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Abstract: Antibody-drug conjugate (ADC), as a next generation of antibody therapeutics, is a
combination of an antibody and a drug connected via a specialized linker. ADC has four action steps:
systemic circulation, the enhanced permeability and retention (EPR) effect, penetration within the
tumor tissue, and action on cells, such as through drug delivery system (DDS) drugs. An antibody
with a size of about 10 nm has the same capacity for passive targeting as some DDS carriers, depending
on the EPR effect. In addition, some antibodies are capable of active targeting. A linker is stable in the
bloodstream but should release drugs efficiently in the tumor cells or their microenvironment. Thus,
the linker technology is actually a typical controlled release technology in DDS. Here, we focused
on molecular imaging. Fluorescent and positron emission tomography (PET) imaging is useful for
the visualization and evaluation of antibody delivery in terms of passive and active targeting in the
systemic circulation and in tumors. To evaluate the controlled release of the ADC in the targeted
area, a mass spectrometry imaging (MSI) with a mass microscope, to visualize the drug released
from ADC, was used. As a result, we succeeded in confirming the significant anti-tumor activity of
anti-fibrin, or anti-tissue factor-ADC, in preclinical settings by using DDS and molecular imaging.

Keywords: ADC (antibody-drug conjugate); DDS (drug delivery system); molecular imaging;
antibody delivery; controlled release; PET (positron emission tomography); MSI (mass spectrometry
imaging)

1. Introduction

Antibody-drug conjugate (ADC) is a next generation therapeutic antibody. Several ADCs
have been used in clinics already [1–4]. Moreover, a large number of biotech and pharmaceutical
companies are dealing with ADC and are competitively exploiting new ones [5,6]. Over 40 ADCs
are under clinical trials worldwide [1,2,7]. However, the effectiveness of ADCs in treating relapsed
or refractory malignant diseases is their most important aspect. SGN-35 is effective for patients
with CD30-positive relapsed or refractory malignant lymphoma [8–10]. T-DM1 is also effective for
patients with HER2-positive advanced or remnant breast cancer previously treated with standard dugs,
including the naked anti-HER2 antibody [10,11]. Hence, ADC has been expected to be a breakthrough
drug following the immune checkpoint blockades.
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ADC has three parts: antibody, linker, and drug. An antibody is a large molecular-sized carrier,
which has the ability for passive targeting depending on the enhanced permeability and retention
(EPR) effect [12,13]. It is also capable of active targeting depending on the specific recognition and
binding to the target antigen [5,14]. A linker is stable in the bloodstream but should efficiently release
the drug in the tumor cells or within their microenvironment [2,6,15]. The total number of drugs
conjugated with a single antibody molecule is about four, but can be up to eight. Therefore, highly
toxic agents are strongly required [1,2,6,15]. Pharmacologically, ADC has four action steps: systemic
circulation, the EPR effect including passive targeting, penetration within the tumor tissue, and action
on cells, which includes active targeting and controlled release. This mechanism is similar to drug
delivery system (DDS) drugs, such as liposome or micelle (Figure 1). The linker technology is a typical
controlled release technology in DDS. It is clear that ADC should belong to the DDS drug category.
Here, we focused on molecular imaging which helps visualize the antibody delivery throughout the
four steps, including the controlled release in the final step. Here, we review the development of ADC
and our recent research works using DDS and molecular imaging.
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Figure 1. Structure and drug delivery of antibody-drug conjugate (ADC). ADC has three parts:
antibody, linker, and drug. ADC has four action steps: systemic circulation, enhanced permeability
and retention (EPR) effect, penetration, and action on cells, like drug delivery system (DDS) drugs.

2. Antibody–Drug Conjugate

ADC technologies have been developed for the targeted delivery of agents while minimizing
their adverse effects. First-generation ADCs were produced with murine-derived antibody backbones.
Therefore, an anti-mouse antibody generated in the human body (HAMA, human anti-mouse antibody)
accelerated the clearance of ADCs by host immune reaction. The linkers were not stable enough in the
bloodstream. Collectively, ADCs themselves showed a short half-life in the human body. Moreover,
the drugs used as a payload (IC50, half maximal (50%) inhibitory concentration; µM level) were
not toxic enough to be significantly effective in human subjects. Consequently, ADCs dropped out
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of clinical trials. In addition, the FDA-approved Gemtuzumab ozogamicin was also withdrawn
from the market because of serious toxicities. However, recent advances in bioengineering have
improved these drawbacks, resulting in the emergence of second generation ADCs. Since then,
many methods have been used to improve both the stability in the bloodstream and the controlled
drug release in the targets, which has led to demonstrating clinical effectiveness, including SGN-35,
anti-CD30 chimeric antibody (human constant regions with down-sized mouse variable regions) with
monomethyl auristatin E (MMAE, IC50; nM level) via valine-citrulline (cathepsin cleavable) linker
and T-DM1, anti-HER2 humanized antibody (largely human component with minimized mouse CDR
segment) with Maytansine (IC50; nM level) via a thioester (noncleavable) linker, which have lower
immunogenicity [1,2,5,10].

The heterogeneity of the drug-antibody ratio (DAR), which is the number of drug molecules
loaded onto single antibody, is an important issue in the development of the third generation ADCs.
DAR can accelerate the clearance and weaken the efficacy of ADCs. To produce homogeneous
ADCs, site-specific drug conjugation methods have been developed, including THIOMAB as a
cysteine replacement strategy, or SMARTagTM, SMAC-TAGTM, and TG-ADCTM as chemo-enzymatic
strategies [10]. In addition, novel technologies, such as bispecific antibodies or bispecific T-cell engager
(BiTE), have been applied for increasing efficacy. Furthermore, a novel combination approach with
immune checkpoint blockades, or an application of immune-oncology agents as a payload, would be
promising for achieving a durable response in clinics [10,16,17].

Thus, an evaluation and modification of antibody delivery and controlled drug release is
important for ADC development.

3. Antibody Delivery and the EPR Effect

High molecular weight (HMW) agents, in the range of about 10–200 nm can extravasate easily
from leaky tumor vessels due to the immature structure with intercellular openings and the increased
vascular permeability factor, such as VEGF or Kallikrein-Kinin [12,13,18]. In addition, because of the
lack of lymphatic vessels acting as a drainage system for HMW agents, they can stay in the tumor for a
long time. This mechanism is specific for cancer and is called the EPR effect [12,13,19]. An antibody,
typically IgG with a size of about 10 nm acting as a HMW agent, can selectively accumulate in the
tumor even if it is a non-specific antibody. This is the passive targeting of an antibody, and the
mechanism depends on the EPR effect [13,19,20]. Moreover, a specific antibody can accumulate more
and stay longer in the tumor than a non-specific antibody, which is called active targeting [13,19,20].
Interestingly, small-sized IgG fragments, such as Fab, accumulate in the tumor but stay less time
than the specific antibody IgG, because the passive targeting ability has been lost, as seen in small
compounds such as a low molecular weight (LMW) agent. Small-sized IgG fragments are also
eliminated from the kidney. The absence of passive targeting and rapid renal clearance lead a loss of
the long-term accumulation seen in its IgG counterpart. Finally, by using in vivo imaging, we found
that specific Fab showed the same tumor accumulation as non-specific IgG (Figure 2a). These results
indicated the importance of molecular imaging for observing antibody delivery in vivo.
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Figure 2. Fluorescent imaging of antibody delivery. (a) An in vivo imaging analysis of a mouse
xenograft model was conducted on fluorescent non-specific IgG, specific IgG, or specific Fab on days
one, three, five, and seven after the administration. (b) Left panel, hematoxylin-eosin straining of
malignant lymphoma (ML) (upper panel) and immunostaining of pancreatic cancer (PC) (lower panel)
in which cancer cells (blue) were surrounded by dense stromal collagen 4 (brown). The middle panel
shows the in vivo imaging of fluorescent anti-CD 20 and anti-EpCAM antibody that were injected
into the ML and PC model, respectively. The right panel shows the distribution of anti-CD 20 and
anti-EpCAM antibody (both green) within a ML tumor and PC tumor. The blood vessels, yellow in the
upper panel and magenta in the lower panel, were also observed.

4. Antibody Delivery and Tissue Penetration

The prognosis for brain tumor glioblastoma (GBM) and pancreatic cancer (PC) remains quite
poor [21–24]. GBM also involves a blood brain tumor barrier (BBTB) [22,23]. PC involves
hypovascularity and a low blood supply [21]. These are all disadvantages for drug delivery. In addition,
within tumor tissues, dense tumor stroma can block the penetration of the drugs [19,25–28], so most
drugs cannot reach the cancer cells. This is called the stromal barrier [25–28]. In order to visualize
the stromal barrier, we conducted in vivo imaging using fluorescent antibodies. Two types of models
including malignant lymphoma (ML) that has less stroma and PC with dense stroma, were prepared
and treated with cancer-specific anti-CD20 or the anti-EpCAM antibody, respectively [27]. Large
amounts of accumulation, caused by both passive targeting and active targeting, were observed in both
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tumor models at seven days after the administration. Macroscopically, antibody delivery appeared
successful in both tumor models. Microscopically, in the ML tumor, anti-CD20 antibody penetrated
deeply into the whole tumor area, showing good distribution. On the other hand, distribution of the
anti-EpCAM antibody was restricted to the peripheral area neighboring the tumor vessels. There was
no clear signal in the central area. The penetration of the antibody was clearly inhibited by the tumor
stroma (Figure 2b).

To overcome this drawback, we developed anti-fibrin ADC [29] and anti-tissue factor (TF)
ADC [30]. The former was named by cancer stromal targeting (CAST) therapy [13,31]. In conventional
ADC, the target is the cell-surface protein of cancer cells and an intracellular drug-release type linker is
used. After the internalization, the drug can be released. On the other hand, in CAST-ADC, the target
is the tumor stroma and not the cell, and an extracellular drug-release type linker is used. The drug
can be released outside of the cells, just on the stroma without internalization [26,27,29,31]. For the
anti-TF-ADC, an anti-TF antibody binds strongly to both the tumor and stromal cells expressing TF, and
can be used for simultaneous targeting of tumor and stromal cells compared to a typical CAST-ADC.

5. Immuno-PET Imaging

We used a positron emission tomography (PET) system to evaluate the antibody delivery [32].
The antibody was labeled with a positron-emitting radionuclide as a tracer. The PET system can
enable visualization of the antibody delivery from pairs of gamma rays emitted indirectly by the
labeled tracer [33]. This immuno-PET is better than fluorescent imaging for deep tissue imaging
because of its high sensitivity and accurate quantification. 64Cu with a half-life of 13 hours, 76Br
with a half-life of 16 hours, or 89Zr with a half-life of 72 hours, all having a relatively long physical
half-life, are usually used for immuno-PET imaging [33–35]. Among them, 89Zr, which has a half-life
of about three days, is the most commonly used for labeling antibodies worldwide, because the
antibody also has long half-life of about three to seven days, and three days are required to acquire
good contrast imaging after administration [34,36,37]. We conducted immuno-PET imaging of the
89Zr-labeled anti-fibrin antibody in a chemically-induced mouse skin cancer model similar to human
skin cancer [32]. The anti-fibrin antibody selectively accumulated in the tumor. Serial PET imaging
clearly showed skin cancers with 89Zr-labeled anti-fibrin antibody (Figure 3a). Quantification of the
PET images indicated that the accumulation of the 89Zr-labeled anti-fibrin antibody in the tumor
increased with time and peaked on day five after administration, while the control antibody did not
show a time-dependent increase in tumor uptake (Figure 3b). Comparison of fibrin immunostaining
and autoradiography confirmed the selective localization of the 89Zr-labeled anti-fibrin antibody in
the fibrin-positive tumor stroma (Figure 3c). Furthermore, we used PET/CT imaging which clearly
indicated that the area showing high uptake of anti-fibrin antibody coincided with the tumor area,
detected by CT scan (Figure 3d). We were able to confirm the effective delivery and tumor specificity
of the anti-fibrin antibody. Lastly, we succeeded in confirming the significant anti-tumor activity of
anti-fibrin CAST-ADC in a preclinical setting.



Bioengineering 2017, 4, 78 6 of 13
Bioengineering 2017, 4, 78 6 of 13 

6 

 

 

Figure 3. Evaluation of antibody delivery with positron emission tomography (PET) imaging. (a)–(b) PET 

imaging analysis was conducted using an 89Zr-labeled anti-fibrin antibody on day zero, one, two, 

three, five, and seven after the administration and %ID/g showed the relative value of Day 0 (100%). 

(c) With autoradiogram examination, the 89Zr-labeled anti-fibrin antibody was accumulated within 

the fibrin-positive tumor stroma, as represented by the dashed black line. (d) In PET/CT, the 89Zr-

labeled anti-fibrin antibody showed clear and specific accumulation in the tumor. Adapted from 

Hisada et al. [32]. 

More recently, PET/MRI has been used for molecular imaging [38]. Hybrid imaging, combining 

functional information from PET with morphological information by CT/MRI, is expected to improve 

diagnostic ability and contribute to the better management of cancer patients. Although 18F-FDG and 
11C-methionine, as part of a PET probe for targeting cellular metabolism, have been widely used in 

clinics, the use of a radionuclide-labeled antibody as a targeting PET probe has been progressively 

increasing in clinics [33,36,39,40]. In addition, many therapeutic antibodies, including ADC, will be 

increasingly used around the world. Using a companion diagnostic for the determination of the 

indicated treatment (e.g., the patient with HER2 positive breast cancer for T-DM1 treatment) is 

important [36,39,41,42]. In general, although an immunohistochemistry assay is used for the 

companion diagnosis, a biopsy specimen is needed. However, obtaining a biopsy from a patient with 

metastasis in deep organs, such as the brain or bone, is difficult [36,43]. Therefore, immuno-PET could be 

applied in those cases. Moreover, it can provide a non-invasive test instead of an invasive surgical biopsy. 

Therefore, immuno-PET would be useful for precision medicine as well as ADC development [33,36]. 

6. Mass Spectrometry Imaging 

Mass spectrometry imaging (MSI) is a method to view a biomolecule or metabolite in a tissue 

sample by using mass spectrometry [44–49]. Ionization of the targeted molecules is important for the 

mass analysis. For the ionization, several methods exist, such as Matrix-Associated Laser 

Desorption/Ionization (MALDI) or Electrospray Ionization (ESI) [44–46]. ESI is capable of ionizing a 

wide range of molecules, including chemical compounds without the addition of a matrix under 

ambient conditions. The analysis can be performed in conjunction with liquid chromatography with 

mass spectrometry (LC-MS).  

Figure 3. Evaluation of antibody delivery with positron emission tomography (PET) imaging.
(a)–(b) PET imaging analysis was conducted using an 89Zr-labeled anti-fibrin antibody on day zero,
one, two, three, five, and seven after the administration and %ID/g showed the relative value of Day 0
(100%). (c) With autoradiogram examination, the 89Zr-labeled anti-fibrin antibody was accumulated
within the fibrin-positive tumor stroma, as represented by the dashed black line. (d) In PET/CT, the
89Zr-labeled anti-fibrin antibody showed clear and specific accumulation in the tumor. Adapted from
Hisada et al. [32].

More recently, PET/MRI has been used for molecular imaging [38]. Hybrid imaging, combining
functional information from PET with morphological information by CT/MRI, is expected to improve
diagnostic ability and contribute to the better management of cancer patients. Although 18F-FDG and
11C-methionine, as part of a PET probe for targeting cellular metabolism, have been widely used in
clinics, the use of a radionuclide-labeled antibody as a targeting PET probe has been progressively
increasing in clinics [33,36,39,40]. In addition, many therapeutic antibodies, including ADC, will
be increasingly used around the world. Using a companion diagnostic for the determination of
the indicated treatment (e.g., the patient with HER2 positive breast cancer for T-DM1 treatment)
is important [36,39,41,42]. In general, although an immunohistochemistry assay is used for the
companion diagnosis, a biopsy specimen is needed. However, obtaining a biopsy from a patient
with metastasis in deep organs, such as the brain or bone, is difficult [36,43]. Therefore, immuno-PET
could be applied in those cases. Moreover, it can provide a non-invasive test instead of an invasive
surgical biopsy. Therefore, immuno-PET would be useful for precision medicine as well as ADC
development [33,36].

6. Mass Spectrometry Imaging

Mass spectrometry imaging (MSI) is a method to view a biomolecule or metabolite in a tissue
sample by using mass spectrometry [44–49]. Ionization of the targeted molecules is important
for the mass analysis. For the ionization, several methods exist, such as Matrix-Associated Laser
Desorption/Ionization (MALDI) or Electrospray Ionization (ESI) [44–46]. ESI is capable of ionizing
a wide range of molecules, including chemical compounds without the addition of a matrix under
ambient conditions. The analysis can be performed in conjunction with liquid chromatography with
mass spectrometry (LC-MS).
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For MALDI, the matrix should be sprayed on the tissue sample. After the laser irradiates the
treated sample, ion exchange occurs between the ionized matrixes transfer protons and the analyte
molecules (biomolecules and metabolites). Finally, the molecules become ionized. Mass analysis
of the ionized molecules can be conducted by using Time-Of-Flight MS (TOF-MS) [44,45]. TOF-MS
uses a simple principle to calculate the molecule size according to the difference in the flight time.
Lighter ions of the same charge reach higher speeds, whereas heavier ones are slower. Therefore, the
mass-to-charge ratio (m/z) of each ion can be determined by measuring the velocity. If we selected
the molecule with specialized m/z, we can identify the molecule itself and semi-quantify it in the
examination area.

Briefly, MALDI imaging provides an enormous amount of information on the abundance and
distribution of the targeted molecules within tissue samples with high sensitivity and high spatial
resolution [44,45]. A suitable matrix should be selected for an efficient ionization, although it is
difficult for some molecules to achieve it. On the other hand, ESI-MSI allows direct tissue analysis
without matrix-preparation [46,48,49]. As a drawback, the spatial resolution is poor when compared
with MALDI-MSI.

The new MSI analyzer, namely the mass microscope, is a microscope coupled with a
high-resolution atmospheric pressure-laser desorption/ionization and quadruple ion trap TOF
analyzer, has improved the tissue resolution of MALDI-MSI [50–54]. It has a resolution of 10 µm or
less, which is advantageous for evaluating the drug distribution in specific cells or areas of interest
within tissues. The mass microscope also allows an image from MSI to be overlaid on an optical image
in the same sample, which is beneficial for understanding and analyzing the tissues of interest. Here,
we hypothesized that MSI using a mass microscope should be able to be applied for the evaluation of
the controlled release of ADC in the targeted area (Figure 4a,b) [50].
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Figure 4. Mass spectrometry imaging (MSI) with a mass microscope. (a) A schematic representation of
our drug imaging system using MSI with a mass microscope. (b) A mass microscope demonstrates
the tissue distribution of targeted molecules with a high spatial resolution. Adapted from Yasunaga et
al. [50].

7. Visualization of the Controlled Release

Before the MSI examination, we thought it might be difficult to detect the drug signal because
of the limitation on the sensitivity. A single ADC only has about four drug molecules, or eight at
most. Our concern was that the concentration of the released drug might be below the detection limit.
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We decided to evaluate the paclitaxel (PTX)-incorporated micelle [13,55] as a DDS drug, which initially
contained about 200 PTX molecules. Free PTX (fPTX), as a conventional control and released PTX
(rPTX) from micelles, were detected in the tumor. A fPTX signal was detected at 15 min and one hour
after the administration, but decreased at six hours and disappeared by 24 hours. In contrast to fPTX,
a rPTX signal was detected from 15 min to 72 hours after administration. The signal intensity was
greatest at 24 hours (Figure 5a). Next, we conducted drug imaging in normal neuronal tissue. A strong
fPTX signal was detected in the perineuronal lesion at 30 min and one hour after the administration.
By contrast, the rPTX signal from PTX-micelle was extremely weak around the neuron (Figure 5b). This
is a significant difference and the reason why PTX-micelle does not cause neurotoxicity [13]. We thus
succeeded in visualizing the EPR effect for the first time [50].
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Figure 5. Visualization of the controlled release of PTX-incorporated micelle. (a) In tumor tissue, the
bright field (upper), reference substance (middle, an arbitrary signal of 824.6 m/z), and PTX (lower,
specific signal of 892.3 m/z). (b) In normal tissue, bright field (upper), neuronal marker (middle,
sphingomyelin-specific signal of 851.6 m/z), and PTX (lower, specific signal of 892.3 m/z). The neuronal
area is delineated by a white line. Adapted from Yasunaga et al. [50].

Subsequently, we wanted to visualize the anti-tissue factor antibody-drug conjugate
(anti-TF-ADC) (Figure 6a) [51]. Monomethyl auristatin E (MMAE) was used as a payload [1–3,8,9].
The molecular weight (MW) of MMAE is 717.5. The three positive-ion peaks are derived from MMAE:
718.4, 740.4, and 756.4 m/z as a single-charge hydrogen [M + H]+, sodium [M + Na]+, and potassium
[M + K]+, respectively, were observed by MS analysis. We then examined the MS/MS fragments of
MMAE from each of the three positive-ion peaks. Among them, we selected the prominent fragment
496.3 m/z detected when 740.4 m/z was used as a precursor ion. In the validation tests, the specificity
of 496.3 m/z, as a MMAE-specific fragment peak, was confirmed. We thus succeeded in visualizing
and quantifying MMAE separately from other biomolecules (Figure 6b) [51]. In an in vitro study, the
intensities of the mAbs, ADCs, and each MMAE sample were measured. The signal intensity of free
MMAE increased in a concentration-dependent manner. Moreover, the signal intensities obtained from
1.0 µL of 1.0-µM human TF ADC and the control ADC were far weaker than those from 1.0 µL of 1.0-µM
MMAE alone. Therefore, the MMAE signal in tumor tissues, after the ADC treatment, was largely
released MMAE. These observations were able to be performed in a stable and reproducible manner,
with a high-resolution atmospheric pressure mass microscope (Figure 6c). We then concluded that
the controlled release of ADC can be visualized and quantified by MSI. Control ADC or anti-TF-ADC
was administered into a mouse bearing a human pancreatic cancer tumor. In the examination of
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the tumor samples by MSI, a strong released MMAE signal from anti-TF-ADC was detected when
compared to that of the control-ADC. The signal was strongest at 24 h after the administration. The
data was validated by LC-MS analysis [51]. We concluded that ADC distribution and controlled drug
release were successful in the tumor area (Figure 7) [51]. In accordance with these results, a significant
anti-tumor effect of anti-TF ADC has been recognized in the xenograft model of PC [30].
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anti-tissue factor (TF) antibody-drug conjugate (anti-TF-ADC). (b) The MMAE-specific fragment with a
size of 496.3 m/z was determined in the MS/MS analysis. (c) In MSI analysis, released MMAE (MMAE
alone) was clearly distinguished from MMAE conjugated in ADC (ADC with MMAE). Adapted from
Fujiwara et al. [51].

Bioengineering 2017, 4, 78 9 of 13 

9 

 

anti-TF-ADC was administered into a mouse bearing a human pancreatic cancer tumor. In the 

examination of the tumor samples by MSI, a strong released MMAE signal from anti-TF-ADC was 

detected when compared to that of the control-ADC. The signal was strongest at 24 h after the 

administration. The data was validated by LC-MS analysis [51]. We concluded that ADC distribution 

and controlled drug release were successful in the tumor area (Figure 7) [51]. In accordance with 

these results, a significant anti-tumor effect of anti-TF ADC has been recognized in the xenograft 

model of PC [30]. 

 

Figure 6. Visualization of released monomethyl auristatin E (MMAE) from ADC. (a) Drug design of the 

anti-tissue factor (TF) antibody-drug conjugate (anti-TF-ADC). (b) The MMAE-specific fragment with a 

size of 496.3 m/z was determined in the MS/MS analysis. (c) In MSI analysis, released MMAE (MMAE 

alone) was clearly distinguished from MMAE conjugated in ADC (ADC with MMAE). Adapted from 

Fujiwara et al. [51]. 

 

Figure 7. Evaluation of the controlled release of MMAE from ADC using MSI. Tumor samples from 

the mouse xenograft model were prepared on three, 24, and 72 h after the administration of the control 

ADC and anti-TF-ADC, respectively. In each ADC, H&E staining (far left) and bright field  

(left-middle) are shown. The rectangles on the bright field show the measurement area. The released 

MMAE signals obtained from 496.3 m/z using a mass microscope is shown. The signals of 

antibody/ADC were acquired from immunostaining with horseradish peroxidase (HRP) labelled each 

antibody. Adapted from Fujiwara et al. [51]. 

Figure 7. Evaluation of the controlled release of MMAE from ADC using MSI. Tumor samples from
the mouse xenograft model were prepared on three, 24, and 72 h after the administration of the control
ADC and anti-TF-ADC, respectively. In each ADC, H&E staining (far left) and bright field (left-middle)
are shown. The rectangles on the bright field show the measurement area. The released MMAE
signals obtained from 496.3 m/z using a mass microscope is shown. The signals of antibody/ADC were
acquired from immunostaining with horseradish peroxidase (HRP) labelled each antibody. Adapted
from Fujiwara et al. [51].



Bioengineering 2017, 4, 78 10 of 13

8. Conclusions

We described our recent work in the development of ADCs as follows. 1) ADC, as a next
generation of antibody therapeutics, has been expected to be a breakthrough drug following the
immune checkpoint blockades. 2) ADC has four action steps: systemic circulation, the EPR effect
which is passive targeting, penetration within the tumor tissue, and action on cells, which involves the
active targeting and controlled release, like DDS drugs. Therefore, the evaluation of both antibody
delivery and controlled release is important. 3) Fluorescent/PET imaging and MSI are useful for the
evaluation of antibody delivery and controlled release, respectively, in ADC research, development,
and medicine. 4) We successfully developed novel ADCs, anti-fibrin-ADC, anti-tissue factor (TF)-ADC,
and others [26,27,29–31,56] by using DDS and molecular imaging.
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