. Indeed, this is the key strength of this method and study
in particular.

However, this must be balanced with some limitations in this paper’s results. Firstly, the pilot
study is still rather small at 12 patients with just under 100 IR to test and validate. The algorithm
was able to overfit to the data because of its small size, and so results should be taken with caution.
The discrete ROC graphs are not the ideal way of presenting the performance of the algorithm, since
it is more usual to have a continuous curve. However, with refinement to the algorithm and better
understanding of what parameters can be changed, this can be improved.

5. Conclusions

A proposed method for the screening of osteoporosis has been developed in this paper. Using
two pieces of common medical apparatus—the reflex hammer and the electronic-stethoscope, along
with a computer script based on an ANN—the method has been developed to be intuitive and easy to
implement for GPs and nurses in healthcare systems. While machine learning methods are seen as
a ‘blackbox’ approach to complex problems, the method proposed in this paper is grounded on the
relevant physical parameters of bone such as stiffness, mass and porosity. As a proof of concept pilot
study, the paper only used a limited dataset of 12 patients for the initial designs of the ANN. Even so,
a sensitivity of over 60% was achieved for both patients and IR. Results from the larger dataset are in
line with the above findings with respect to error energy in proportion to number of samples. With
further work on the signal-conditioning stage, feature extraction and selection algorithms, as well as
ANN architecture, this can be improved, and sensitivities and specificities quantified. With further
refinement to the algorithm and data representation, the results and application of the method can
become clinically useful.
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