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Abstract

Concussion, or mild traumatic brain injury, is a significant public health challenge, with
females experiencing high rates and prolonged symptoms. Reliable and objective tools
for early diagnosis are critically needed, particularly in pediatric populations, where
subjective symptom reporting can be inconsistent and neurodevelopmental factors may
influence presentation. Five minutes of resting-state (RS) EEG data were collected from non-
concussed and concussed females between 15 and 24 years of age. We first applied a deep
learning approach to classify concussion directly from raw, RS electroencephalography
(EEG) data. A long short-term memory (LSTM) recurrent neural network trained on
the raw data achieved 84.2% accuracy and an ensemble median area under the receiver
operating characteristic curve (AUC) of 0.904. To complement these results, we examined
causal connectivity at the source level using information flow rate to explore potential
network-level changes associated with concussion. Effective connectivity in the non-
concussed cohort was characterized by a symmetric pattern along the central-parietal
midline; in contrast, the concussed group showed a more posterior and left-lateralized
pattern. These spatial distribution changes were accompanied by significantly higher
connection magnitudes in the concussed group (p < 0.001). While these connectivity
changes may not directly drive classification, they provide evidence of large-scale brain
reorganization following concussion. Together, our results suggest that deep learning
models can detect concussion with high accuracy, while connectivity analyses may offer
complementary mechanistic insights. Future work with larger datasets is necessary to
refine the model specificity, explore subgroup differences related to hormone cycle changes
and symptoms, and incorporate data across different sports.

Keywords: concussion; deep learning; classification; causal connectivity; information
flow; EEG
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1. Introduction

Concussion or mild traumatic brain injury (mTBI) remains a significant and growing
public health concern globally. Concussions induce diffuse, heterogeneous, and spatially
distributed changes in brain structure and function, resulting in cognitive, motor, emotional,
and behavioral impairments that can persist for many months [1-3]. The annual rate of
reported mTBIs is 1100 per 100,000 people [4]. Among youth, the burden is especially pro-
nounced. A recent meta-analysis reported a pooled incidence of sports-related concussions
(SRC) in children and adolescents (<18 years of age) of 1.41 per 1000 athletes exposure, and
4.36 per 1000 player hours across seven contact sports [5].

Importantly, female athletes experience a higher risk of concussion in contact sports,
and report more severe symptoms and greater deficits in neurocognitive performance in
comparison with males [6]; however, they remain significantly underrepresented in con-
cussion research [7]. Reflecting broader trends in neuroscience research [8], the concussion
literature has historically predominantly focused on male athletes, creating gaps in our
understanding of sex-specific differences in injury mechanisms, symptom presentation,
and recovery trajectories. This discrepancy underscores the critical need for sex-specific
investigations to improve diagnostic accuracy, therapeutic interventions, and ultimately
clinical outcomes for females affected by concussion.

Current diagnostic approaches rely heavily on self-reported subjective symptom re-
ports and clinical assessments, which are prone to variability and may not accurately reflect
underlying neural dysfunction [9,10]. Neuroimaging and electrophysiological techniques
have been employed in research for several decades to enhance the understanding of concus-
sion pathophysiology and work toward more objective diagnoses. Electroencephalography
(EEG), in particular, offers a non-invasive, cost-effective method for assessing brain function
by capturing real-time electrical activity. Traditional EEG analyses, however, are limited
by their reliance on manually extracted features, and may lack sensitivity of the complex
and dynamic nature of brain activity affected by concussion. Advances in EEG technology,
coupled with increasingly sophisticated and analytic methods, have enabled researchers to
detect brain alterations post-injury [11-16].

Numerous studies have shown that the brain is highly active during the resting
state, with a highly sophisticated temporal connectivity structure that is characterized by
spontaneous fluctuations across spatially distributed regions. In addition, the resting state
of the brain utilizes approximately 80% of the brain’s energy in supporting a number of
functional tasks such as perception, working memory, etc., while task-related metabolic
changes account for less than 5% [17]. This intricate interplay achieves a balance between
efficient information processing and metabolic expenditure, which maintains the brain in a
highly responsive state [18] and is very sensitive to changes in the brain that can be picked
up by EEG.

Recent advances in artificial intelligence, particularly deep learning algorithms, have
revolutionized EEG analysis by enabling automated, data-driven classification of neuro-
logical states. Deep learning models, such as long short-term memory (LSTM) recurrent
neural networks, can automatically learn and detect temporal patterns in raw EEG data,
without the need for manual feature selection. We have previously shown high accuracy
in classifying concussions (i.e., [19,20]). In addition, Daly et al. [21] have successfully
applied this approach for neonatal seizure detection, showing some generalizability of this
approach. Despite their predictive success, deep learning models tend to function as “black
boxes”, offering limited insight into the reasoning behind their classifications, and thereby
constraining the related interpretability about the neural mechanisms that underlie the EEG
changes. This limitation presents a challenge for clinical translation, where insights about
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the mechanistic disruptions in brain function following injury are essential for developing
targeted interventions and objective injury assessment.

Brain connectivity metrics, particularly causal connectivity derived from EEG source
data, offers insights into the directional flow of information between brain regions, and can
be used to reveal disruptions in network-level neural communication following concussion.
We were the first to show changes in effective connectivity as measured by EEG using infor-
mation flow rate [22]. Our analysis shows that the dominant nexus of information flow in
healthy male adolescents was primarily left-lateralized and anterior-centric, characterized
by strong bidirectional information exchange between the frontal regions, and between the
frontal and the central/temporal regions. In contrast, adolescent males with concussion
showed distinct differences in information flow marked by a more left—right symmetrical,
albeit still primarily anterior-centric, pattern of connections, diminished activity along the
central-parietal midline axis, and the emergence of inter-hemispheric connections between
the left and right frontal and the left and right temporal regions of the brain. We also found
that the statistical distribution of the normalized information flow rates in each group
(non-concussed and concussed) was significantly different. This was a critical first step
towards understanding information flow in the brain during a key transition stage between
childhood and adulthood and the impact of brain injury on effective connectivity [22].

Recently, Reddy et al. [23] found increased posterior-to-anterior effective connectivity
following concussion in a sample of male high-school football players. In a pediatric
case—control sample, Vaughn et al. [24] found that post-concussion effective connectivity
within the DMN showed increased inter- and intra-hemispheric anterior connectivity,
with unique connections from the orbitofrontal cortex to parietal regions. In adults, acute
concussion has been associated with decreased connectivity from the left middle frontal
gyrus to various areas in the temporal, frontal, and insular regions, from the left insula to
areas within the frontal and central regions, and from the right insula to the left superior
frontal gyrus. Increased connectivity was observed from the left anterior cingulate cortex
to areas of the frontal lobe and the left insula, as well as from the right insula to the left
superior temporal gyrus [25,26].

These network-level disturbances suggest that concussion affects not only local neu-
ronal activity, but also the broader organization of neural information flow. Integrating this
approach with deep learning-based EEG classification could reveal whether micro-level
EEG disruptions predict broader connectivity changes, providing a promising avenue for
elucidating the neural underpinnings of concussion.

The main goal of this research is twofold. First, to evaluate the performance of
our previously developed, and tested in males, deep learning neural network-based
classifier—hereafter referred to as the Concussion Classification Network (ConcNet)—in
assessing the accuracy of concussion classification in females. Second, to apply causal brain
connectivity analyses to characterize differences in network organization between groups.
By combining automated classification with network neuroscience, this study aims to
bridge the gap between data-driven concussion detection and mechanistic understanding
to provide insights relevant to advancing diagnostic accuracy, recovery, and the clinical
management of concussion.

2. Materials and Methods
2.1. Participants

Female athletes between 15 and 24 years of age were recruited for this study. Par-
ticipants were recruited from various contact and non-contact sports teams, including

soccer, rugby, and swimming. The inclusion criteria for non-concussed athletes was no
history of concussion; concussed participants were required to be within 30 days of injury,
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with a diagnosis of concussion from a physician or team doctor, symptomatic at time of
study enrolment (reported > 4 symptoms on the SCATS5, in line with normative reference
values for female rugby players [27]), and have reported no medical clearance to return to
play (RTP). Exclusion criteria for all participants included focal neurologic deficits and/or
diagnosis with a neurological condition.

This study was approved by the University of British Columbia Clinical Research
Board (H17-02973), in accordance with the Declaration of Helsinki. All participants pro-
vided written informed consent before participating.

2.2. Concussion Symptom Assessment

The Sport Concussion Assessment Tool 5 (SCAT5) was used for assessing the number
and severity of concussion symptoms. The SCATS5 is a standardized sport concussion
assessment tool that is used to evaluate the presence and severity of concussion symp-
toms [28]. Respondents were asked to rate the severity of a series of 22 symptoms on
a 6-point scale ranging from 0 (none) to 6 (severe). Two scores are generated from the
questionnaire: total number of symptoms and total severity score. The SCAT5 data were
collected at the time of EEG recordings.

2.3. EEG Acquisition

Five minutes of resting-state eyes-closed EEG data were collected for all participants
using a 64-channel HydroCel Geodesic Sensor Net (EGI, Eugene, OR, USA) connected to
a Net Amps 400 high-impedance amplifier. The vertex (Cz) served as the reference point
during the recording setup. Data were recorded at a 500 Hz sampling rate, with scalp
electrode impedances typically less than 50 k().

2.4. Data Preprocessing for Deep Learning

For the deep learning approach, our methodology relies on using raw EEG data with
minimal preprocessing as the input to the neural network. In the reported deep learning
literature, methods for the preprocessing of EEG data, such as bandpass filtering and
artifact removal, are commonly used. However, there is no widely accepted, standard
preprocessing methodology in the literature. Ad hoc approaches may lead to subjective bias
and difficulty in achieving reproducible results; therefore, our objective is to use minimal
preprocessing to avoid any bias introduced in these steps, as per our previous work [19,20].

Our deep learning approach was built using Python v3.10 and Tensorflow v2.12 frame-
work. EEG recordings were first converted from the proprietary EGI format to Python
Numpy data format. Four seconds were trimmed at the start and the end of each 5 min
long recording to remove any transient noise. Five of the datasets had been recorded at a
sampling rate of 250 Hz, while the remaining were recorded at 500 Hz. All the datasets
were resampled to a uniform sample rate of 250 Hz. During data recording, the Net Amps
amplifier applies a built-in hardware low-pass filter, with the upper frequency automati-
cally set to half the sampling rate to ensure Nyquist sampling. Thus, data recorded with
sample rate of 250 Hz had been low-pass filtered at 125 Hz during data recording, while
datasets recorded at a 500 Hz sampling rate had been filtered at 250 Hz. To make the
dataset uniform, all datasets were low pass filtered at 100 Hz using a digital 5th order
Butterworth filter.

EEG signals are non-stationary; therefore, smaller segments of a recording can be
treated as independent data as a way of augmenting limited datasets. Adopting this ap-
proach, the 5 min long EEG recording from each participant was segmented into contiguous
epochs of 10 s length for use in training and testing the networks. This led to a nominal
30-fold increase in the size of the dataset. In order to prevent data leakage between the
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training and testing datasets, all segments from any given participant were included only
in the training dataset or in test dataset, and not split between the two.

2.5. Deep Neural Network Architecture

ConcNet [19,20] is based on a recurrent neural network (RNN) architecture, which
employs LSTM units to process and extract latent features from the multi-channel EEG
recordings. These extracted latent features form the input to fully connected layers used for
classification. The ConcNet architecture is schematically shown in Figure 1. The 64-channel
EEG data is input through a sequential input layer into a bilinear LSTM layer comprising
24 recurrent units. The output from the bilinear LSTM layer is regularized through dropout
with probability 0.32 and input to a second bilinear LSTM layer with 24 units, followed
by dropout with probability 0.32. The extracted latent features are input to two fully
connected layers for classification. The first fully connected layer has 8 hidden units and
RELU activation regularized by dropout with probability 0.32. The final fully connected
layer with two units outputs to a softmax layer, which assigns probabilities, PConc and
PHIth (=1 — PConc) for the input EEG data to be concussed or non-concussed based on
PConc being greater than a user-chosen threshold of 0.5.

64 Ch | EEG Sequentlal Input

Dropout -1

Dropou't -2

\ FC-8 + RELU \
| Dropout-3 |

)

8

IConcussed (1) - Control (O)I

Figure 1. Schematic diagram showing the architecture of ConcNet, the recurrent neural network used
for concussion classification.

For regularization, we used dropout (DO) with a probability of 0.32 after each bLSTM
layer and after the first fully connected layer. We used cross-entropy loss function as the
classification criterion, and an ADAM optimizer with a learning rate of 0.03. Standard
mini-batch gradient descent was used with a batch size of 12 and 5 epochs for training.

ConcNet was implemented using Tensorflow version 2.11 with Keras backend. Train-
ing and testing of the networks were carried out on Digital Research Alliance of Canada
clusters with one GPU assist. Hyperparameters were tuned using Bayesian optimization
within the Keras Tuner framework.

A custom K-fold cross validation scheme was used for training and test datasets in a
user-chosen ratio, 80% to 20% in our case. Since the EEG dataset contains several segments
from the same participant, the dataset was split based on all the participants to ensure that
all segments from any given participant were included in either the training or the test set,
and not in both, thus avoiding any data leakage between them. In addition, we ensured
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that the training dataset contained the same number of concussed and non-concussed
participants to maintain an even balance between the two classes.

Standard performance metrics, namely, accuracy, recall, precision, and specificity,
which are commonly used to assess network performance in binary classification tasks,
were calculated. Furthermore, the performance of ConcNet was based on two standard
metrics: the confusion matrix (CM), and the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve. The CM is a visual representation of the performance
metrics of a network used for classification. For binary classification, the four cells in
the CM plot show the true positive and negative rates, as well as the false positives and
negatives. From these four values, we computed all the standard performance metrics
of the network. The CM and the corresponding 95% CI values were computed using the
ground truth and predicted labels of the test samples in the five repeats of the 6-fold cross
validation tests. The ROC traces the true positive rate (TPR) against the false positive rate
(FPR) as a function of the classification threshold. An ideal network would have a TPR of 1,
and FPR of 0 for all classification thresholds. AUC, the area under the ROC, represents the
probability that the network will output a higher prediction score when presented a test
sample drawn at random from the concussed class than from the non-concussed class. A
classifier with no better accuracy than chance would be expected to have an AUC of 0.5,
while an AUC of 1 corresponds to a classifier with perfect accuracy.

2.6. EEG Preprocessing and Source Reconstruction for Causal Connectivity Analysis

Raw EEG data were preprocessed using EEGLAB in MATLAB R2022b [29]. Data
were re-referenced to the average of all channels, downsampled to 250 Hz, notch-filtered,
and bandpass-filtered between 0.5 and 50 Hz. Non-brain artifacts (i.e., noise caused by
participant motion) identified through independent component analysis (ICA) and visual
inspection were removed. Figure 2 shows the procedure of EEG data collection and analysis
for the causal connectivity analysis.

Eyes closed resting- EEG preprocessing Source reconstruction
state EEG

. e S . e S S e e S

' @

; Connectivity strength Connectivity pattern

Figure 2. Study design and analysis procedure for causal connectivity and degree assortativity analysis.
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Clean EEG sensor-level data were transformed to source space using Brainstorm in
MATLAB [29]. An MRI head template (ICBM152) was used for head modeling [30]. The
head model was divided into three sections (scalp, skull, brain) for forward modeling. The
source space was constrained to the cortex. Minimum norm estimate (MNE) and sLORETA
were used for inverse modeling [31,32]. The cortical surface was symmetrically divided
into ten regions of interest (ROIs) using the Desikan—Killiany atlas [33].

The Desikan—Killiany atlas was selected because it is commonly used for surface
EEG analyses, and because it provides a coarse sampling of the cortex. This was ideal
for our research question as it allowed us to focus on broad cortical patterns. The ten
predetermined ROIs were as follows: left-frontal (LF), right-frontal (RF), left-central (LC),
right-central (RC), left-parietal (LP), right-parietal (RP), left-temporal (LT), right-temporal
(RT), left-occipital (LO), and right-occipital (RO). Each of the ten source regions generated a
distinct time series, assumed to reflect the sum of electrical activity occurring in that specific
brain area. The resulting clean source reconstructed EEG data were used to calculate
causal connectivity.

2.7. Causal Connectivity

Causal connectivity was quantified using Liang—Kleeman’s information flow rate
(IFR) [22,34]. IFR provides a framework for measuring the transfer of information in
dynamic systems and as previously mentioned, it is particularly suitable for time series
data since it does not require the assumption of stationarity [35]. The theorem is briefly
described in the following section; for comprehensive review of the framework, see [34].

The covariance between two source regions, v; (transmitting information) and v;
(receiving information), is computed with the sample cross-covariance formula. This
calculation quantifies the extent to which time series v; and v; are correlated over time.
Specifically, it assesses how fluctuations in v; are associated with the fluctuations in v},
examining deviations from their average values over time. For dipoles located at v; and
v;j, the sample cross-covariance coefficient is denoted as Ci,j. The magnitude (strength of
electrical activity) at source location v; and at time point 7 is v; ,;; for source location v}, v; ;.
The computation of the sample cross-covariance uses the following formula:

éi,j = Ui,nvj,n —m Uj,nr for i, ] =1,....,10 (1)

where 7;; and 0;,, represent the mean values of v; , and v; ,, respectively.

The Pearson correlation between time series v; and v; (?,-,]-) is a normalized measure
of the linear relationship between the activities of two brain regions. Both C; j and 7; ; are
non-directional and #; ; is commonly reported as a measure of functional connectivity. The
cross-correlation coefficient between v; and v; (the temporal derivative of v;) over time and is
denoted as 7; 4;. This quantifies how the activity in one brain region relates to the rate of
change in the activity of another region. The formulas used to estimate #; j and 7; 4; are

A

C' j . .

fij = (fi:%" fori, j=1,....,10 @)
e

Figj = #;, fori, j=1,....,10 3)

]

where J; = \/CAT] is the sample standard deviation of v; and (f,-,d]- is the sample covariance
of v; and first derivative of v;.

The information flow rate from the time series v; to v; (T; ;) is calculated using the
Liang—Kleeman coefficient formula. To evaluate the significance of the information flow,
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the normalized information flow rate (7;,;) is calculated. The coefficient 7; ,; measures the
proportion of total entropy rate change in v; attributed to v;. Computation of 7; ,; uses a
normalization factor (Z;_,;) that is further described in [34]. Higher | 7; ;| values signify
greater information transfer between regions. A threshold of 0.05 has been used to identify
active connections, indicative of meaningful influence between brain regions.

Fij - .
Ti~>j = ﬁ (?i,dj - ?i,j?j,dj>/ for 1, ]= 1,....,10, i ?é ] (4)
T._>.
Tisj = ZIH]]» (5)

The resulting output from the casual connectivity computation for a single partici-
pant is a binary weighted directed network matrix with the magnitude (strength) of each
connection corresponding to 7;,;I. Connectivity matrices for individuals were aver-
aged to produce a single matrix for concussed and non-concussed groups, followed by a
between-group comparison.

2.8. Degree Assortativity

As a secondary outcome measure of brain connectivity, we compared the degree
of assortativity between the concussed and non-concussed groups. Assortativity is a
summary statistic of a network’s topological structure. It was originally conceptualized by
Newman et al. [36] and later studied in the context of brain connectivity [22]. It is a graph
theory metric that calculates the tendency of nodes in a network to connect with other
nodes of similar degree. Assortativity is expressed on a scale ranging from —1 (perfectly
disassortative) to 1 (perfectly assortative) [37].

The degree assortativity coefficient (ry) was calculated using an adaptation of New-
man’s original formula for weighted, directed networks, as described by Rubinov and
Sporns [38]. The 1y, is the Pearson correlation between the degree of nodes at either end
of an edge [37]. The 10 predefined ROI source regions are the nodes, and the | Tiyj | are
the weighted edges. The binary matrix generated from the casual connectivity calculation
is used to determine the weight of each node. Each node is assigned an in-degree and
an out-degree. The in-degree is calculated from the sum of the | 7; ;| for all incoming
connections. The out-degree is calculated from the sum of the I 7; ;| for all outgoing
connections. The pearson.W.m function from the Octave networks toolbox in MatLab was
used to calculate ry, [39].

2.9. Statistical Analyses

A post hoc power analysis using parameters from [22] indicated that a sample size
of n = 44 controls and n = 29 concussed would be required to detect a mean difference in
connectivity strength with 80% power (effect size = 0.6823, = 0.05). Descriptive statistics
were computed for the demographic data and SCAT5 scores. Group differences in age and
sport distribution were examined to assess comparability between concussed and control
participants. Age was compared using Welch’s two-sample t-test and Mann-Whitney U
tests. Level and type of sport was compared between groups using Fisher’s exact test. All
tests were conducted at 5% significance. The analyses were completed using SPSS software
(version 29.0.20.0).

The statistical significance of all mean connections was assessed. Using non-parametric
permutation testing, we tested the null hypothesis that there was no information flow
between v; and v;. For each participant, the transmitter time series was permuted 100 times
to generate 100 permuted | 7;,; | values for each connection. The significance threshold
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was set by calculating the 5th and 95th percentiles of these permuted distributions derived
from the permutations.

The magnitudes of |7; ;| were compared between both groups. One distribution
per group was generated using [7; ;| values for each of the 90 connection pairs be-
tween the 10 ROIs per individual in each group. Hence, the distributions consisted of
15 x 90 =1350 I7;;| values in the non-concussed group and 11 x 90 =1080 I 7; ;| values
in the concussed group. Differences in the shape and central tendencies between the two
distributions were assessed using the Kolmogorov-Smirnov and Kruskal-Wallis tests. In
addition, 95% confidence intervals were reported for the coefficient of variation (COV),
skewness, and kurtosis, corresponding to further described differences between the distri-
butions. Descriptive statistics (mean, median, standard deviation, coefficient of variation,
kurtosis, and skewness) were calculated for each group, and Cohen’s d was computed as an
estimate of effect size. One hundred thousand (100,000) subsamples of six individuals were
generated from random subsampling of each group, and plots were generated to visualize
the resulting COV, skewness, and kurtosis of each distribution.

The r,, was calculated for each subject based on their individual matrix. Mean r,, was
calculated by averaging all individual r,,’s. Between-group comparison of mean r,, was
conducted using an independent samples -test. The independent samples effect size using
Cohen’s d was reported.

3. Results
3.1. Clinical and Demographic Data

Table 1 presents the descriptive statistics for the concussed and non-concussed groups.
Age for the entire sample (N = 26) ranged from 15 to 24 years: n = 11 with subacute
concussion (M = 20; SD = 2.46) and n = 15 non-concussed participants (M = 21 years;
SD =1.88). Concussed participants were primarily involved in soccer and rugby, with
one participant from ringette, whereas control participants were more evenly distributed
across rugby, swimming, rowing, track, and ultimate frisbee. There was no statistically
significant age difference between the concussed and control groups (#(18) = —1.11, p = 0.28).
This finding was confirmed using a Mann—Whitney U test (W = 62.5, p = 0.30). The
majority of participants played sports at the university level; Fisher’s exact test indicated
no significant difference between groups (p = 0.35). All concussed participants reported
a diagnosis of concussion and averaged 10 days post-injury (SD = 6.85). On average, the
concussed group reported 14.88 (SD = 5.48) symptoms with a severity of 34.88 (SD = 22.53;
range = 7-71) on the SCATS.

Table 1. Demographic and concussion symptom assessment data.

Non-Concussed (n =15) Concussed (n =11)

Age (years) 21 +£1.88 20 + 2.46
Time since injury (days) - 10 £ 6.85
Previous diagnosed concussions ) 295 4 1.39
to date

SCATS5, total number of symptoms - 14.88 £ 5.48
SCATS5, severity of symptoms - 34.88 + 22.53

All values are presented as mean + standard deviation.

3.2. ConcNet

The final dataset consisted of 15 non-concussed and 11 concussed participants. With
the 80-to-20% split, the training dataset consisted of all the segments from eight non-
concussed and eight concussed participants, while the test dataset had six non-concussed
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and two concussed participants. Segments from one concussed and one non-concussed
participant were used as the validation dataset during training.

Since there were two concussed participants in each test dataset, a 6-fold cross val-
idation approach was adopted to test all the concussed and non-concussed participants
at least once. This was repeated five times, shuffling the participants at the start of each
sequence so that each participant was classified by a network, which had been trained with
different groups of participants, thus mimicking an ensemble learning approach.

For each repeat run of the 6-fold cross validation, the concussed participants and the
non-concussed participants were shuffled, so that the resulting training and test datasets for
the cross-validation were unique. Therefore, the performance of the network was assessed
with 30 independent realizations of the training and testing datasets.

Table 2 lists the mean value and the lower and upper 95% confidence intervals of the
performance metrics of ConcNet. The mean and corresponding 95% confidence intervals of
the metrics were computed from the 30 independent realizations of the training and testing
datasets in the five repeats of the 6-fold cross-validation tests.

Table 2. Performance metrics of ConcNet.

Metric Mean 95% CI
Accuracy 84.2% 81.0%/87.3%
Recall 92.9% 90.1%/95.6%
Specificity 75.5% 66.6% /84.4%
Precision 79.6% 74.4% /84.7%
F1 score 86.2% 84.4%/88.0%
AUC 0.904 0.870/0.915

ConcNet achieved an overall accuracy of 84.2% (81.0/87.3), indicating that, on average,
the network correctly classified eight or more test samples, irrespective of the sample being
drawn from the concussed or non-concussed class.

For test samples drawn only from the concussed class, the recall, also termed the true
positive rate (TPR) was higher at 92.9% (90.1/95.6), indicating that concussed participants
are correctly classified more than nine times out of ten. Using only test samples drawn from
the non-concussed class, the specificity, or true negative rate (TNR), was 75.7% (70/81.4).
Therefore, on average, only three out of every four non-concussed participants were cor-
rectly classified, with the remaining non-concussed participant being misclassified as
concussed, resulting in a false positive. This lower specificity of ConcNet leads correspond-
ingly to a precision or the positive predictive value (PPR) of 92.5% (77.1/84.7). On average,
out of any ten test samples classified by ConcNet as being concussed, only eight were
truly concussed (true positives), with the other two being misclassified non-concussed
participants (false positives). Figure 3 shows the mean values annotated on the CM.

Figure 4 shows the receiver operating characteristic (ROC) curve of ConcNet derived
from the five repeats of the 6-fold cross validations. The median ROC is estimated from the
five trials. The mean and 95% CI of the AUC values were 0.904 (0.87/0.92). ConcNet demon-
strated high sensitivity in detecting concussion with most concussed participants correctly
classified and median probability values above the decision threshold; however, specificity
was lower (75.5%), as several non-concussed participants were frequently misclassified.
Probability distributions confirmed that while concussed cases were reliably identified,
non-concussed cases showed greater variability, leading to reduced true negative rates.
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Figure 3. Confusion matrix showing the mean values of the true and false positive and negative
values obtained from test samples used in the five repeats of the 6-fold cross validations.
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Figure 4. ROC curves for each of the five repeats of the 6-fold cross validation tests (in gray) and the
corresponding median ROC curve (in blue). The diagonal 1:1 line shows the ROC of a network with

no skill.

Given the lower specificity relative to recall, we conducted additional analyses to
examine the sources of misclassification and to determine whether errors reflected data
quality issues or inter-individual variability. We examined misclassification patterns across
individuals using repeated 6-fold cross-validation shown in Figures A1-A4, Appendix A.
This analysis showed that errors were not randomly distributed. Specifically, three non-
concussed participants (HC_01, HC_13, and HC_15) accounted for the majority of mis-
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classifications (60-85% of the time), while five others were always correctly classified.
Importantly, errors were not concentrated in specific noisy epochs but occurred across mul-
tiple segments, suggesting that misclassification reflects inter-participant variability rather
than data quality issues. Further analysis revealed that the misclassified non-concussed
participants were all rugby players. We discuss the implications of this in the Discussion.

We also analyzed the distribution of classification probabilities (Figure A4). For
concussed participants, median probabilities consistently exceeded the decision thresh-
old, supporting the high recall (92.9%). For non-concussed participants, most medians
were also above threshold, though several were closer to the boundary, consistent with
lower specificity.

3.3. Causal Connectivity
3.3.1. Spatial Distribution

The spatial distributions of the ten strongest connections for the non-concussed and
concussed groups are shown in Figure 5. The rank-ordered magnitudes and directions
of these connections are listed in Table 3. For simplicity, only the ten strongest connec-
tions were qualitatively assessed, and show clear differences between the concussed and
control groups.

\Tempora/
/eiodwa) B
\ Tempora/
leiodwae) B
o
e
I7iss

d\ooo °

/e,{/q,oOo 7

ey

Figure 5. Spatial distribution of the strongest connections. The graph layout reflects the superior view
of the cortical surface. Arrows represent the direction of causality, with arrow color corresponding to
the magnitude (17;,;1) of the connection.

Table 3. Top ten strongest connections ranked by the magnitude of mean |7; ;| values for control
and concussed groups.

Transmitter Receiver Tl Transmitter Receiver ;1

l‘)]
RC LC 6.54 x 1072 LO LC 7.63 x 1072
LT LC 4.83 x 1072 RO LP 7.25 x 102
LP LC 461 x 1072 LT LP 7.24 x 1072
RP LC 458 x 102 LP LO 7.12 x 1072
RP LP 458 x 1072 LT LO 7.07 x 102
LC LT 4.44 x 1072 RP LP 6.96 x 1072
RT LP 424 x 102 LP RO 6.82 x 102
RO RT 410 x 102 RO LC 6.69 x 102
RO RP 4.05 x 1072 RP LC 6.35 x 1072

RT RP 4.01 x 102 RC LC 6.10 x 1072
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In the non-concussed group, the top ten connections are widespread. The strongest
connections are predominantly within anterior regions, with the top connection transmitted
from the right- to left-central area. The left-central region is a primary hub for receiving
information. Three inter-hemispheric connections are observed, including right-to-left
communication between temporal and parietal areas. Left-sided intra-hemispheric connec-
tions are more focused in anterior regions (LC—LT, LT—LC, LP—LC), while right-sided
intra-hemispheric connections are more localized the posterior region (RO—RT, RO—RP,
RT—RP).

In the concussed group, connectivity is characterized by a posterior and left-lateralized
pattern. The strongest connection is between the left-occipital to the left-central region. The
left-occipital and -parietal areas are primary hubs for incoming and outgoing connections.
There is an increase in strong inter-hemispheric connections (RO—LP, RO—LC, RP—LP,
RP—LC, RC—LC) and a decrease in right intra-hemispheric information flow.

Common connections for both groups include RC—LC, RP—LC, RP—LP. Unique to
the non-concussed group are connections transmitted from RT. Information transmitted
from the right occipital is consistent between the two groups, but its targets differ: RO—RT
and RO—RP in the non-concussed group, and RO—LC and RO—LP in the concussed
group. The concussed group shows more information flow to and from the left-occipital
(LO—LC, LT—LO, LP—LO) and left-parietal (incoming connections from the LT, RO, and
RP and outgoing to RO and LO) regions. The left-temporal region transmits information
posteriorly in the concussed group (LT—LO, LT—LP), compared to anteriorly in the
non-concussed group (LT—LC). The left-central region is a main receiver of inter- and
intra-hemispheric information in both groups, but only the non-concussed participants
show a strong outgoing connection.

3.3.2. Magnitude

Figure 6 shows the binary, weighted matrices showing the mean absolute normalized
information flow rates (17; ;1) for the concussed and non-concussed groups. Overall,
IT;,;1 values were higher in the concussed group. The difference in magnitude of 1 7; ;|
is visible in the plots due to the color bar scale. The concussed group matrix shows higher
magnitudes (red), which is particularly clear in Figure 6B,D, where only the ten most active

connections are shown.
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Figure 6. Causal connectivity matrices for the non-concussed and concussed groups. Panels (A,C) il-
lustrate the mean | ;| for each of the 90 possible pairs of the ten source ROIs for the non-concussed
and concussed groups, respectively. Panels (B,D) illustrate the ten strongest connections for the
non-concussed and concussed groups, respectively.
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As listed in Table 3, the magnitudes of the top ten connections in the non-concussed
group ranged from 4.01 x 1072 to 6.54 x 1072, with only one connection (RC—LC) ex-
ceeding the active threshold of 0.05. In contrast, the top ten connections in the concussed
group ranged from 6.10 x 102 to 7.63 x 1072, with 19 connections exceeding the active
threshold. For the list of all 90 rank-ordered connections refer to Appendix B.

3.3.3. Degree Assortativity

The mean r,, was higher in the concussed group (M = 0.41, SD = 0.26) compared to the
non-concussed group (M = 0.27, SD = 0.22) (Figure 7). However, an independent samples
t-test assuming unequal variances found no statistically significant difference between the
groups, t(19.79) = 1.39, p = 0.18. The mean difference was 0.13 (SE = 0.09), with 95% CI
equal to [—0.07, 0.33], with Cohen’s d indicating a small effect size (i.e., the difference in
the means is small compared to the variability), d = 0.24, with 95% CI [-0.24-1.35].

Degree assortativity coefficient (r,,)

Control Concussed

Figure 7. Boxplot comparing the degree assortativity coefficient (rw) between the non-concussed and
concussed groups. Each dot represents an individual participant’s degree assortativity coefficient.

3.3.4. Statistical Analysis for Causal Connectivity

First, we determined the statistical significance of all 90 mean connections in each
group. The 95th percentile of the |7, ;| randomized distribution derived by means of
permutation testing were 1.38 x 10~ for the non-concussed group and 1.75 x 10~ for
the concussed group. Since all mean connections exceeded these thresholds, statistical
significance was confirmed for both groups.

Next, we generated a probability density histogram consisting of two distributions
comprising all individuals in each group. The probability density histogram (Figure 8A)
showed that the non-concussed group was more likely to have lower mean | 7; ;| values
compared to the concussed group. The Kolmogorov-Smirnov (K-S) and Kruskal-Wallis
(K-W) test indicated that the distributions are significantly different (p = 1.61 x 10~ and
p =150 x 1073, respectively). In other words, the | T;j | values were significantly higher
in the concussed group in comparison to the control group.
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Figure 8. (A) Probability density histogram comparing two distributions (non-concussed and con-
cussed). All individuals are included in each group. The density (y) of individual connections
at each given magnitude (x) illustrates the overall strength of causal connections in each group.
(B): scatter plots of COV, skewness, and kurtosis derived from 100,000 subsamples, each comprising
six randomly selected individuals. The COV, skewness, and kurtosis are based on all the connections
and individuals in each subsample. Orange points indicate the non-concussed group, and blue points
indicate the concussed group.

Group-level descriptive statistics are summarized in Table 4. The mean information
flow rate was slightly higher in the concussed group (0.0364) compared to the control group
(0.0251), with similar median values. Both groups showed high coefficients of variation,
reflecting considerable within-group variability. Distributional characteristics also differed,
with the concussed group showing higher kurtosis and skewness, suggesting a more
peaked and asymmetric distribution (Figure 8B). Despite these differences, the effect size
was small (d = 0.0502), indicating minimal group differences in connectivity magnitude.

Table 4. Statistics of the |7;_,; | distributions for the concussed and control groups.

M Median SD cov Kurtosis Skewness d
Control 0.0251 0.0150 0.2920 1.1604 7.7898 1.9275 0.0502
Concussed 0.0364 0.0198 0.0444 1.2270 10.4160 2.3859 )

M: mean; SD: standard deviation; COV: coefficient of variation.

Lastly, we selected a subgroup of individuals from each group and derive subsampling
distributions of information flow rates to further evaluate characteristics of each group’s
distribution (Figure 8B).

Even though the distributions derived from subsampling follow the same orientation,
the distributions are fairly well separated and the shapes generally differ between the two
groups. Although the two groups are not completely separated in this three-dimensional
feature space, the observed behavior is in overall agreement with the results from the K-S
and K-W tests, which indicated that the distributions are distinct from one another.

4. Discussion

In this study, we present a novel approach to first classify concussion by applying a
recurrent neural network (ConcNet) to raw, minimally processed RS-EEG, and subsequently,
use source-based causal connectivity to provide mechanistic insights into the dynamics
of large-scale brain re-organization following concussion in female youth. Our findings
demonstrate that ConcNet accurately classified concussion with an average accuracy of
84.2%, a F1 score of 86.2% and a median AUC of 0.904. This classification performance is
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consistent with previous studies that have demonstrated the utility of deep learning models
in EEG-based concussion classification [19-21]. Our work is unique in its focus on female
athletes, who are underrepresented in the literature, despite having higher concussion rates
and more severe symptomatology [40].

ConcNet demonstrated particularly high recall, indicating that concussed EEG signals
carry distinct temporal-spectral patterns that the model consistently detected; however,
we did note a drop in specificity—similar to that in our earlier work on concussion clas-
sification with ConcNet using adolescent male data [20]. We could simply ascribe these
misclassifications to statistical fluctuations normally associated with any deep learning
classification work. However, the misclassifications are higher in the non-concussed par-
ticipants than in the concussed, indicating that the reasons may be more systematic in
nature. In this binary classification context, systematic misclassification of non-concussed
participants may be either due to the network not seeing a consistent pattern associated with
the non-concussed class, to an anomalous pattern in misclassified participants which is not
seen in the majority of the non-concussed participants, or identifying a pattern associated
with the concussed class in these misclassified non-concussed participants.

While ConcNet achieved high recall, the lower specificity highlights an important
limitation. Our exploratory analyses showed that misclassifications were largely attributed
to a small subset of non-concussed participants, with three consistently misclassified across
cross-validation runs. Notably, three of the four consistently misclassified non-concussed
participants were rugby players. It is highly likely that although these players were
asymptomatic and non-concussed at the time of testing, they may have been exposed to
subconcussive brain impacts. There is increasing evidence that repetitive subconcussive
brain impacts in sports such as soccer and rugby may result in subtle neural changes that
can be detected via EEG [41].

We further noted that errors were not concentrated in noisy epochs but occurred across
multiple segments, suggesting that misclassification reflects inter-individual variability
potentially related to subclinical effects of repeated head impacts, rather than data quality
issues. Improving specificity will therefore require larger and more diverse non-concussed
cohorts, careful screening for subclinical symptoms, and the inclusion of potential covariates
that may influence functional connectivity. Addressing these factors will be critical to
enhance model reliability and reduce false positives in clinical settings.

The high recall of 92.9% may indicate that ConcNet is able to identify a strong and
distinct pattern in the EEG associated with concussion, which dominates over any inter-
participant variations. This suggests that while concussion produces strong, characteristic
neural signatures, variability in the non-concussed group may obscure a consistent “non-
concussed” pattern. It is possible that without a clear pattern to aid classification, inter-
participant variations may dominate, leading to lower median classification probabilities
and lower specificity.

Although the deep learning classification results demonstrate that raw resting-state
EEG from concussed participants can be distinguished from that of non-concussed partici-
pants, these metrics alone do not provide insights about the underlying neurophysiological
changes driving the classification. To address this, we examined causal connectivity pat-
terns to explore potential network-level changes in information flow between brain regions
associated with mTBIL

4.1. Causal Connectivity

Our results show that in non-concussed athletes, the information flow is symmetric and
centrally distributed, particularly along the central-parietal midline. In contrast, concussed
participants exhibited more posterior and left-lateralized information flow, with the left-
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occipital and -parietal regions serving as primary hubs. This suggests that concussion
disrupts anterior-central network hubs and may induce compensatory reorganization in
posterior regions. These findings align with previous work demonstrating altered effective
connectivity following concussion, including increased posterior-anterior connectivity [23]
and aberrant interactions within the default mode and salience networks [24].

Vaughn et al. [24] also observed increased causal connectivity from the left-orbitofrontal
cortex to the right-parietal regions following concussion. Similarly, we observed an increase
between the right-parietal and left-central region in our concussed sample, though in the
opposite direction (RP—LC). The opposite directionality may be attributed to age differ-
ences, as Vaughn et al. [24] studied a younger sample. Consistent with this interpretation,
Michels et al. [42] reported anterior-to-posterior information flow in younger participants
and posterior-to-anterior information flow in older participants. Vaughn et al. [24] found
that stronger orbitofrontal-to-parietal connectivity correlated with fewer post-concussion
symptoms. In adults, increased frontal connectivity has similarly been linked to fewer
symptoms [43]. Our study shows that a similar pattern of increased frontal-parietal con-
nectivity exists in female youth following concussion.

Information flow changes may reflect injury to white matter tracts, particularly the
fibers of the corpus callosum, resulting from impact. Given the observed shift from a balance
of inter- and intra-hemispheric information flow to a predominant left-hemispheric pattern,
it could be hypothesized that structural damage led to the rerouting of communication
pathways [44].

Our observation of reductions in specific connections in the concussed cohort lends
additional support to the hypothesis that the balance of inter- and intra-hemispheric
connections shift following concussion, with some connections becoming stronger and
others becoming weaker. The result of this may be reflected in alterations in cognitive
control. Li et al. [25,26] reported reduced connectivity from the left prefrontal cortex to
the left middle temporal gyrus, from the left insula to regions of the prefrontal cortex, and
from the left insula to the right Rolandic operculum. They speculate that these reductions
may be associated with reduced information processing, poor working memory, emotional
dysregulation, and poor cognitive control.

The concussed sample had significantly more active connections in comparison to the
non-concussed group. This is suggestive of hyperconnectivity, which would indicate that,
even at rest, the concussed sample exerted more effort. This aligns with numerous reports of
increased functional connectivity in the acute phase of concussion [16,43,45-53]. Hypercon-
nectivity in the acute phase of injury might be an adaptive response, potentially occurring
to re-establish network communication or to allocate resources for repair [44,54,55] of
microstructural lesions and /or neurometabolic alterations [56-58]. While potentially bene-
ficial in the short term, chronic hyperconnectivity has a high metabolic cost that can lead
to resource depletion and neurodegeneration [44]. Disruptions in functional connectivity
have been observed in adult and pediatric populations with persistent symptoms [59-64],
as well as recovered athletes that have been cleared for RTP [65-69]. Further research is
needed to determine whether the increased information flow we observed represents a
transient compensatory response or a marker of ongoing network disruption.

We have previously investigated how pediatric concussion alters the temporal dy-
namics of brain states within resting-state networks using resting-state fMRI data [70].
Functional networks in resting state are not stationary, but switch between different brain
states. The strength and the direction of connections vary from seconds to minutes [71-73].
Using a sliding window analysis, we extracted three separate brain states within the resting-
state condition in both healthy adolescents and adolescents with concussion. We found
that healthy adolescents switched dynamically between three brain states, spending ap-
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proximately the same time in each brain state. In contrast, adolescents with concussion
spent the majority of time in only one brain state. We hypothesize that this lack of dynamic
flexibility is likely to negatively impact the performance of tasks that require shifting of
attentional states or performance of more complex tasks [74].

The concussed group had a slightly higher mean degree assortativity coefficient ()
compared to the non-concussed group; however, this difference was not statistically signifi-
cant. This suggests that the two groups did not differ in topological structure, and since
the mean r,, exceeded 0 in both groups, the networks were considered assortative. The
degree assortativity coefficient is reflective of network robustness and interconnectivity [75].
Highly assortative networks are less likely to become disconnected after trauma, whereas
disassortative networks are more vulnerable [37]. Greater assortativity suggests resilience,
and might be an adaptive response to injury [38]. Although Churchill et al. [76] reported
decreased assortativity after concussion, their study included an equal distribution of
university-aged males and females, but did not report female-specific assortativity scores.
Our concussed sample did not show this adaptive response, which could be an indication
that the female response to concussion may differ from what has been reported in the litera-
ture. To our knowledge, there are no other studies that have evaluated degree assortativity
coefficient following concussion in females. Our results hint sex-specific responses to brain
injury that need further study.

While ConcNet achieved strong predictive performance, the interpretability of deep
learning models remains a challenge with limited insight into the neural underpinnings
of classification decisions [77]. In this study, we also examined causal connectivity to
explore potential alterations in large-scale brain networks following brain injury. Although
these connectivity results are not directly linked to the classification results, they provide
complementary evidence of network-level reorganization, offering potential mechanistic
insights. Together, these parallel approaches highlight the value of combining predic-
tive modeling with network neuroscience perspectives. Future work using explainable
deep learning tools could help determine whether these connectivity patterns are di-
rectly leveraged by the model, further bridging the gap between predictive accuracy and
mechanistic interpretation.

4.2. Benefits of EEG Classifiers over Other Neuroimaging Techniques

EEG classifier models based on raw EEG data have a number of important benefits
over other methods. First, our novel approach of using raw resting-state EEG data removes
the need for extensive preprocessing steps that are typically required in conventional EEG
analysis pipelines, such as artifact rejection, feature engineering, or source localization.
This streamlines the workflow, reduces operator dependency, and enhances reproducibility,
paving the way for rapid, automated deployment in clinical and field settings. Second,
EEG classifiers do not require a baseline measurement when generating a prediction. This
makes an EEG classifier more practical, allowing it to be applied following impact without
the need for comparison with baseline behavioral measures [78]. Third, EEG is affordable
and portable compared with detection methods such as functional MRL

In addition, EEG has superior temporal resolution, capturing millisecond-level brain
dynamics that are critical for identifying transient or subtle disruptions associated with
sub-concussive impacts [41]. EEG can also detect functional brain changes that often
precede structural abnormalities visible on imaging, making it particularly sensitive for
early intervention. The classifiers provide objective, quantitative biomarkers, minimizing
reliance on self-reporting and subjective clinical judgment. Modern wearable EEG systems
allow for field-based, real-time assessment, ideal for sidelines, or remote areas. EEG is
non-invasive, radiation-free, and safe for frequent use, enabling longitudinal monitoring
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across an entire season or career. Its cost-effectiveness also makes it scalable for large
populations, supporting early detection and prevention in high-risk groups. More broadly,
machine learning has demonstrated adaptability across a wide spectrum of biomedical
and engineering applications [20,79-81]. This breadth underscores the versatility of ma-
chine learning approaches for analyzing complex physiological signals and supports their
continued application to EEG-based concussion classification.

4.3. Limitations and Future Directions

This study has several limitations. The recruited sample was smaller than the mini-
mum estimated in a post hoc power analysis, limiting the generalizability and robustness of
the findings, as well as precluding analysis by sport or symptom cluster. Although our use
of cross-validation and ensemble testing strengthens the reliability of our findings, these
methods cannot substitute for validation in larger cohorts. Controlling for covariates, such
as hormonal birth control use which has been shown to influence functional and causal
connectivity [82-85] was also not feasible due to the small sample size. Future studies
should prioritize larger, diverse cohorts, longitudinal tracking across recovery stages and
incorporate additional variables such as menstrual cycle, symptom profiles, and sport type
to refine model specificity and interpretability. The observation that several consistently
misclassified controls were rugby players also highlights the need to account for potential
subconcussive exposure when refining model specificity. In addition, all data were collected
at a single time point within 30 days of injury; longitudinal studies are needed to track
changes in connectivity and classification performance over time.

In this study, we addressed interpretability through source-based causal connectivity
analysis, which links model performance to mechanistic insights; future work will integrate
additional explainable Al approaches to enhance clinical trust and transparency. From a
translational standpoint, coupling high-performance classifiers with mechanistic insight
can improve clinician confidence in Al-assisted diagnosis, guide targeted rehabilitation
strategies, inform return-to-play/work decisions, and generate testable, network-level
hypotheses about injury and recovery. In addition, the pediatric focus is critical: developing
brains present unique developmental trajectories and sex-specific responses. Models should
be trained, validated, and interpreted with these issues in mind.
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Figure Al. Fractional classification for each concussed participant. Green bars indicate correct
classification; red bars indicate misclassification. In the concussed group, seven participants were
always correctly classified, while two were misclassified less than 10% of the time. Participant
AC_03 was misclassified 38.2% of the time. Participant AC_09 was misclassified 34.5% of the time.
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Figure A2. Fractional classification for each non-concussed participant. Green bars indicate correct
classification; red bars indicate misclassification. Three participants (HC_01, HC_13, HC_15) were
misclassified 60%, 84.5%, and 83.3% of the time, respectively. Further analysis showed that these
three participants were rugby players. Please see the Discussion about the effects of subconcussive
brain injury in rugby. Seven other participants were misclassified in the range of 6-49% of the time,
while five were correctly classified 100% of the time.
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Figure A3. Distribution of the prediction probabilities output by ConcNet for concussed partici-
pants. Pconc (range is 0-1). Probability greater than 0.5 is classified as concussed. The median and
inter-quartile distances of the distribution for all epochs for each participant during the 6-fold cross
validation tests are shown. Blue dots indicate correct classification; red dots indicate misclassification.
The median values of all participants are above the classification threshold with eight >= 0.8. Two par-
ticipants (AC_03, AC_11) have epochs misclassified 38.2% and 5.7% of the time. The median values
of the classification probability for all participants is consistently above the classification threshold.
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Figure A4. Distribution of the prediction probabilities output by ConcNet for concussed participants.
Pne (range = 1-Peonc). Blue dots indicate correct classification; red dots indicate misclassification.
The median values of 12 out of 15 participants are above the classification threshold but three are con-
sistently misclassified (HC_01, HC_13, HC_15) with median values below the classification threshold.
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Appendix B
Table A1. All 90 connections ranked in the order of magnitude of group mean |7,_,; ‘
Control (n =15) Concussed (n = 11)
Transmitter Receiver 7,1 Transmitter Receiver 7,1
RC LC 6.54 x 1072 LO LC 7.63 x 1072
LT LC 4.83 x 1072 RO LP 7.25 x 1072
LP LC 461 x 1072 LT LP 7.24 x 1072
RP LC 458 x 1072 LP LO 7.12 x 1072
RP LP 458 x 102 LT LO 7.07 x 102
LC LT 4.44 x 1072 RP LP 6.96 x 102
RT LP 424 x 1072 LP RO 6.82 x 102
RO RT 410 x 102 RO LC 6.69 x 102
RO RP 4.05 x 102 RP LC 6.35 x 102
RT RP 4.01 x 1072 RC LC 6.10 x 102
RP LO 3.84 x 102 LT RP 6.02 x 102
LP LO 3.81 x 102 LP LC 5.70 x 102
LP RP 3.58 x 102 RC LP 5.70 x 102
RP RO 347 x 1072 LO LP 5.60 x 102
LT LP 3.45 x 1072 LT LF 543 x 1072
LT LO 343 x 1072 LT RC 5.30 x 102
RF LF 3.42 x 1072 LC LF 5.27 x 1072
RO LO 3.37 x 1072 LP RP 5.09 x 102
RC RT 334 x 102 LO RP 485 x 1072
LC LP 3.28 x 102 RO RP 481 x 1072
LP LT 327 x 1072 RC RF 475 x 1072
RT RO 3.25 x 1072 RT LP 467 x 1072
LP RT 319 x 1072 RT RF 4.65 x 1072
LO RO 3.15 x 1072 LC LO 461 x 1072
LO LP 3.12 x 1072 RO LT 447 x 1072
RP RT 3.08 x 1072 RP RO 430 x 1072
RT LC 297 x 1072 RT LO 427 x 1072
LF LT 295 x 1072 RC LO 425 x 1072
LC RC 2.88 x 1072 LO RF 422 x 1072
RC LP 2.75 x 1072 LP LF 421 x 1072
RC RO 2.65 x 1072 RP LO 419 x 1072
RP LT 2.64 x 1072 RC RO 416 x 1072
RF RT 2.63 x 1072 LF LT 4.06 x 1072
LC LF 2.62 x 1072 LP LT 3.99 x 102
LF RF 2.60 x 1072 RP RF 3.98 x 102
LT LF 2.59 x 1072 LO RO 3.92 x 102
LO RT 2.55 x 1072 RO LO 3.79 x 102
LP RO 2.53 x 1072 LT LC 3.78 x 102
RP RC 2.49 x 1072 RO RF 3.71 x 1072
LO LF 244 x 1072 LC LP 3.69 x 102
RF RO 243 x 102 LT RO 3.63 x 1072
RT LO 243 x 1072 LC RF 3.55 x 102
RC RF 240 x 1072 RF LO 3.49 x 1072
LO RP 2.39 x 102 RP LT 3.48 x 102
LC RP 2.37 x 1072 RC LF 3.30 x 102
RC LT 2.32 x 1072 LP RT 3.19 x 102
LP RC 2.27 x 1072 LP RF 3.19 x 102
RF RC 2.26 x 102 LC RP 3.14 x 102

LO LC 2.23 x 1072 LC LT 313 x 1072
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Table Al. Cont.

Control (n =15) Concussed (n =11)
Transmitter Receiver T, Transmitter Receiver lT, 1
LF RT 2.22 x 1072 RC RP 3.05 x 1072
LC RO 219 x 102 LC RO 3.02 x 102
LO LT 2.18 x 102 LC RC 3.01 x 102
RF LT 2.15 x 1072 RP LF 298 x 102
RT RC 2.14 x 1072 LF RF 295 x 1072
LC RT 2.12 x 1072 LP RC 2.79 x 1072
LT RO 2.10 x 102 RF RT 2.77 x 1072
RO RC 2.01 x 1072 LF LP 2.76 x 1072
LC LO 1.96 x 102 LO RT 2.67 x 1072
RC LF 1.93 x 1072 LO LT 2.66 x 1072
RO LT 1.89 x 1072 RT LC 2.66 x 1072
RT LF 1.88 x 102 LF LC 255 x 1072
RT LT 1.82 x 1072 RC RT 255 x 1072
LT RF 1.80 x 102 LF LO 2.53 x 1072
LF LO 1.75 x 1072 RC LT 251 x 1072
RP LF 1.69 x 102 RP RT 249 x 102
RO LC 1.69 x 1072 LC RT 2.46 x 1072
LT RC 1.69 x 102 RT RO 244 x 1072
LC RF 1.65 x 1072 RF RC 243 x 102
LO RF 1.64 x 1072 RO RT 240 x 1072
LT RT 1.64 x 1072 LO LF 2.34 x 1072
RO LP 1.61 x 1072 RF RO 2.29 x 1072
RC RP 1.56 x 102 LF RT 2.24 x 102
RC LO 1.55 x 1072 RO LF 2.16 x 1072
RT RF 1.53 x 102 RT LF 2.12 x 1072
RP RF 1.50 x 102 RF LF 2.02 x 1072
RO RF 1.50 x 102 RF LC 1.97 x 102
RO LF 1.50 x 102 LF RP 1.94 x 1072
LF LC 1.48 x 102 LT RT 1.87 x 1072
LO RC 1.45 x 102 RT LT 1.81 x 1072
LF RO 1.38 x 1072 RO RC 1.80 x 1072
LP LF 1.37 x 102 RT RC 1.79 x 1072
LT RP 1.37 x 1072 RP RC 1.65 x 1072
RF RP 1.34 x 1072 RF LP 1.58 x 1072
LP RF 1.33 x 1072 LT RF 1.49 x 1072
RF LC 1.30 x 102 RF RP 1.49 x 1072
RF LO 1.28 x 102 LF RO 1.40 x 1072
LF RC 1.24 x 102 RT RP 1.39 x 1072
LF RP 9.69 x 1073 LO RC 1.36 x 1072
LF LP 9.67 x 1073 RF LT 1.34 x 1072
RF LP 8.89 x 1073 LF RC 9.12 x 103
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