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Abstract

Dementia and heart failure are growing global health issues, exacerbated by aging popula-
tions and disparities in care access. Diagnosing these conditions often requires advanced
equipment or tests with limited availability. A reliable tool distinguishing between the
two conditions is essential, enabling more accurate diagnoses and reducing misclassifica-
tions and inappropriate referrals. This study proposes a novel measurement, the optimized
weighted objective distance (OWOD), a modified version of the weighted objective dis-
tance, for the classification of dementia and heart failure. The OWOD is designed to
enhance model generalization through a data-driven approach. By enhancing objective
class generalization, applying multi-feature distance normalization, and identifying the
most significant features for classification—together with newly integrated blood biomarker
features—the OWOD could strengthen the classification of dementia and heart failure. A
combination of risk factors and proposed blood biomarkers (derived from 10,000 electronic
health records at Chiang Rai Prachanukroh Hospital, Chiang Rai, Thailand), comprising
20 features, demonstrated the best OWOD classification performance. For model evalu-
ation, the proposed OWOD-based classification method attained an accuracy of 95.45%,
a precision of 96.14%, a recall of 94.70%, an Fl-score of 95.42%, and an area under the
receiver operating characteristic curve of 97.10%, surpassing the results obtained using
other machine learning-based classification models (gradient boosting, decision tree, neural
network, and support vector machine).

Keywords: dementia; heart failure; risk factors; blood biomarkers; objective distance;
weighting features

1. Introduction

The proportion of older adults is increasing in every country, possibly due to improve-
ments in education, nutrition, and healthcare. As a result, a new life-course model has been
introduced, encompassing early life (younger than 45 years), midlife (45-65 years), and
later life (older than 65 years) [1]. Dementia and heart failure are two of the most diagnosed
chronic conditions in older adults, frequently co-occurring due to shared risk factors and
interconnected biological mechanisms [2—4]. With increasing age, individuals are more
likely to develop conditions such as high blood pressure, diabetes, high cholesterol, and
obesity, all of which are known to increase the risk of heart disease and neurodegenerative
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diseases [5]. There exists a clear physiological link between these two disorders. For
example, heart failure can cause reduced blood flow to the brain, which may accelerate cog-
nitive deterioration. Dementia is also associated with systemic inflammation and metabolic
disturbances, which adversely affect cardiovascular function [4]. This two-way interaction
highlights the importance of maintaining both cognitive and cardiovascular health in older
adults. By managing these comorbidities simultaneously, more effective diagnoses can
be developed, allowing for improved treatment outcomes and a higher quality of life for
older adults.

Dementia is a growing public concern, impacting the social and economic sectors in
terms of medical and social care costs. The global societal cost of dementia was estimated
at USD 1.3 trillion in 2019, with costs expected to surpass USD 2.8 trillion by 2030. Addi-
tionally, in 2019, the impact on families and caregivers was found to be significant, with an
average of 5 h per day spent caring for individuals with dementia. Women were especially
impacted; the majority of dementia patients who passed away were female, accounting
for up to 65% of cases. Currently, there is no cure for dementia; the primary goal of care is
early diagnosis, which is key to optimal management [6]. The increase in the older adult
population has given rise to a greater number of dementia prevalence studies [7] that utilize
digital healthcare with appropriate technology [8-10] and various features [11].

Heart failure is defined as a condition in which the heart has a reduced ability to pump
or fill with blood or exhibits structural abnormalities that result in inadequate cardiac
output. Heart failure has been described as a global pandemic, affecting approximately
64.3 million people worldwide as of 2017. The prevalence is expected to rise, primarily
because individuals live longer after diagnosis due to lifesaving interventions and general
improvements in life expectancy. However, the financial burden is significant—in the U.S.
alone, the cost of heart failure was estimated at USD 30.7 billion in 2012, and projections
suggest that costs could rise by 127% to USD 69.8 billion by 2030 [12]. Given the high
prevalence and severe health consequences of heart failure, numerous studies have focused
on identifying its risk factors and developing effective prevention strategies.

Biomarkers are generally used for dementia detection. These include cerebrospinal
fluid biomarkers, blood-based biomarkers, neuroimaging biomarkers, and genetic biomark-
ers. Given the high cost of positron emission tomography/magnetic resonance imaging
(PET/MRI), blood-based biomarkers offer a practical alternative for detecting dementia.
They are also noninvasive and widely accessible, making them suitable for large-scale and
repeated assessments. Dementia and heart failure share several risk factors, including body
weight, blood cholesterol levels, hypertension, serum lipids, and diabetes [5,6]. Leveraging
noninvasive and affordable methods enhances accessibility and equity, particularly in
resource-limited settings. However, using such biomarkers from electronic health records
(EHRs) remains challenging and requires comprehensive data integration and validation.

Digital healthcare technology is being rapidly implemented among older adults, as it
improves monitoring, communication, and health data collection. Currently, healthcare
knowledge-based systems, which support personalized care for older adults and their
healthcare providers, are widely accessible through smart devices, such as smartphones
and smart watches. In addition, innovations in healthcare and medical support are required
to enhance personalized healthcare and increase life expectancy. Machine learning (ML)
methods have emerged as powerful tools in medical research. In dementia studies, ML
methods have been applied in both preclinical and clinical investigations. Examples include
studies using various cognitive tests for dementia [13], a deep learning framework to iden-
tify dementia from DNA datasets [14], gradient boosting (GB) for dementia classification
based on human genetics [15], analysis of the dementia-related gene APOE4 [16], ensemble
classifiers for multi-class classification using the Alzheimer’s Disease Neuroimaging Initia-
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tive (ADNI) dataset [17], and dementia classification based on PET/MRI [18-20], with most
datasets derived from the ADNI. ML methods have also been used in the classification of
heart failure, such as support vector machines (SVMs) [21-23], decision trees (DTs) [24],
GB [25], extreme gradient boosting (XGB) [26], and deep learning, across datasets of vary-
ing types and sizes. However, ML approaches often require large datasets to perform
effectively, and performance can degrade when data are limited. Furthermore, ML methods
may struggle with interpretability, which is a key consideration in medical diagnostics.
To address these limitations, it is essential to explore an alternative approach that could
enhance classification performance while maintaining interpretability.

Distance measurement methods, such as the weighted objective distance (WOD),
have been successfully applied in the classification of various diseases, including hy-
pertension [27] and type 2 diabetes [28], which are risk factors for dementia and heart
failure [1,29-31]. However, the WOD is limited by its reliance on predefined thresholds and
fixed values tied to specific diseases, leading to model generalization issues. To address
these limitations, this study introduces the optimized weighted objective distance (OWOD).
The OWOD enhances the original WOD approach by incorporating an objective function
that derives data representations directly from the dataset. It identifies the target values of
both dementia and heart failure risk factors and calculates the WOD accordingly. Thus, this
study proposes a binary method based on distance measurement for the classification of
dementia and heart failure using blood biomarkers and established risk factors from EHRs.
The OWOD is expected to strengthen the binary classification of dementia and heart failure
by enhancing objective class generalization, applying multi-feature distance normalization,
and identifying the most significant features for classification.

2. Literature Review

Numerous studies have investigated various aspects of dementia and heart failure.
These studies can be categorized into three groups, which are discussed in this section.

2.1. Feature Studies of Dementia and Heart Failure

Several studies have focused on the risk factors for both dementia and heart failure.
Dementia risk factor studies can be divided into three groups. The first group encompasses
the relationship between dementia and body weight [32], blood cholesterol [33], and hyper-
tension [29-31]. Such studies have demonstrated significant associations between dementia
development and various clinical parameters that can be obtained from routine physical
check-ups and blood tests. These include hypertension [29-31], body weight [32], blood
cholesterol levels [33], serum lipids [34], and diabetes [1]. The second group comprises
preclinical studies, such as speech assessment [35,36], lifestyle activity [37], handwriting
assessment [38,39], sleep disturbances [40,41], sex differences [42], physical assessment,
risk score models [43—45], and hearing loss [1]. The third group includes brain imaging
clinical studies using PET/MRI [19].

Similarly, heart failure studies can be categorized into three groups. The first group
identifies risk factors such as age [46,47], sex [46,47], hypertension [46], hypercholes-
terolemia [47], low-density lipoprotein cholesterol (LDL-C) [46], diabetes mellitus [46],
overweight/obese [47], elevated body mass index (BMI) [46], smoking [46], low physical
activity [46], family history of premature cardiovascular disease (CVD) [47], chronic kidney
disease [47], and lipid biomarkers [47]. Key risk factors for heart failure—such as obesity,
hypercholesterolemia, hypertension, lipid biomarkers, diabetes, sex, and age—are also
strongly associated with dementia [12,29-31,46,47]. The second group includes studies on
preclinical heart failure, such as the incidence of preclinical heart failure in healthy commu-
nity individuals using health status records during visits. These include age, BMI, systolic
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blood pressure (SBP), diastolic blood pressure (DBP), heart rate, diabetes, hypertension,
obesity, hyperlipidemia, and echocardiogram [48]. Some studies assess the risk of heart
failure based on preclinical information [47]. The third group comprises studies on the
clinical identification and prevention of heart failure, such as heart disease identification
using ML methods [21-23], such as DT [24], GB [25], and XGB [26].

While the reviewed studies provide valuable insights across the dementia and
heart failure risk continuum—from risk factor identification to preclinical and clinical
assessments—several limitations and potential biases warrant consideration. Risk factor
studies often rely on observational or retrospective data, which may be subject to con-
founding variables and lack causal inference. Preclinical studies may introduce cultural
or educational biases, limiting generalizability across diverse populations. Furthermore,
risk score models in the case of dementia, although practical, can oversimplify complex
disease pathways and may not fully capture interactions between multiple features. Clin-
ical studies using advanced equipment and laboratory tests are typically conducted in
well-resourced settings, potentially excluding underrepresented populations and limiting
real-world applicability. These limitations underscore the need for integrative, accessible,
and representative approaches in the classification of dementia and heart failure, balancing
precision with inclusivity.

Although dementia and heart failure often co-occur and share multiple risk factors, their
distinct clinical manifestations and biomarker profiles justify the use of a binary classification
model. Developing such a model is challenging, as it must differentiate between two in-
terrelated conditions with overlapping etiologies yet diverging diagnostic and therapeutic
pathways—particularly in cases where early symptoms are ambiguous. The dementia and
heart failure risk factors identified in previous studies are shown in Table 1.

Table 1. Summary of dementia and heart failure risk factors identified in previous studies.

Dementia Heart Failure
Body weight [32] Being overweight/obese [46]
Blood cholesterol [33] Hypercholesterolemia [46]
Hypertension [29-31] Hypertension [12,46]
Serum lipids [34] Lipid biomarkers [47]
Diabetes [1] Diabetes mellitus [46]
Sex [42] Sex [12,46,47]
ApoE4 gene [16] Age [12,46,47]

Air pollution (NO,, PM2.5) [1]
Sleep disturbances [40]

This study proposes a new feature and method for classifying dementia and heart
failure, with blood biomarkers mainly used to construct the binary classification model.
Two groups of blood-oriented features were used in this study. The first group consisted
of features associated with dementia and heart failure development from existing works,
termed related risk factors (R). The second group consisted of blood biomarker features also
obtainable from blood testing, but with no established associations with the two conditions;
these were newly proposed for this study and termed potential features (P). Therefore,
the features used to develop the classification model were derived from both existing risk
factors and a new set of blood biomarker-oriented features. The integration of the new set
of features was expected to sharpen the boundary of classes within the dataset.

2.2. ML-Based Classifications for Dementia and Heart Failure

Several ML models have been proposed for constructing classification models from
different types of data. For dementia studies, the models can be categorized into two groups.
First are the models that use imaging datasets for classification [18-20,49-52]. The images
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are usually obtained from advanced laboratories and tend to have high resolutions, ne-
cessitating sophisticated models, such as deep learning-based models. The limitations of
imaging-based studies include the need for advanced instrumentation and a sufficiently
large sample size to ensure reliable results—factors that are often difficult to achieve in
practical healthcare settings. Second are the models that use nonimaging datasets for
classification [21-23,27,28,43,53]. Such studies utilize a range of biomarkers, such as demo-
graphic and psychiatric information [43], DNA methylation profiles [14], genetic data from
ADNI-1 [15], and medical attributes [27,28,54].

For heart failure studies, SVMs have been widely adopted across different datasets,
achieving prediction accuracies between 92.37% and 98.47% depending on preprocessing
techniques, such as principal component analysis or hybrid feature selection [21-23]. DT,
while simpler, has still proven effective, with an accuracy of 93.00% on Kaggle heart
failure data [24]. More recent approaches have leveraged physiological signals—such
as electrocardiograms—processed through recurrent neural networks and deep learning
models—producing high accuracies of 99.86% [53] and 97.93% [51], respectively. These
results revealed the effectiveness of the incorporation of time-series and image-based
representations of cardiac signals, which appear to significantly enhance the accuracy and
robustness of heart failure classification models.

Despite the high comorbidity rate of heart failure and dementia, few studies have
addressed their joint classification. Previous work by the team of the corresponding
author explored both binary and multi-class classification models. For binary classifi-
cation, an extra trees model with data balancing achieved 89.11% accuracy on a small
dataset (4297 records) [55], increasing to 96.47% on a larger dataset (14,763 records) using
a data enrichment framework [54]. For multi-class classification, GB with 59 features
across more than 16,000 records classified heart failure, aortic stenosis, and dementia with
83.81% accuracy [27]. XGB with 108 augmented features on 26,474 records achieved 91.42%
accuracy [26]. These studies highlight the importance of large-scale, feature-rich data
and robust ML algorithms for classification problems. A persistent challenge in applying
ML to medical/healthcare data is the insufficiency of clinical data, as many datasets are
incomplete or imbalanced, limiting the model’s ability to generalize and increasing the risk
of overfitting, particularly in complex classification tasks. In addition, the complexity and
limited interpretability of such models necessitate the development of more transparent
methods, such as distance measurements.

2.3. Classification with Distance Measurements

Classification using distance measurements is expected to outperform ML-based models
in these specific scenarios as it relies on direct comparisons between feature vectors, making it
more robust, less sensitive to overfitting, and more interpretable. This is especially the case
when the feature space is well defined and clinically meaningful. Classification methods using
distance measurements have been introduced and widely applied in various domains over the
decades. These include Euclidean distance [56], Manhattan distance [57], distance measures
on fuzzy c-means algorithms [58], and objective distance [59-61]. Recently, a WOD [27]
was proposed to solve personalized care for older adults with hypertension. This method
measures the distance between the current health status of an individual and their defined
level of hypertension and then generates personalized feedback based on the distances
obtained. Additionally, the average weighted objective distance (AWOD) [28] has been
applied for predicting type 2 diabetes. Both the WOD and AWOD leverage the concepts
of objective distance, demonstrating their potential for measuring the distance between an
individual’s status and expected health goals. The WOD utilizes weighting factors derived
from information gain to prioritize these factors in distance calculations. The AWOD builds
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upon this framework by focusing on the average distances between features and is particularly
effective for binary classification problems. However, both methods have limitations: the
WOD often struggles with comparability in distances due to its reliance on static weighting,
while the AWOD, despite improving upon the WOD, may overlook the complexities in the
interactions between risk factors. These limitations highlight a critical gap in the effective
modeling of the influence of diverse health conditions. To address these challenges, this
study proposes the OWOD, which modifies the distance metric for each feature, enhances
comparability, and employs a refined objective function derived directly from the dataset
of dementia and heart failure. This new distance aims to improve the performance of the
classification model and promote model generalization.

2.4. The Proposed Study

The proposed OWOD introduces an optimized target value, defined as the point of
maximum divergence between class histograms. This value represents the most discrimina-
tive threshold reflecting the class boundaries and is used to determine the optimal decision
point for classification. Compared with the WOD and AWOD, the OWOD enhances the
modification of each feature’s distance values to facilitate comparability. It also improves
on the previous distances’ predefined and standard values, in terms of finding the objective
function that represents values from the dataset, thereby enhancing generalization.

Similar to the WOD and AWOD, the weighting factors of the OWOD are derived from
information gain. Information gain, derived from entropy, measures uncertainty or impurity
in a dataset. Entropy quantifies the level of uncertainty or disorder within data. In the
classification problem, entropy is primarily utilized to determine the irrelevant attributes of
a dataset [62]; accordingly, information gain is one of the most popular methods for feature
selection problems [63,64]. Information gain is used as a novel feature selection for text
classification problems [65]. It reduces the dimensionality of features available in the document
for improving classification performance. In addition, it is applied as a weight coefficient to
enhance the effectiveness of the classification algorithm [66]. Weighting attributes can improve
classification accuracy [67] by prioritizing attributes from the least to the most important.

For the current study, the classification model using the OWOD was constructed with
an equal number of dementia and heart failure records, ensuring both conditions were
treated as equally important. This approach addressed the limitations of previous measure-
ments, including the WOD and AWOD, by refining distance calculations and employing a
more effective objective function derived from the dataset. The risk factors and additional
blood biomarker features were employed to sharpen the boundary between the two dataset
classes: patients with dementia and patients with heart failure. It is hypothesized that new
blood biomarker features and the OWOD can promote generalization and provide better
classification performance compared with other ML-based binary classification models.

3. Research Methodology

This study consisted of four main procedures, as shown in Figure 1.

‘ Data Collection |

I

‘ Data Preprocessing |

l

‘ OWOD Determination |

OWOD Evaluation
and Comparison

Figure 1. Research methodology consisting of four main processes: data collection, data preprocessing,
optimized weighted objective distance (OWOD) determination, and OWOD evaluation and comparison.
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The details of each procedure are discussed in the following sections.

3.1. Data Collection

The dataset used in this study is the EHR from the Chiang Rai Prachanukroh Hospital,
Chiang Rai, Thailand, spanning the years 2016 to 2022. The dataset includes blood tests
and clinical records of individuals aged 60 and over, comprising a total of 12,222 records
(dementia = 5563; heart failure = 6659). No individual was diagnosed with both diseases
simultaneously. Table 2 shows the features used.

Table 2. Description of the features used in the current study.

Features Acronym Data Range Group
Body weight (kg) W 40.1-116.3 R
Height (cm) H 150.1-185.0 P
Body mass index (kg/ mz) BMI 11.76-39.57 R
Systolic blood pressure (mmHg) SBP 76-199 R
Diastolic blood pressure (mmHg) DBP 61-126 R
Fasting blood sugar (mg/dL) FBS 62-495 R
Triglycerides (mg/dL) TGS 51-199 R
Total cholesterol (mg/dL) TC 101-429 R
High-density lipoprotein cholesterol (mg/dL) HDL 31-93 R
Low-density lipoprotein cholesterol (mg/dL) LDL 51-196 R
Hemoglobin (g/dL) HB 10.10-20.10 P
White blood cell (count/pL) WBC 3100-19,900 P
Polymorphonuclear neutrophils (percentage) NEUT 30.20-89.90 P
Thrombocytes (count/pL) PLAT 101,000-585,000 P
Lymphocyte cells (percentage) LYMP 10.10-59.00 P
Creatinine (mg/dL) CREA 0.35-2.99 P
Blood urea nitrogen (mg/dL) BUN 4-49 P
Thyroid stimulating hormone (mIU/L) TSH 0.01-5.97 P
Potassium (mEq/L) K 1.40-7.80 P
Sodium (mEq/L) NA 109-167 P
Carbon dioxide (mEq/L) CO, 1145 P

As previously discussed (and shown in Table 2), the features used in this study were
divided into two groups: R and P. The R group (including body weight, blood cholesterol,
and blood pressure) was employed as it was associated with dementia and heart failure in
the existing research. The P group was obtained through blood tests. Physical activity was
not considered a risk factor in this study due to insufficient data; this includes smoking
and alcohol history.

3.2. Data Preprocessing

The dataset originally consisted of 12,222 records, including 5563 dementia records and
6659 heart failure records. The raw dataset subsequently went through the preprocessing
procedure shown in Figure 2. Following this, the final dataset was balanced to include
10,000 records, with 5000 dementia and 5000 heart failure cases.

’ Raw Dataset ‘

I

Outliers and Irrelevant
Data handlin,

‘ Missing value handling ‘

I

‘ Data Normalization ‘

[

‘ Preprocessed Dataset ‘

Figure 2. Data preprocessing workflow comprising outlier and irrelevant data handling, missing
value imputation, and data normalization.
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Prior to normalization, erroneous or invalid entries were addressed by handling out-
liers and irrelevant data. This included filtering or correcting values deviating significantly
from the expected distribution or deemed implausible due to data entry errors (e.g., ex-
tremely low or high body weights). Missing values were addressed using mode imputation,
based on the most frequent values observed in the data distribution. Data normalization
was applied as part of the preprocessing workflow to ensure consistency and reliability
before proceeding to OWOD determination. This step involved adjusting the raw data
to a standard scale, typically by standardizing values with a mean of 0 and a standard
deviation of 1, or by scaling them to a defined range. Such preprocessing ensured that the
final dataset was statistically valid and suitable for subsequent analysis.

An example histogram of the body weight feature is presented in Figure 3, demon-
strating its applicability in the data preprocessing step.

Body Weight (W)

400

Frequency

300
200

100

0 20 40 60 S0 100 120 140

Body weight (kg)

Figure 3. Body weight feature histogram used in the data preprocessing step to handle outliers and

missing values.

It can be observed in Figure 3 that weight values within the 0—40 kg range were
erroneous entries. To address this, the data were filtered to exclude values falling outside
the expected distribution range. The missing body weight entries were attributed to the
most commonly occurring value, which was 60 kg.

3.3. The OWOD Concept

The underlying principle of the OWOD method is based on the distance between
current and objective states, with the weights derived from information gain. The weights
reflect the actual impact on models and represent the diverse health conditions of individ-
uals, as well as the general diagnostic procedures used by healthcare professionals. This

concept is illustrated in Figure 4.

Max State O

nDN (normalized distance)

Threshold
Objective State ¢ a ° OWOD=0
Threshold

nD2 (normalize distance)
v

D1 (normalized distance) Q

Current State

Factor 1 Factor 2 Factor N
Figure 4. The concept of the optimized weighted objective distance (OWOD), a weighted distance-

based measure between current and objective states, reflecting the influence of each feature at the

individual level.
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Figure 4 shows that three main steps are required for OWOD determination. The first
step involves determining the objective value for distance calculation. The objective value
(T;) is the state level of each feature (i), which represents the group of dementia patients
in the dataset. The current value (C;) is the current state for each feature. The acceptable
value (A;) is the health status level for each feature acceptable for an individual. All three
level values are used to determine the OWOD.

3.4. OWOD Determination
The OWOD determination process is illustrated in Figure 5.

Feature Selection

I

Objective Class Determination

I

Distance Normalization

I

Weight Determination

I

OWOD Calculation

Figure 5. The optimized weighted objective distance (OWOD) determination process comprising
feature selection, objective class determination, distance normalization, weight determination, and
OWOD calculation.

The OWOD algorithm consists of five processes, beginning with feature selection,
where the number of features used in the calculation is determined. The objective value
represents the target level of each feature derived from the dataset. The next step involves
calculating the normalized distance between the current state and the objective state.
Entropy and information gain are then used to compute the weight for each feature. Factor
weighting is determined based on information gain, and the final step involves calculating
the OWOD.

3.4.1. Feature Selection

This study utilized a mixed selection of R and P features, testing various sets of 8, 12,
16, and 20 features to determine the feature combination of the best model. These selections
were intended to investigate how varying levels of feature dimensionality influence OWOD
model performance. These numbers represented incremental increases that helped examine
the trade-off between feature richness and overall classification performance.

3.4.2. Objective Class Determination

To calculate the OWOD, the objective class was determined. A histogram was used
to find the data distribution of the objective class. The histogram was calculated using
Equation (1).

k
n=17y m 1)
i=1

where n refers to the total number of observations, k refers to the total number of bins, and
m; refers to the histogram data. The target value was defined as the value of observation k
corresponding to the maximum positive difference between the histograms of the positive
and negative classes. This objective value was determined from the class-wise histogram
distribution presented in Figure 6.
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—Negative Class Histogram Positive Class Histogram Class-Wise Histogram

2000
1500

1000

A
500 i
|

200 250 300

Number of observations

=500
- 1000

- 1500 -
Total number of bins

Figure 6. Determination of the target value (dotted arrow) for each feature based on class-wise his-
togram distributions, illustrating the distributional differences between positive and negative classes.

The target value of this feature was calculated using Equation (2).
Tini = Mode (Max ( Histogram (PositiveClass) — Histogram (NegativeClass))) ()

where T,,; denotes the target value of the observation feature and i corresponds to the point
of maximum difference between the positive and negative class distributions.

3.4.3. Distance Normalization

The distance calculation method was used to determine the distance between the
current and objective state features. The distance was calculated using Equation (3).

dTC = /(T — C)? ©)

where T refers to the target value of attributes, C refers to the current state value of attributes,
and dTC refers to the distance between the target and current states.

dTA = /(T — A)? (4)

where T refers to the target value of attributes, A refers to the acceptable state value of
attributes, and dTA refers to the distance between the target and acceptable states.

Data from multiple features were combined in the calculation. As distance was a key
measurement, any bias could lead to issues in the final OWOD calculation. The normaliza-
tion method was therefore applied. Normalization was calculated using Equation (5).

dTC

ndTC =
Amux

)

where dTC is the distance from Equation (3), Ay is the acceptable value and the maximum
value, and ndTC is the normalized distance between the target and current states. This is

shown in Equation (6).
dTA

max

ndTA =

(6)

where dTA is the distance from Equation (4), A;ay is the acceptable value and the maximum
value, and ndTA is the normalized distance between the target and acceptable states.
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The normalized distance ratio used for the weight calculation 7TC is the normalized
distance ratio of the normalized distance between the target and current states compared
to the total normalized distance. This is shown in Equation (7).

ndTC
C= —————= 7
" T WdTA 4 ndTC @
rTA is the normalized distance ratio of the normalized distance between the target and
acceptable states compared to the total normalized distance. This is shown in Equation (8).
ndTA

A = S OTA T ndTC ®

3.4.4. Weight Determination

To determine the entropy of the target class with respect to all attributes, an equal
proportion of the target class was initially determined using Equation (9). This resulted in
an equal proportion of positive and negative classes.

Ocy = Nc_ = % 9)
where Oc is the value of the equal proportion for the positive class (+) with respect to
all attributes, Nc_ is the value of the equal proportion for the negative class (—) with
respect to all attributes, Na is the total number of attributes, and N is the total number of
target classes.

Next, the fraction of the target class was determined using Equation (10). This value
represents the fraction of the chance of being in a positive or negative class with respect to
all attributes. P P

fOc, = % — fNc_ = % (10)
where fOc. represents the fraction of the positive class (+) and f Nc_ represents the fraction
of the negative class (—), in which both classes are equal.

The weight determination relies on entropy and information gain.

e  Entropy.

Shannon Entropy, an information theory method, quantifies the average level of
information, surprise, uncertainty, or complexity for a given random variable based on its
historical occurrences. Entropy (EP (X)) was calculated using Equation (11).

M-

I
—

EP(X) = —)  P(x;)log,P(x;) (11)

1

where X is the class of attributes, P(x;) is the proportion of the samples belonging to class
X, and log, is log based 2.

e Information Gain.

Information gain is the reduction in entropy produced by partitioning a set with
attributes 2 and finding the optimal candidate that produces the highest value. The infor-
mation gain (IG (T, a)) was calculated using Equation (12).

IG (T,a) = H(T) — H(T|a) (12)

where T is a random variable and H(T|a) is the entropy of T given the value of an attribute a.
The split information value is a positive integer that describes the potential worth of
splitting a branch from a node. This, in turn, is the intrinsic value the random variable
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possesses and is used to remove bias from the information gain ratio calculation. The split
information value (S(X)) was calculated using Equation (13).

5(X) = —é ]1\\]1((?)) « log, Z;\]]((tti)) (13)

where X is a discrete random variable with possible value X; and N (¢;) is the number of

times that t; occurs, divided by the total event count N(t), where ¢ is the set of events.
The information gain ratio (IGR (T, a)), the ratio of the information gain and the split

information value for the T variable S(T). IGR (T, a), was calculated using Equation (14).

IGR (T,a) = —~ (14)

The weight information (IW;) was calculated using Equation (15).

Reg

W= — %
© XN Ry

(15)

where R,¢ is the ratio of entropy from Equation (11) and the information gain from
Equation (14), and W; is the calculated weight information.

3.4.5. OWOD Calculation

To determine the OWOD of all attributes, the WOD of each attribute (owoD;) was first
determined using Equation (16). Let T;,,; = t,,;, A; = a;, C; = c;.

V(T = 407 =\ (T — i)

After obtaining the owoD; of each person, the normalized WOD of each attribute

owoD; = W, xn (16)

(nowoD;) was determined using Equation (17).

owoD; — owoD iy

nowoD; =
" owoD iy — 0woD iy

(17)

where 0woD)yx is the maximum OWOD among all attributes and owoD,,;, is the minimum
OWOD among all attributes.
Therefore, the OWOD of all attributes for each person (OWOD;) was determined
using Equation (18).
- YN nowoD;

OWOD; = === (18)

where OWOD; denotes the OWOD of all attributes for the ith individual.
To identify the class based on the obtained OWOD;, the following condition was
applied, as shown in Equation (19):

Negative class, if OWOD; > OWOD,

19
Positive class, if OWOD; < OWOD, (19)

OWOD; = {

where OWOD:. is the cut-off OWOD calculated from threshold Ts,,; of all features. Ts,,;;
refers to the threshold of the target values for each feature and is defined as the deviation
of 5% above and below the T,,; of all features. For this study, the negative class was heart
failure, and the positive class was dementia.
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3.4.6. OWOD Algorithm

The algorithm used to perform the OWOD calculation is presented in the pseudocode
shown in Algorithm 1 as follows:

Algorithm 1: OWOD calculation

Input: List of selected features (F)

Output: Table of computed OWOD values

: Initialize storage results

: For each sample S in the dataset do

: For each feature F do

: Retrieve C (current level), T (target level), A (acceptable level)

Qr &= W N =

: Compute Euclidean distances:
dTC < /((T — C)?)
dTA < /((T — A)?)
6: Compute Normalized distances:
ndTC < dTC/A
ndTA + dTA/A
7: Compute Normalized distance ratios:
rTC <~ ndTC/(ndTC + ndTA)
rTA < ndTA/(ndTC + ndTA)
8: Compute Entropy, information gain, and gain score:
EP < calculate entropy (rTC, rTA)
IG ¢+ calculate information gain (EP)
G < calculate gain (IG)
9: Compute Entropy—gain ratio and weight:
rEG < EP/G
SrEG < sum (rEG)
W < rEG/SrEG
10: Compute Distance difference, weight*distance and normalize:
DF < IndTC — ndTA |
WD <~ W x DF
MxWD <+ max (WD), MnWD < min (WD)
nWD + (WD — MnWD)/(MxWD — MnWD)
11: Compute OWOD:
OWOD <« average (nWD)
12: Store S, F, and OWOD values
13: End for
14: End for
15: Return OWOD result table

3.4.7. Sample Calculation

This section demonstrates a sample calculation of the OWOD for classifying a potential
group of people with dementia and a group with heart failure. To compute the OWOD,
both the target and acceptable levels for each feature are applied. The target level represents
the desired or optimal value for each feature; the acceptable level indicates the range of
values considered tolerable. The acceptable level for each feature is defined as the standard
deviation from the average value of the feature.

The objective function relies on obtaining the boundary of two classes by plotting the
histogram of each feature, including the histogram of the objective and the other class; the
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target level is calculated by histogram subtraction of the two classes (grey line in Figure 7).
The peak of the grey line indicates the target value.

Fasting Blood Sugar (FBS)

2000
1500

1000

500 \

0 50 100 150 200 250

- 500
- 1000

- 1500

—Heart Failure Dementia Class-Wise

Figure 7. Target value determination of FBS, which is derived from a class-wise histogram distribution
between the positive and negative classes.

As illustrated in Figure 7, the target level of the fasting blood sugar (FBS) (Trps) can be
determined using Equation (2), resulting in a value of 130. Accordingly, when Trgs = 130,
the acceptable level (Arps) = 280. More samples of target and acceptable levels are shown
in Table 3. Table 4 shows the samples of records used to calculate the OWOD.

Table 3. Sample target and acceptable values.

Feature (i) Target Level (T},,;) Acceptable Level (A;)

W 55kg 90 kg

SBP 150 mg/dL 190 mg/dL

DBP 85 mg/dL 110 mg/dL

FBS 130 mg/dL 280 mg/dL

TGS 140 mg/dL 160 mg/dL
TC 200 mg/dL 260 mg/dL

HDL 55 mg/dL 70 mg/dL

LDL 135 mg/dL 165 mg/dL

Table 4. Examples of the dataset.

No. W SBP DBP FBS TGS TC HDL LDL
1 65 130 75 120 115 175 35 105
2 70 140 80 105 95 165 50 120
3 55 155 90 110 110 195 60 140
4 65 135 75 100 100 185 40 120
5 50 150 75 115 155 205 50 135
6 60 135 85 115 100 185 60 145
7 92 155 85 120 125 220 50 140
8 77 160 80 115 100 210 50 135
9 47 121 82 130 85 215 55 130
10 45 162 77 115 120 205 60 125

8000 65 135 75 100 100 185 40 120

The classification of dementia and heart failure using the proposed measurement can
be illustrated by applying the information of Person No. 1. The datasets related to the
current health status of Person No. 1 are shown in Table 4. The target and acceptable levels
of all features are shown in Table 3. The sample attributes comprise eight features. The
target group is an objective class (OC) group and a non-objective (NC) class group. OC
refers to the positive class (with dementia) and NC to the negative class (with heart failure).
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Following Algorithm 1, the sample calculation of the OWOD for identifying Person No. 1
is demonstrated below.

To determine the entropy of the target group with respect to all features, an equal
proportion of the target group was initially determined using Equation (9). The value of
the OC group (Oc) and NC group (Nc_) is equal to 4, as follows:

8
Ocy = NL_E =4

Next, the fraction of the target group with respect to all features was determined using
Equation (10). The fraction of the OC group (fOc, ) and the NC group (f Nc_) with respect

to all features is as follows: 4 4

fOC+: g fNC7 = g
Thereby, the entropy of the target group with respect to all features (EP(C)) was
determined using Equation (11). The value of EP(C) is equal to 1 as follows:

EP(C) = —% x log, <§> —% X log2<§) =1

To determine the entropy of each feature, an example of the entropy calculation for
the weight factor is presented.

Firstly, the current distance (dTCy) and acceptable distance (dTA ) were determined
using Equations (3) and (4), respectively. According to the condition (i), T,y = t, = 55,
Cy = cpw = 65, and Ay = ay = 90, the dTCy and the dTA,, are equal to 10 and 35

as follows:
dTC, =1/ (55—65)* =10
dTA, = \/ (55 —90)* =35

The distances of dTC,, and dTA, must be normalized and converted to percentages
using Equations (5) and (6), respectively, due to the different range of each feature.

ndTCy, = (10

100 = 11.11
90> * 100

ndTAy = (32) * 100 = 38.89

Next, the proportion of the acceptable distance (rTA,) and the current distance
(rTC,,) were calculated using Equations (7) and (8), respectively. The rTAy, and rTCy
values are equal to 0.22 and 0.78, as follows:

11.11

- o

"TCo = g0 1101~ °
38.89

"TAw = 388911101~ 078

The fractions of the OC group (fOc ) and the NC group (fNc,_) are as follows:

0.22 0.22
fO%%: = oms 102 — 1
0.78 0.78

fNeo = o710~ 1
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Thereby, the entropy of W feature (EP(Cy)) was determined using Equation (11). The
EP(Cy) is equal to 0.76, as follows:

EP(Cy) = — —0'122 * l0g2<0i22 ) — —0'178 * logz(o'l78> =0.76 (20)

Thus, the entropies of SBP, DBP, FBS, TGS, TC, HDL, and LDL are equal to 0.92, 0.86,
0.34,0.99, 0.87, 0.99, and 1.00, respectively.

To determine the information gain of the target group with respect to all features, the
entropy of all features was calculated using Equation (12). The IG(C,) is equal to 0.84,
as follows:

IG(Cq) =076 % (L2H078) 4 0.9 4 (033:067)
+0.86 * (LPEOTLY) 4034 5 (006094

0.46+0.54 0.29+0.71
+0.99 x (24640541 4 087 « (D2

4+0.99 x 0.57;—0.43 1+1.0 % ( 0.5;—0.5)
= 0.84

Thereby, the information gain of the target group with respect to all features (G(C, T))
is equal to 0.16 as follows:
G(C,T)=1-084 =0.16

To determine the weight of each feature, the weight calculation for the weight factor
is presented as an example. The significant ratio value of the weight factor (Ry) was
calculated, which is equal to 4.75, as follows:

0.76
Ry = — =47
W= o016~ 47

Thus, Rsbp = 5.80, Rdbp = 5.45, RFBS = 2.13, Rtgs = 6.26, th = 5.52, thl = 6.22, and
Rjq = 6.32.

Thereby, the weight of the weight factor (W ) was determined using Equation (15),
which is equal to 0.11, as follows:

4.75

= =0.11
4.75+5.80 +5.45+2.13 + 6.26 + 5.52 + 6.22 + 6.32

WZU

Thus, stp = 0.14, dep = 0.13, WFBS = 0.05, ths = 0.15, Wtc = 0.13,
thl =0.15, and Wldl = 0.15.

To determine the OWOD of all features, the WOD of the weight factor (owoDy,) was
calculated using Equation (16), which is equal to 3.15, as follows:

owoDy, = 0.11 x| 38.89 — 11.11| = 3.15

Thus, owoDsbp =144, owoDdbp = 1.75, owoDpps = 2.50, owoDtgs = 0.46, owoDy. = 1.75,
OZUOthl = 1.05,and OZUODldl =0.

From the values of owoD among the eight features, 00D, is 3.15 and owoD,y,;;, is
0. The normalized WOD of weight (nwD,,) was determined using Equation (17), which is

equal to 1.00, as follows:

315-0
nO'(/UODw = m =1.00

Thus, nowoDsbP = 046, nowoDdbp = 0.55, nowoDpgs = 0.79, nowoD;es = 0.15,
VlOZ{JODchol = 0.55, nowothl = 0.33, and VlOZUODldl =0.
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Therefore, the OWOD of all features classifying the group of Person No. 1 (OWOD;)
is equal to 0.48, as follows:
1.00 +0.46 + 0.55 4 0.79 + 0.154+ 0.55 + 0.33 + 0

OWOD; = 3 =048

According to the conditions, OWOD; = 0.48; before identifying the class of OWOD;,
OWOD, was calculated with a similar algorithm by changing the current status value (C;) to
the threshold value (75,,;) of all features, as illustrated in this calculation of an eight-feature
dataset. The list of Ts,,; values is as follows: T5,; ¢ = 52.5, T8, _spp = 142.5, T5i gpp = 80.75,
TSmi—FBS = 1235, Tsmi_tgs = 133, TSmi—tc = 190, Tsmi,hdl = 52.25, and Tsmifldl = 128.25.
After determining that the OWOD, value = 0.56, it could be identified that Person No. 1 was in
the positive class (0.48 < 0.56) and, therefore, in the dementia group.

3.4.8. OWOD Evaluation and Comparison

This section presents the OWOD evaluation process, as illustrated in Figure 8. The
OWOD method is compared with the OWOD with differences in feature selection and
other ML classification models.

‘ Input Dataset

l I

| OWOD | . .
ML Classification
| GB, DT, SVM, NN
‘ OWOD Classification ‘ 20 features
(8, 12, 16, 20) features

I

‘ Binary Classifier ‘ ‘ Binary Classifier ‘

| I

| Classification Evaluation Matrix ‘

Figure 8. The optimized weighted objective distance (OWOD) evaluation framework for determin-
ing the optimal number of features used in constructing the OWOD and comparing classification
performance with other machine learning (ML) models.

The impact of increasing the number of features (8, 12, 16, 20) was investigated to
assess how varying levels of feature dimensionality influence the performance of the
OWOD model. The best-performing OWOD model, identified based on the optimal
number of features, was compared with several ML models, including GB, DT, neural
network (NN), and SVM. For training and testing processes, model performance was
assessed using standard evaluation metrics: accuracy, precision, recall, F1-score, and area
under the receiver operating characteristic curve (AUC-ROC). A 5-fold cross-validation
was applied to the training dataset (80%) to ensure robust validation, and the results were
compared with the testing performance on the remaining 20% of the data.

The OWOD algorithm builds upon the previously established WOD method requiring
predefined feature ranges and target values, which must be manually specified based on
expert knowledge. The OWOD eliminates this requirement by directly deriving the feature
ranges and target values from the dataset through an objective function. This data-driven
approach makes the OWOD particularly well suited for classifying dementia and heart fail-
ure, where biomarkers and their optimal ranges are often poorly established. Consequently,
the WOD is not applicable for direct comparison with the OWOD in this context.
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4. Results and Discussion

This section presents the results of the proposed measurement for classifying groups
of patients with dementia and heart failure. The input data used for training and validating
consisted of 8000 records containing risk factors and blood biomarker features for both
groups. These records were used to calculate the OWOD values and train the ML mod-
els. The evaluation was performed using 2000 unseen records to assess the classification
performance of both the OWOD approach and the ML models.

4.1. Optimal Feature Dimension Results

Table 5 presents the results of the OWOD classification model using varying numbers
of selected features, based on 8000 sample records representing 80% of the dataset.

Table 5. Comparison of optimized weighted objective distance classifications by feature selection number.

Accuracy Precision Recall F1-Score AUC-ROC
No. of Features
% % % % %
8 56.38 + 1.94 85.05 £+ 3.04 15.68 £+ 5.13 26.44 + 0.97 56.40 £+ 0.02
12 61.26 £ 1.52 89.26 +1.84 25.62 + 3.48 39.81 £0.76 61.40 £ 0.016
16 70.43 +£0.28 86.61 £ 0.86 48.34 £ 0.86 62.05 £ 0.14 71.30 £ 0.003
20 94.95 + 0.96 95.64 + 0.95 94.20 +1.11 9491 + 0.48 96.60 + 0.013

As seen in Table 5, the model’s performance improved with an increasing number
of features. At eight features, its performance was limited by low recall (15.68%) and
Fl-score (26.44%), indicating poor sensitivity. As the number increased to 12 and 16,
recall and F1-score improved notably, reflecting enhanced balance. With 20 features, all
metrics—accuracy (94.95%), precision (95.64%), recall (94.20%), F1-score (94.91%), and AUC
(96.60%)—reached optimal levels. This demonstrates that higher feature dimensionality
significantly boosts the model’s effectiveness, particularly in detecting minority class
instances. The comparison of the ROC curves is illustrated in Figure 9.

: :Z True Positive Rate (TPR)
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Figure 9. Receiver operating characteristic (ROC) chart of optimized weighted objective distance
(OWOD) 8-20 features comparing the OWOD with 8 features (green), 12 features (red), 16 features
(blue), and 20 features (lime).

The OWOD configuration with 20 features achieved the highest and most stable TPR
across all FPR values, suggesting that 20 features represent the optimal balance between
model complexity and performance.
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4.2. OWOD Classification Results

Table 6 shows the results of the OWOD classification using 20 features. These are
labeled as “dementia” for positive class groups and “heart failure” for negative groups.

Table 6. Optimized weighted objective distance (OWOD) classification results.

Results
. P Matching Result
No. Weight OWOD  Classification Actual
SBP DBP w FBS TGS TC HDL LDL Result Result Result Correct
/Incorrect
1 0.0003 0.0003 0.1404 0.0531 0.2095 0.1010 0.2582 0.2371 0.4051 Dementia Dementia Correct
2 0.1034 0.0003 0.1117 0.1216 0.1484 0.1484 0.1995 0.1667 0.4258 Dementia Dementia Correct
3 0.2727 0.0004 0.0004 0.0611 0.2484 0.0004 0.2409 0.1757 0.4057 Dementia Dementia Correct
4 0.1920 0.2168 0.0003 0.0467 0.2251 0.0003 0.1843 0.1344 0.5858 Dementia Heart failure Incorrect
5 0.2555 0.0005 0.2705 0.1849 0.0005 0.2872 0.0005 0.0005 0.3583 Dementia Dementia Correct
6 0.1356 0.0960 0.1301 0.0815 0.1149 0.1476 0.1475 0.1468 0.4822 Heart failure Heart failure Correct
7 0.1364 0.1225 0.0772 0.1281 0.1417 0.1378 0.1152 0.1411 0.4411 Heart failure Heart failure Correct
8 0.1465 0.1284 0.1137 0.0654 0.1207 0.1366 0.1444 0.1444 0.8029 Heart failure Heart failure Correct
9 0.1231 0.1257 0.1283 0.0862 0.1181 0.1337 0.1435 0.1414 0.6858 Heart failure Heart failure Correct
10 0.1456 0.1446 0.1158 0.0511 0.1192 0.1229 0.1515 0.1493 0.5363 Heart failure Heart failure Correct
8000 0.1265 0.1292 0.1144 0.0973 0.1374 0.1081 0.1497 0.1374 0.4680 Heart failure Dementia Incorrect

These results demonstrate the OWOD; value and weight information for each person.
The weight information indicates the degree to which a feature contributes to developing
target conditions by representing the actual effects of each feature. Weight information
with a value of 0 refers to an insignificant feature indicating control at the accepted level.
Accordingly, the insignificant feature was eliminated to enhance classification performance.
Weight information with a value of more than 0 refers to a significant feature affecting
dementia development.

In addition, information gain computed from a reduction in entropy was employed to
assign weights to each feature. The weighted features represent a degree of feature priority
affecting classification. The summation of the OWOD of all features can be utilized to
classify groups. Older adults with OWOD < OWOD, can be considered as belonging to
the positive group (dementia), and those with OWOD > OWOD, to the negative group
(heart failure). Thus, Person No. 1, with OWOD = 0.4051 and OWOD, = 0.4324, was
classified as belonging to the positive group.

Confusion Matrix Evaluation

The classification performance of the OWOD was also evaluated using a confusion
matrix, as shown in Table 7. The classified class was derived from the proposed measure-
ment, and the actual class was obtained from the doctor’s decision record. TP denotes true
positive, representing older adults correctly classified as belonging to the OC group. TN
denotes true negative, representing those correctly classified as belonging to the NC group.
FP denotes a false positive, representing those incorrectly predicted as being in the OC
group. FEN denotes a false negative, representing those incorrectly predicted as being in the
NC group.

Table 7. Confusion matrix of the proposed optimized weighted objective distance.

Dementia Heart Failure Class Precision
Predict—Dementia 3768 (TP) 172 (FP) 95.63%
Predict—Heart failure 232 (FN) 3828 (TN) 94.29%

Class recall 94.20% 95.70%
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The confusion matrix of the proposed OWOD investigating 8000 records reveals that
7596 people were correctly classified. This suggests that prioritizing features by applying
different weights obtained from information gain to eliminate the features that do not
influence the classification is feasible. In total, 404 individuals were incorrectly classified.
Variability in a particular feature measurement may account for these inaccurate results.
For instance, blood pressure was recorded manually; thus, the circumstances during
measurement could affect exactness. Recent caffeine use or smoking can raise SBP readings
above the baseline. These findings demonstrate the possibility of misclassifications and
emphasize the difficulty in classifying cases with shared overlapping risk factors, especially
when the input features lack adequate discriminatory power.

4.3. Model Validation Results

This study used five-fold cross-validation to verify the OWOD model. A comparison
of the OWOD and ML classification models for the validation process is shown in Table 8.

Table 8. Comparison of the validation results of the optimized weighted objective distance (OWOD)
and other machine learning models.

Classification Method No. of Features Acc:/:racy Preiz)swn Rizall Fl-f/:ore AUC‘,;OROC
OWOD 20 94.95 £+ 0.96 95.64 £ 0.95 9420 £ 1.11 94.91 £+ 0.48 96.60 £+ 0.013
Gradient boosting (GB) 20 88.58 £ 0.77 91.34 £1.16 85.26 £ 1.38 88.19 £ 0.39 92.90 £ 0.006
Decision tree (DT) 20 86.75 £ 0.72 91.83 £1.51 80.72 + 1.59 85.90 + 0.36 88.10 &+ 0.005
Support vector machine (SVM) 20 84.96 + 1.03 85.81 + 1.03 83.78 £ 1.91 84.78 + 0.52 90.70 + 0.007
Neural network (NN) 20 83.34 £0.87 88.19 £ 2.41 77.08 £ 1.59 82.23 +0.44 89.30 £+ 0.006

The validation results demonstrate the superior performance of the OWOD compared
with traditional and ensemble ML methods using 20 features. The OWOD achieved the
highest overall performance across all key metrics, with an accuracy of 94.95% =+ 0.96, a
precision of 95.64% =+ 0.95, a recall of 94.20% =+ 1.11, an F1-score of 94.91% =+ 0.48, and
an AUC-ROC of 96.60% = 0.013. GB, while relatively precise (91.34% =+ 1.16), underper-
formed in recall and F1-score, indicating limitations in sensitivity. The DT, SVM, and NN
models exhibited even lower recall and AUC-ROC values, suggesting a weaker ability to
detect positive dementia cases accurately. These findings underscore the robustness and
effectiveness of the OWOD, particularly its capacity to maintain high discrimination power,
which is critical for reliable medical classification.

Figure 10 presents the ROC curves comparing the classification performance of five
models—OWOD, GB, NN, DT, and SVM—using 20 features. The OWOD (green curve)
outperformed all other methods with a consistently higher true positive rate (TPR) across
nearly all false positive rates (FPRs), approaching a near-perfect classification boundary. The
traditional ML models, particularly SVM and DT, demonstrated lower TPRs at equivalent
FPRs, suggesting a reduced ability to distinguish between classes. This indicates that the
OWOD offers a more effective solution for accurate classification in this context.

To ensure fair and consistent model comparisons, each method was implemented with
carefully selected hyperparameters and evaluated using five-fold cross-validation. The
hyperparameter details of both the ML and OWOD classifications are presented in Table 9.
These configurations, outlined in Table 10, were selected based on grid search to ensure
reliable and reproducible performance evaluation across models.
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Figure 10. Receiver operating characteristic (ROC) curve comparison of the validation results of the
optimized weighted objective distance (OWOD) and other machine learning models.

Table 9. Summary of the hyperparameters of the machine learning classifications.

Method Hyperparameters

Number of trees = 50; maximal depth = 5; min rows = 10.0; number of bins = 20;
learning rate = 0.01; sample rate = 1.0; cross-validation folds = 5

Criterion = gain ratio; maximal depth = 10; confidence = 0.1; minimal gain = 0.01;
minimal leaf size = 2; cross-validation folds = 5

Kernel type = dot; kernel cache = 200; C = 0.0; convergence epsilon = 0.001; max
iterations = 100,000; cross-validation folds = 5

Hidden layer = 2; training cycle = 200; learning rate = 0.01; momentum = 0.9;
cross-validation folds = 5

OWOD Cross-validation folds = 5

Gradient boosting
Decision tree
Support vector machine

Neural network

4.4. Statistical Significance Comparison

Statistical validation of the model’s performance was carried out by pairing classifiers.
A McNemar'’s test was applied to the paired predictions of all models. The significance
matrix is illustrated in Figure 11.

OowWoD

sVM

NN

OWOD GB DT SVM NN

Figure 11. Statistical significance matrix from McNemar’s tests comparing model classifier pairs. Each
cell represents the p-value of the comparison between two models. Green cells indicate statistically
significant differences (p < 0.01), whereas yellow cells indicate non-significant differences (p > 0.01).
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The results showed a statistically significant value for OWOD-GB (p = 4.85 x 10~12) in
which the OWOD had the first-place performance (OWOD AUC = 96.60%; GB AUC = 92.90%),
with GB’s performance showing significant differences against all models (p < 0.01). In
contrast, there were some overlapping efficiencies in the classification of OWOD-SVM
(p = 0.1404) and DT-NN (p = 0.6741).

4.5. Model Comparison and Discussion

A performance comparison of the OWOD and other ML-based methods is presented
in Table 10. These results were obtained from the evaluation using 20% unseen data.

Table 10. Comparison of the testing results of the optimized weighted objective distance (OWOD)
and other machine learning models.

Classification Method No. of Features Acc:/:racy Prei;osmn Reo/coall Fl-?/:ore AUC‘,;OROC
OWOD 20 95.45 96.14 94.70 95.42 97.10
Gradient boosting (GB) 20 88.20 90.90 84.90 87.80 92.40
Decision tree (DT) 20 86.20 91.04 80.30 85.33 87.30
Support vector machine (SVM) 20 84.40 84.89 83.70 84.29 90.10
Neural network (NN) 20 83.75 88.14 78.00 82.76 88.80

The testing results confirm the superior classification performance of the OWOD
compared with conventional ML algorithms. The OWOD achieved the highest scores
across all evaluation metrics, with an accuracy of 95.45%, a precision of 96.14%, a recall of
94.70%, an F1-score of 95.42%, and an AUC-ROC of 97.10%. This reflects the ability of the
OWOD to accurately identify positive and negative classes, maintaining a high balance
between sensitivity and specificity. GB demonstrated reasonably strong precision (90.90%)
but a poorer recall (84.90%) and F1-score (87.80%), indicating a greater likelihood of missing
TP cases. Traditional models such as DT, SVM, and NN exhibited even lower recall and
AUC-ROC values, indicating limited effectiveness in differentiating between classes. These
findings demonstrate that the OWOD delivers high classification performance and offers
enhanced generalization capability when applied to previously unseen data.

Evaluation of Model Performances

The results from both the validation and testing phases demonstrated the superior
performance and robustness of the OWOD classification model over conventional ensemble
and traditional ML models. During validation, the OWOD achieved the highest metrics
across all performance indicators (accuracy 94.95% =+ 0.96; precision 95.64% = 0.95; recall
94.20% =+ 1.11; Fl-score 94.91% =+ 0.48; AUC-ROC 96.60% = 0.013). The OWOD maintained
top-tier performance in the testing phase with an accuracy of 95.45%, a precision of 96.14%,
a recall of 94.70%, an Fl-score of 95.42%, and an AUC-ROC of 97.10%, demonstrating
excellent generalization to unseen data.

While ensemble methods such as GB are known for improving accuracy by combining
multiple weak learners, the OWOD surpassed GB in all metrics. This suggests that the
OWOD'’s class-wise feature interpretation and target-based thresholding mechanism enable
a more refined and interpretable classification boundary. Despite leveraging ensemble
principles, GB showed relatively lower recall (85.26% =+ 1.38 in validation; 84.90% in
testing), indicating potential underperformance in identifying TP cases—an important
consideration in health-related applications where sensitivity is crucial.

Traditional classifiers such as DT, SVM, and NN exhibited further limitations, with
lower recall, F1-score, and AUC-ROC values in both validation and testing. While com-
putationally efficient, these models often struggle with complex decision boundaries and
noisy/overlapping feature distributions. The OWOD incorporates a distribution-based
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entropy framework and utilizes optimal thresholds derived from class-wise histograms,
allowing for the capture of fine-grained patterns that rigid or margin-based decision mech-
anisms in DT, SVM, and NN may overlook. In this context, the OWOD outperformed
ensemble and traditional classifiers in predictive accuracy and robustness.

It can therefore be concluded that the proposed OWOD has a higher potential for
classifying groups of individuals with dementia and heart failure compared with other ML
classification methods. The assumption of this study is consequently verified, in that the
proposed measurement can improve classification performance. In addition, the OWOD
can handle complex attributes with multiple conditions during the attribute weighting
process, which further enhances performance.

4.6. Suggestions and Future Study

This study demonstrated the effectiveness of the proposed OWOD classification
method in classifying individuals with dementia and heart failure using blood biomarker
features. The model achieved strong performance across all evaluation metrics, underscor-
ing its potential as a practical, noninvasive, and widely accessible decision support tool.
To support clinical adoption, future research should focus on validating the model across
diverse populations and healthcare settings, as well as exploring additional blood-based
biomarkers to further enhance performance. While these findings are promising, the exclu-
sion of individuals diagnosed with both dementia and heart failure in order to maintain
clear class boundaries is a limitation and may reduce applicability in real-world settings.
Incorporating more granular clinical information and multi-label classification approaches
would allow for more sophisticated modeling and improved classification performance
among complex patient populations.

The OWOD offers clear interpretability, as its decisions are based on the distance
from target feature values, allowing clinicians to understand the contribution of each
factor. Additionally, the OWOD can offer personalized recommendations according to each
individual’s significant features after classification as efficiently as healthcare providers.
These features could be used to guide lifestyle changes on a broad scale. As a result, older
adults could better monitor their health status, which may lead to dementia/heart failure
prevention. Potential barriers to real-world implementation include validation across
diverse populations, seamless integration with existing EHR systems, and acceptance by
clinicians and patients.

5. Conclusions

This study proposes the OWOD as a novel measurement to distinguish groups of
patients with dementia and heart failure. The OWOD is a modification of the original
WOD using entropy-based weighting features and an objective function from class-wise
histogram differences, promoting a data-driven approach. The weighted features indicate a
degree of feature priority affecting classification and eliminate features that do not influence
classification. This study evaluated the proposed OWOD using 20 features and 10,000 EHRs
and compared it with other ML classification models, including GB, DT, SVM, and NN.
The OWOD outperformed the other ML models during validation and testing processes
for overall performance comparison in terms of accuracy, precision, recall, F1-scores, and
AUC-ROC. Future studies should include more multi-site datasets and refine features to
ensure generalization and practical applicability.
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