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Abstract: The glycosyltransferase HisDapGalNAcT2 is the key protein of the Escherichia coli (E. coli)
SHuffle® T7 cell factory which was genetically engineered to allow glycosylation of a protein
substrate in vivo. The specific activity of the glycosyltransferase requires time-intensive analytics,
but is a critical process parameter. Therefore, it has to be monitored closely. This study evaluates
fluorometric in situ monitoring as option to access this critical process parameter during complex
E. coli fermentations. Partial least square regression (PLS) models were built based on the fluorometric
data recorded during the EnPresso® B fermentations. Capable models for the prediction of glucose
and acetate concentrations were built for these fermentations with rout mean squared errors for
prediction (RMSEP) of 0.19 g·L−1 and 0.08 g·L−1, as well as for the prediction of the optical
density (RMSEP 0.24). In situ monitoring of soluble enzyme to cell dry weight ratios (RMSEP
5.5 × 10−4 µg w/w) and specific activity of the glycosyltransferase (RMSEP 33.5 pmol·min−1·µg−1)
proved to be challenging, since HisDapGalNAcT2 had to be extracted from the cells and purified.
However, fluorescence spectroscopy, in combination with PLS modeling, proved to be feasible for in
situ monitoring of complex expression systems.

Keywords: E. coli SHuffle® T7; Glycosyltransferase GalNAcT2; In Situ monitoring; soft sensor;
fluorescence spectroscopy

1. Introduction

The successful expression of target proteins that require post-translational modifications, such as
glycosylations or disulfide bond formation, remains a challenge in Escherichia coli. These modifications
are indispensable for protein folding, stability, and activity. Disulfide bond formation is usually
compartmentalized in the periplasm of E. coli. The oxidizing environment and the presence of various
chaperones in the periplasm enable the oxidation of sulfhydryl groups between two cysteine side
chains resulting in a covalent disulfide bond [1,2]. Nevertheless, E. coli periplasm is poorly adapted
for the production of multi-disulfide-bonded proteins in high yields since the periplasmic space is
significantly smaller than the cytoplasmic space [3]. Therefore, another option is the expression of
recombinant protein in the cytoplasm, whereby the chance for inclusion body formation is given.
High expression rates and the lack of chaperones mediating correct folding and disulfide bond
formation supports the accumulation of insoluble protein. Hence, some strains were engineered to
enable the formation of disulfide bonds in the cytoplasm. These strains carry mutations in both the
thioredoxin reductase (trxB) and the glutathione reductase (gor) genes to provide a less reducing
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cytoplasmic environment [1,4,5]. In addition to the mutations in trxB and gor, SHuffle® T7 carries the
chromosomally-integrated gene for the disulfide bond isomerase DsbC without the signal sequence [1].
To engineer an E. coli cell factory capable of glycosylating a protein substrate within the cytoplasm
requires the expression of an additional enzyme. In the work presented here, the recently established
E. coli cell factory derived from the SHuffle® T7 strain was used. The proposed strain by Lauber et al. [6]
was genetically engineered to express a functional recombinant human-derived glycosyltransferase. It
could be shown that the co-expression of two redox folding helpers enabled the formation of a soluble
enzyme with four disulfide bonds. This contributed to the development of a glycosylation system in
E. coli for the transfer of a GalNAc-residue to a protein substrate in the cytoplasm [6]. The selection
of the media used for bacteria fermentations is not negligible and can have a major impact on the
bacterial cell factory [7]. High initial glucose concentrations in batch cultivations rapidly deplete
accompanied by acetate increases at the same time [7]. Jain et al. showed in their experiments, that the
glucose concentrations regulated the growth rates in E. coli fed-batch cultivations. Hoffmann et al. [8]
decreased inclusion body formation in E. coli fed-batch cultures expressing β-galactosidase-HIVgp41
fusion protein by maintaining low glucose concentrations. Whereas Luchner et al. [9] controlled the
expression rate of soluble human superoxide dismutase in E. coli by limiting the induction. The group
showed that slowing down the protein expression shifts the ratio of soluble protein to inclusion bodies
towards the soluble product. Moreover, Hortsch and Weuster-Botz [7] showed that the enzymatic
glucose release of the EnPresso® B medium can help to increase the expression of soluble formate
dehydrogenase. They concluded that the consistently low glucose concentrations prevented the E. coli
cells from metabolic overflow. Hence, the growth rates were reduced and the culture showed no
acetate shoot up in combination with a pH drop.

Various process analyzers were already used over the last 15 years to set up non-invasive
online monitoring systems for process parameters. Chemometric modeling was used to access
the complex data structure generated with the used process analyzers [10–12]. Among the used
methods, 2D fluorescence spectroscopy (2DFS) has been proven to be a highly valuable, sensitive, and
reliable process analyzer which can be used for the prediction of substrate, product, and metabolite
concentrations [9,13–15]. In general, principal components analysis (PCA) can be used to analyze
the structure of the generated datasets, investigate multi-factorial relationships, and extract the
relevant information [16,17]. Furthermore, partial least square regression (PLSR) can be applied
to correlate offline measured process parameters, such as optical density or glucose concentrations
(y-data), and the online recorded fluorescence scans (x-data) via linear regression [18]. Fluorescent
components that are involved in cell growth and metabolism [19] change characteristically in
the course of cultivation. The overall fluorescence signal of the bacterial culture is a mixture of
fluorescence signals, which originate from components such as aromatic amino acids, ATP, NADH,
FAD, and vitamins (riboflavin and pyridoxine). Furthermore, some fluorophores are also supplemented
to the culture with the feed medium [14]. Cell growth and biomass formation are the most common
monitored bioprocess parameters based on 2DFS. This was not only applied for E. coli cultivation
processes [20], but also for Saccharomyces cerevisiae [21], Pichia pastoris [22], Aspergillus niger spores [23]
and Klebsiella pneumoniae [24]. In addition, existing literature also shows that substrate, metabolite,
and product concentrations [25,26] can be monitored in microbial cultivations but also in mammalian
cultures [14,15]. Luchner et al. were even able to predict the concentration of soluble recombinant
superoxide dismutase in E. coli fed-batch cultivations based on 2DFS [9]. The general attempt of
all of these studies was to avoid complex and time consuming offline analyses, improve process
understanding, and enable better process control.

The E. coli cell factory expressing soluble human-derived glycosyltransferase was chosen as
the model system for this study. The cell factory expresses two helper proteins in order to support
the formation of active HisDapGalNAcT2. Hence, the amount of functionally active enzyme in the
cytoplasm was an indication of the cell factories performance. These process parameters were not
accessible during the fermentation and had to be determined afterwards. The aim of this study was to
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evaluate if 2DFS based soft sensors can be applied for in situ prediction of difficult-to-access process
parameters that require time-intensive and costly analytics. Furthermore, standard process parameters
were monitored since a highly fluorescent medium with enzymatic glucose release was used, which
was assumed to complicate the model generation. These models were built to illustrate the differences
and challenges we were facing while calibrating PLSR models for the prediction of soluble protein to
dry weight ratios and the specific activity of the glycosyltransferase. The study illustrated that it can
be beneficial to use process analyzers to monitor all critical process parameters in real-time.

2. Material and Methods

2.1. Strain

All experiments were performed with E. coli SHuffle® T7 (C3026H, New England Biolabs,
Frankfurt am Main, Germany) expressing the recombinant human glycosyltransferase fusion protein
HisDapGalNAcT2 and the chaperones Erv1p and PDI [6]. The glycosyltransferase HisDapGalNAcT2,
which was encoded on the plasmid pET23d(+)::HisDapGalNAcT2, was under the control of the
T7-promotor and construction of the plasmid was described previously [6]. The two chaperone
genes on the plasmid pMJS9 were under the control of the arabinose promotor. Plasmid pMJS9 [27]
was kindly provided by L. W. Ruddock. Unless otherwise stated, chemicals and reagents were
obtained from Sigma-Aldrich (Taufkirchen, Germany) or Roth (Carl Roth GmbH and Co. KG,
Karlsruhe, Germany).

2.2. Pre-Cultivation

The E. coli pre-cultures to inoculate the EnPresso® B (BioSilta Oy, Oulu, Finland) batch process
were cultivated in LB medium (120 µg·mL−1 ampicillin, 34 µg·mL−1 chloramphenicol and 0.2%
glucose). The pre-cultures were inoculated with eight ceramic cryo beads containing the E. coli
SHuffle® T7 strain. The pre-cultures were grown in 50 mL FalconTM tubes (Fisher Scientific, Schwerte,
Germany) containing 15 mL medium for 8 h at 37 ◦C/175 rpm.

2.3. Bioreactor Culture

A 2 L benchtop bioreactor BIOSTAT® Bplus (Sartorius, Göttingen, Germany) equipped with two
rushton impellers was used for the cultivation with a working volume of 1.4 L. Temperature, pH,
and aeration were set to 30 ◦C, pH 7, and 0.05 vvm, respectively. The oxygen saturation was kept
constant at 60% via agitation starting with a lower limit of 100 rpm. The pH was controlled with 1M
NaOH and 1M H2SO4. Furthermore 5% (v/v) DOW CORNING® medical antifoam (Dow Corning,
Midland, MI, USA) was used.

2.4. Batch Cultivation with EnPresso®B Medium

The complex predefined EnPresso® B medium including booster tablets was used as growth
medium. The EnPresso® B tablets were dissolved in sterile demineralized water and the solubilized
medium was transferred into the sterilized bioreactor. Following the protocol provided by the
manufacturer, the pre-culture was used for inoculation and a final OD600 of ≤0.04 was measured in
the bioreactor after inoculation. All fermentations were supplemented with 120 µg·mL−1 ampicillin,
34 µg·mL−1 chloramphenicol, and the amylase for glucose release. After 15 h cultivation, booster
tablets and amylase were added according to the manufacturer’s protocol. The pre-induction of the
pMJS9 encoded gene products was carried out in the presence of 0.5% w/v arabinose added to the
bioreactor 30 min after the booster tablets. Isopropyl-β-D-thiogalactopyranosid (IPTG) was added after
another 30 min to a final concentration of 1 mmol·L−1 to induce expression of the glycosyltransferase
HisDapGalNAcT2 [6]. Over the following 23.5 h 12 samples were taken from the bioreactor for offline
analysis starting with the first sample after addition of arabinose. The samples were stored on ice
during the cultivation.
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2.5. Offline Analytics

OD600 was measured using the photospectrometer Ultrospec 3100 pro (Amersham Bioscience
Europe, Freiburg, Germany). Acetate and glucose concentrations were determined enzymatically with
the Konelab Arena XT (Thermo Scientific, Waltham, MA, USA) using an acetate kit (R-Biopharm AG,
Darmstadt, Germany) and a glucose kit (Thermo Fisher Scientific, Waltham, MA, USA). Bacterial dry
matter was determined by centrifugation of 5 ml cell suspension. The pellet was re-suspended in PBS
for the transfer to a pre-weighed test tube. This was followed by an additional centrifugation step.
The supernatant was discarded and the bacteria pellets in the test tubes were dried at 105 ◦C for 24 h
and re-weighed.

2.6. Purification of Soluble Human Glycosyltransferase

A cell pellet derived from a 5 mL culture fraction was re-suspended in 630 µL extraction buffer
(50 mmol·L−1 Tris, 300 mmol·L−1 NaCl, pH 8) containing 70 µL lysozyme, 1.5 µL DNAse I and 25 µL
protease inhibitor (complete protease inhibitor cocktail tablet, F. Hoffmann La-Roche AG, Switzerland).
The bacterial suspension was cooled on ice for 30 min and sonicated for 3 min on ice. The cell lysate
was centrifuged at 4 ◦C, 16100× g for 10 min, and the supernatant was passed through a 0.45 µm filter
(Merck Millipore, Darmstadt, Germany). The polyhistidine-tagged protein HisDapGalNAcT2 was
purified using Ni-NTA spin columns (Qiagen, Hilden, Germany) with washing buffer (50 mmol·L−1

Tris, 300 mmol·L−1 NaCl, 20 mmol·L−1 imidazole) and elution buffer (50 mmol·L−1 Tris, 300 mmol·L−1

NaCl, 500 mmol·L−1 imidazole) adjusted to pH 8 prior to use [6]. The protein concentration in the
eluent fraction was determined by employing a BCA-assay.

2.7. Human Glycosyltransferase Activity Assay

The activity of HisDapGalNAcT2 was determined using a glycosyltransferase activity kit
(EA001, R & D Systems Europe Ltd., Abingdon, UK) as described previously [6]. The activity of
each sample was determined using 0.5 µg soluble protein.

2.8. Online Data Collection

The multi-wavelength excitation/emission matrices (EEM) were recorded with a BioView® system
(Delta, Hørsholm, Denmark) equipped with a fiber optic assembly especially developed to fit into
a 19 mm port. The benchtop bioreactor was equipped with a 20 cm stainless steel casing and the
fluorescence sensor was inserted after autoclaving. A full EEM consists of 120 wavelength pairs
with an excitation range from 270 to 550 nm and emissions recorded from 290 to 590 nm with a
20 nm interval. The scans were vectorized into 2-way arrays and used as x-data for the chemometric
modeling. The gain of the fluorescence spectrometer was set to 1100 and the EEMs were recorded with
a measurement interval of 5 min during fermentation. Only EEMs taken after booster addition were
used for the chemometric modeling.

2.9. Chemometric Modeling

MATLAB version 8.4.0 (MathWorks, Natick, MA, USA) in combination with the PLS-toolbox
version 7.9.5 (Eigenvector Research Inc., Manson, WA, USA) was used for chemometric modeling [28].
A detailed description is provided elsewhere in the literature [17,18,29]. The EEM data were
preprocessed by background subtraction to the first scan after booster addition. Offline measured
values and corresponding scans were used for the calibration of PLS regression models for the
prediction of OD600, acetate, and glucose concentration. For the PLS model, regarding the ratio of
soluble protein to dry cell weight, only samples 21 h after inoculation were used as input data for the
calibration model. For the PLS model concerning the specific activity of HisDapGalNAcT2, the offline
data was complemented using a double Boltzmann fitting operated in Origin 9.1G (OriginLab Inc.,
Northampton, MA, USA). Based on the fit, the resulting y-data in 30 min intervals and corresponding
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EEM were applied for the correlation starting with all scans recorded between 24.5 h after inoculation
and harvest. The SIMPLS algorithm was used for PLSR model calibration in combination with
venetian blinds as method for cross-validation applying six splits and one sample per split for all
models. Three of the available datasets (run I–III) were used for calibration and cross-validation.
Calculated RMSE and RMSECV were used to assess the performance of the model. All EEMs recorded
after booster addition were fed to the respective PLS model for prediction. In order to evaluate the
robustness of the calibration model, x-data recorded during an additional fermentation (run IV) was
only predicted using the selected model. The predicted response variables of all fermentations were
compared to the offline-determined values.

3. Results and Discussion

The expression of the human-derived, soluble, and functional glycosyltransferase
HisDapGalNAcT2 represents the key factor in establishing this particular E. coli cell factory.
The final purpose of this cell factory will be to enable the transfer of a GalNAc-residue to a protein
substrate in vivo. The expression strategy for HisDapGalNAcT2 did follow a temporal sequence.
Two chaperones (sulfhydryl oxidase Erv1p and protein disulfide isomerase PDI [6,27]) were
induced via arabinose and mediated folding and disulfide bond formation of the HisDapGalNAcT2.
The glycosyltransferase was induced by IPTG 30 min after the two redox folding helpers.

3.1. EnPresso® B Batch Cultivations and Chemometric Modeling of Process Parameters

Four batch fermentations were carried out using EnPresso® B medium and the E. coli SHuffle®

T7 strain expressing the recombinant glycosyltransferase HisDapGalNAcT2. EnPresso® B medium
consists of three main components: (1) medium tablets, (2) booster tablet and (3) amylase for controlled
glucose release. The components of the tablets are not stated by the manufacturer but it is known
that a polysaccharide is an ingredient of the booster and the medium tablets. Following the protocol
provided by the manufacturer, the booster was added to the medium 15 h after inoculation and
1 h before the chaperones were induced. A sufficient nutrition of the cell factory was achieved by
addition of amylase at the inoculation and again together with the booster [7]. The measured glucose
concentrations ranged between 0.3–2.3 g·L−1 during the cultivations. Low cell growth with doubling
times of 172 ± 4.4 min was observed during the first 15 h after inoculation prior to booster addition.
The booster addition accelerated the cell growth and doubling times of 110 ± 17.8 min were observed.
The growth rates declined already 2 h after booster addition and doubling times between 30–60 h
within the following 20 h were observed. Nevertheless, all EnPresso® B cultivations reached higher
OD600 values at the end of the process in comparison to the cultivation with LB-medium (Figure S1).

Offline values and corresponding EEMs of three fermentations (runs I–III) were used for
calibration and cross-validation of the respective soft sensors. Resulting PLSR models were selected
and evaluated based on preferably low rout mean squared errors for calibration and prediction
(RMSEC and RMSEP) in combination with R2 > 0.9 for calibration (R2

cal) and validation (R2
CV) if

possible (Table 1). The number of latent variables (LVs) required for each model was minimized
and it was aimed for a maximum of captured x- and y-variance simultaneously. The PLSR models
were, furthermore, applied to predict the respective y-values during an additional batch cultivation
using EnPresso® B (run IV). This was done to investigate the robustness and predictive power of
these models.

3.2. Overall Batch Behavior Evaluated by Principal Component Analysis

Principal component analysis (PCA) was used to investigate the structure of the fluorometric
datasets and enabled the identification of differences between the batch cultivations with EnPresso®

B medium prior to PLS modeling. The relation of the individual EEMs to each other can be
displayed in the PCA scores plot. EEMs with similar scores are considered similar. The score values
calculated for the four fermentations formed similar trajectories on the PCA score plot (Figure 1)
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which were compared and put into relation. The fluorometric dataset was not preprocessed, but the
scores plot showed that 99.8% of the variance in the dataset was already captured by two principal
components (PC).

The similar score values of batch cultivation I and II indicated that they had the same background
fluorescence. The trajectory of batch cultivation III differed mainly on PC1 from cultivation I and II.
Furthermore the trajectory of cultivation IV differed on PC1 and PC2 from all other cultivations. It was
suspected that lot to lot variability of the EnPresso® B medium or the amylase performance might
have caused this variability in the datasets. This will be discussed in the following chapters.
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Figure 1. PCA scores plot. The EEM raw data was used as input for the PCA. The PCA scores plot
shows the differences between the four batch cultivations with EnPresso® B medium. For clarity only
every tenth point is shown. The circle indicates the cultivations used for PLS model calibration and run
IV was used as test dataset to predict the target parameters. The cultivation run IV was carried out
with six months time lag to the other cultivations.

3.3. Prediction of Acetate Concentrations and Optical Density

The calculated PLS models for the prediction of acetate concentrations and OD600 values showed
in both cases a calculated R2

cal > 0.98 (Table 1). The quality of the fit was also evaluated with the help
of the predicted versus measured plots (Figure 2A,B). All OD600 values and acetate concentrations
were located closely to the target line. Captured variances of 99.9% for the x-data and 99.85% for
the y-data with only four LVs were achieved for the PLS model which was built to predict acetate
concentrations. In addition, 81.87% of the variance in the x-data and 89.81% of the variance in the y-data
was captured for the OD600 model also with four LVs (Table 1). The correlation of predicted values
and offline measured acetate concentrations and OD600 values was good for all batch cultivations used
for model generation (Figure 3A,B). Occasionally samples taken during batch cultivation run IV were
analyzed offline. The measured values did fit the prediction for acetate concentrations and OD600

(Figure 3A,B). This led to the assumption that the proposed soft sensors were reliable and allowed the
online prediction of acetate concentrations and OD600.

Table 1. Quality attributes of the PLS models for the prediction of glucose and acetate concentrations,
OD600, the ratio of soluble protein to cell dry matter, and the specific activity of HisDapGalNAcT2.

Target LV R2
cal R2

CV RMSEC RMSEP

Glucose concentration (g·L−1) 3 0.93 0.88 0.14 0.19
Acetate concentration (g·L−1) 4 0.99 0.97 0.05 0.08

OD600 4 0.99 0.97 0.02 0.24
Specific activity GalNAcT2 (pmol·min−1·µg−1) 3 0.65 0.59 30.7 33.5
Ratio of soluble GalNAcT2 / Dry matter (µg w/w) 3 0.86 0.74 4 × 10−4 5.5 × 10−4
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Figure 2. Prediction versus reference plots. PLS regression models were built for OD600 (A), acetate (B),
and glucose concentrations (C). Online and offline data of three cultivations was used for calibration
and cross-validation of the PLS models. Vectorized EEMs taken at the sample points (x-data) and the
offline measured values (y-data) were correlated. Predicted versus reference plots of the PLS models
did show good correlation.

3.4. Prediction of Substrate Concentrations

Establishing a soft sensor for the online prediction of glucose concentrations was challenging.
Since the glucose supply of the culture was accomplished enzymatically through amylase
(glucoamylase) [30]. The same batch of predefined EnPresso® B medium was used for all cultivations.
The glucose concentrations determined for samples taken from the bioreactor during batch cultivation
run I and run III ranged between 0.5 g·L−1 and 1.5 g·L−1. However, the glucose concentrations
measured during batch cultivation run II were higher, ranging from 1.5 g·L−1 up to 2.3 g·L−1.
Despite the differences between the three cultivations concerning the measured glucose concentrations,
a PLS model was calibrated and cross-validated. The resulting model with three LVs and an R2

cal
of 0.94, R2

CV of 0.88, and a RMSEP of 0.19 g·L−1 was accepted (Table 1), since the predicted versus
measured plot showed good correlation (Figure 2C). Glucose concentrations predicted for cultivations
included in the model generation (run I–III) were in good accordance with the offline measured
values (Figure 3C). The predicted glucose concentrations of batch fermentation run IV were roughly
1 g·L−1 higher than the offline measured values (Figure 3C). Nevertheless, predicted and measured
values showed the same trend over cultivation time. The discrepancies between the offline measured
values and predicted glucose concentration might be explained as follows: Glucose is a non-fluorescent
compound, but glucose uptake and consumption by the cells has an impact on the pattern of fluorescent
components in the culture. Thus, chemometric models for glucose prediction are generally based
on these patterns, so-called secondary effects. The EnPresso® B medium contained a polysaccharide
and the glucose supply was regulated through amylase. The information about how much glucose
was released over time was not available, because the glucose was continuously metabolized by the
cell factory.

The observed circumstances let to the assumption that either the enzyme used in run IV or
the cell metabolism behaved differently, which was already suspected based on the PCA results.
First, a different enzyme lot was used for this particular cultivation. Second, the medium was stored
as separately-wrapped tablets and, although the same medium lot was used, differences in the
appearance of the tablets were observed due to storage. The largest difference concerning the color
and the solubility in water was noticed between the medium tablets used for the first tree cultivations
(runs I–III) and for cultivation IV. This validation run IV was conducted with a time lag of six months
to the other cultivations.



Bioengineering 2016, 3, 32 8 of 13
Bioengineering 2016, 3, 32 8 of 14 

 

Figure 3. Correlation of predicted and offline measured process parameters. Predicted values 

(dashed) were compared to offline values (squares). Runs I–III were used for calibration and internal 

cross-validation of the soft sensors predicting OD600 (A), acetate (B), and glucose concentrations (C). 

Run IV was not included in model generation; this cultivation was used to test the selected model.  

The observed circumstances let to the assumption that either the enzyme used in run IV or the 

cell metabolism behaved differently, which was already suspected based on the PCA results. First, a 

different enzyme lot was used for this particular cultivation. Second, the medium was stored as 

separately-wrapped tablets and, although the same medium lot was used, differences in the 

appearance of the tablets were observed due to storage. The largest difference concerning the color 

and the solubility in water was noticed between the medium tablets used for the first tree 

cultivations (runs I–III) and for cultivation IV. This validation run IV was conducted with a time lag 

of six months to the other cultivations.  

3.5. Chemometric Modeling of the Cell Factory’s Efficiency  

The proposed E. coli cell factory is a complex expression system with the objective to perform 

posttranslational changes to a protein substrate in vivo. Real-time monitoring of the 

glycosyltransferase specific activity during cultivation might be an advantage since the enzyme was 

not the final product of this process, but it was an indicator for the cell factory’s efficiency. Since the 

ability to glycosylate a protein substrate is always directly related to the concentration of functional 

active HisDapGalNAcT2 in the cytoplasm.  

3.6. Prediction of Soluble Protein to Biomass Ratio  

A PLS regression model for the prediction of soluble protein accumulation in the cytoplasm of 

the cell factory was developed. Therefore, the ratio of captured soluble protein to dry cell matter was 

Figure 3. Correlation of predicted and offline measured process parameters. Predicted values
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3.5. Chemometric Modeling of the Cell Factory’s Efficiency

The proposed E. coli cell factory is a complex expression system with the objective to perform
posttranslational changes to a protein substrate in vivo. Real-time monitoring of the glycosyltransferase
specific activity during cultivation might be an advantage since the enzyme was not the final product
of this process, but it was an indicator for the cell factory’s efficiency. Since the ability to glycosylate a
protein substrate is always directly related to the concentration of functional active HisDapGalNAcT2
in the cytoplasm.

3.6. Prediction of Soluble Protein to Biomass Ratio

A PLS regression model for the prediction of soluble protein accumulation in the cytoplasm of
the cell factory was developed. Therefore, the ratio of captured soluble protein to dry cell matter was
calculated and used as the y-value for the model calibration. It has to be considered that the offline
measured soluble protein concentrations might have been biased due to the laborious purification
method, since the chance to co-purify small amounts of host cell protein during the capture step with
Ni-NTA spin columns was given. For this reason, only y-data determined for samples taken after
21 h cultivation time were used as input for the model. For these samples it was assumed that the
amount of possibly co-purified host cell protein was negligible in comparison to the concentrations
of the recombinant protein. The resulting calibration model with three LVs was able to capture
79.2% of the x-variance and 86.2% of the y-variance. The measured versus predicted plot of the PLS
regression model showed a close correlation (Figure 4A) with correlation coefficients of R2

cal = 0.862
and R2

CV = 0.744 (Table 1). The scores plot showed that the EEMs of all four fermentations behaved
similarly after preprocessing of the raw data by background subtraction (Figure 4B). This supported
the supposition that the variations in the fluorescence data sets were related to the background
fluorescence caused by the medium, like the PCA results, was already indicated. The PLS model
was used to predict the ratio of soluble protein to cell dry weight based on the EEMs recorded
during the cultivations. Figure 4C–E shows that offline and predicted values were in good accordance.
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The soluble protein to cell dry weight ratio was also predicted for fermentation IV (Figure 4F). However,
a corresponding offline dataset was not available for this run. Nevertheless, the predicted values
showed the same progression over process time as observed for all other cultivations. This indicated
that the selected PLS model interpreted the fluorometric dataset of this fermentation in the same
way as all other fermentations. The ratio of soluble protein to cell dry matter of all cultivations
did steadily increase to approximately 4 × 10−3 µg (w/w). However, a distinct increase of the
ratio was observed for the first five hours after induction. This observation can be assigned to
the second glucoamylase addition prior to induction, and consequently enhanced glucose release [7].
One hour after induction, the replication of the plasmids and the synthesis of the recombinant proteins
most likely effected the cell growth. Diaz and Hernández [31] showed that cell metabolism and
doubling times can be influenced by various parameters, such as plasmid size (pMJS9: 8.1 kBp and
pET23d(+)::HisDapGalNAcT2: 5.4 kBp), copy number, over expression of homologous or heterologous
genes, and their size. This particular E. coli cell factory was genetically engineered to express three
heterologous genes: (1) sulfhydryloxidase (21.6 kDa); (2) protein disulfide isomerase (58.2 kDa); and
(3) glycosyltransferase (61.7 kDa). This metabolic shift might have been crucial for the formation
of active human recombinant HisDapGalNAcT2. In accordance with this, Luchner et al. showed,
for human superoxide dismutase expressed in E. coli, that the ratio of active soluble protein to its
aggregated inactive form was strongly dependant on the growth rate [9]. It was concluded that the
uptake and processing of the HisDapGalNAcT2 by the chaperones, might only work when the cell
growth and the glycosyltransferase expression was slowed down.Bioengineering 2016, 3, 32 10 of 14 
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3.7. Prediction of the Specific Activity of the HisDapGalNAcT2

The specific activity of the purified HisDapGalNAcT2 was determined following the activity
assay described by Lauber et al. [6]. Three LVs were selected for the resulting PLS model predicting the
specific activity of the HisDapGalNAcT2. The considerably low R2

cal of 0.654 and R2
CV of 0.591 did

not meet the requirements described earlier, where correlation coefficients of >0.9 were aimed for
(Table 1). However, a low RMSE for calibration and prediction, together with a low number of
LVs, was accomplished for the selected model. The deviation of the data from the target line in the
measured versus predicted plot (Figure 5A) was smaller for runs I and II than for cultivation run III.
Nevertheless, it was possible to accept the model since 99.4% of the x-data variance and 99.3% of
the y-data variance was captured. The scores plot showed that the EEMs of all four fermentations
behaved similar after preprocessing of the raw data by background subtraction (Figure 5B). The three
cultivations which were included in the model calibration covered final specific activities from 276 to
426 pmol·min−1·µg−1. Knowing that the cell factory showed a certain biological diversity supports the
need for in situ monitoring, since the offline analytics are too time-intensive, and even small variations
of the process due to the medium storage or the use of a different enzyme lots had an impact on the
cell factory. The specific activity of the enzyme increased strongly within the two hours after booster
and glucoamylase addition (Figure 5C–F), as it was also observed for the soluble HisDapGalNAcT2 to
dry matter ratio. The results showed that the extraction of soluble protein from the cell lysate followed
by the activity assay was prone to errors in the case of low cell concentrations and, therefore, also low
enzyme concentrations. Outliers were predominantly suspected for samples with OD600 values < 5.
Consequentially only specific activities determined for samples with OD600 values > 5 were used for
model calibration. It was assumed, that at this point the chaperones were expressed in a sufficient
quantity to obtain the active conformation of the glycosyltransferase. This resulted in a limitation of the
selected PLS model, which was already suspected due to the low correlation coefficients. The accuracy
of the calibration models is always dependent on the accuracy of assay or the method used for the
analysis of the respective response variable. Therefore, the prediction of difficult-to-access process
parameters remains a challenge. However, the data supported the earlier described assumption of
a slow growth rate and preventing the cells from a metabolism overflow supported the constant
accumulation of soluble glycosyltransferase in the cytoplasm [7]. Fluorescence EEMs recorded during
cultivation run IV were used to test the soft sensor regarding the online predictability of the cell factory
performance. A specific activity of 280 pmol·min−1·µg−1 was determined for the HisDapGalNAcT2
at the end of cultivation run IV. Furthermore, a specific activity of 265.5 ± 3.2 pmol·min−1·µg−1 was
predicted based on the PLS model and the EEM recorded during the last 30 min of the cultivation
(Figure 5F). This was a promising result, since a RSMEP of 33.5 pmol·min−1·µg−1 and a RMSEC of
only 30.7 pmol·min−1·µg−1 was calculated for this soft sensor (Table 1).
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Figure 5. PLS model for the prediction of the specific activity of HisDapGalNAcT2. (A) The predicted
versus reference plot of the PLS Model with three LVs. (B) The score values of all EEMs calculated for
LV1 and LV2 are shown in the scores plot. (C–F) Offline (circles) and predicted (dashed line) values
based on the PLS model are shown for cultivation I–IV. Only samples taken from the bioreactor with a
determines OD600 > 5.0 were used as input data for the model, since a high number of possible outliers
(closed circles) were identified for samples with lower OD600 values.

4. Conclusions

The specific activity measurements indicated that the complex and interlinked expression of
glycosyltransferase and chaperones was extremely sensitive to process variations. The results
suggested that the slower growth of the recombinant E. coli SHuffle® T7 strain in EnPresso® B medium
slowed down the protein expression and presumably enabled the chaperone-mediated folding and
disulfide-bound formation [13]. It was feasible to set up a reliable in situ monitoring for OD600 and
acetate concentrations. To provide a PLS model for the prediction of glucose concentrations was
challenging. The glucose release and therefore the glucose concentrations in the medium were not
only dependent on the glucose consumption by the cells but also on the amylase activity. Furthermore,
the development of a soft sensor for in situ prediction of the soluble protein content in the cells and
the specific activity of HisDapGalNAcT2 was complex. One drawback in this context was that the
specific activity of the enzyme had to be measured after purification from an E. coli cell lysate prior to
PLS modeling. The results indicate that the use of more datasets might be beneficial for the calibration
of such PLS models. Moreover, an improved assay for the determination of the specific activity of
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HisDapGalNAcT2 might facilitate the model calibration. Nevertheless, the study pointed out that
time-consuming and costly offline analysis might be rendered unnecessary for complex expression
systems in the near future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5354/3/4/32/s1,
Figure S1: E. coli Shuffle® T7 cell factory LB-medium fed-batch process. OD600, as well as glucose and acetate,
concentrations were measured offline. The glucose target concentration for the feed was 1 g·L−1. The cell factory
was induced following the same protocol as described for the EnPresso® B medium. Only negligible amounts of
glycosyltransferase were formed and the fermentation was stopped after increased inclusion body accumulation
was observed and the E. coli cell morphology changed.
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