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Abstract

Reliable multiscale models of thrombosis require platelet-scale fidelity at organ-scale cost,
a gap that scientific machine learning has the potential to narrow. We trained a DeepONet
surrogate on platelet dynamics generated with LAMMPS for platelets spanning ten elastic
moduli and capillary numbers (0.07–0.77). The network takes as input the wall shear stress,
bond stiffness, time, and initial particle coordinates and returns the full three-dimensional
deformation of the membrane. Mean-squared-error minimization with Adam and adap-
tive learning-rate decay yields a median displacement error below 1%, a 90th percentile
below 3%, and a worst case below 4% over the entire calibrated range while accelerating
computation by four to five orders of magnitude. Leave-extremes-out retraining shows
acceptable extrapolation: the held-out stiffest and most compliant platelets retain sub-3%
median error and an 8% maximum. Error peaks coincide with transient membrane self-
contact, suggesting improvements via graph neural trunks and physics-informed torque
regularization. These results represent a first demonstration of how the surrogate has the
potential for coupling with continuum CFD, enabling future platelet-resolved hemody-
namic simulations in patient-specific geometries and opening new avenues for predictive
thrombosis modeling.

Keywords: platelet; thrombosis; neural networks; DeepONet

1. Introduction
Scientific machine learning is challenging the long-standing computational barrier that

separated molecular-scale platelet physics from organ-scale blood-flow models. Physics-
informed [1] and operator-learning architectures (e.g., DeepONet [2]) can learn the nonlin-
ear map between membrane-level mechanics and flow conditions directly from high-fidelity
particle- or molecular-dynamics data and then inject that knowledge into a continuum
computational fluid dynamics (CFD) solver at virtually zero computational cost. Recent
platelet-specific implementations [3,4] show that a single DeepONet evaluation reproduces
full platelet dynamics at molecular level with sub-percent error while accelerating the
micro-solver by four to five orders of magnitude, potentially enabling simulations with
clinically realistic platelet counts and geometries that were previously infeasible [5].

The application of such surrogates in a multi-scale model loop can be impactful for
thrombosis modeling [6], where clot initiation depends on nanometer-scale activation [7]
yet is modulated by vessel-scale hemodynamics [8]. Bridging these two complementary
descriptions of thrombosis is crucial [9]. Continuum-mechanics models excel at capturing
hemodynamics in both idealized [10–12] and complex, patient-specific geometries [13–16],
making them indispensable for clinically relevant scenarios, while molecular-dynamics
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simulations deliver high-fidelity in the mechanochemical behavior of individual blood
components, including receptor binding, membrane deformation, and chemical signal-
ing [17–19].

By coupling operator-learned surrogates like DeepONet into a multiscale loop, it is
possible to unify the geometric flexibility of continuum approaches with the atomistic
accuracy of molecular models, thereby obtaining a holistic (and computationally tractable)
framework for thrombus initiation and progression. The fidelity of such a multiscale
framework is bounded by the surrogate’s ability to emulate the underlying molecular
dynamics; rigorous benchmarking across the governing dimensionless groups is therefore
mandatory. In this study we focus on the capillary number, Ca∗, that can be interpreted as
the ratio of viscous to elastic forces [20] acting on the platelet. This number governs platelet
and red-blood-cell deformation and margination in shear flows, as summarized in Table 1
and extensively characterized in prior work on blood-cell suspensions.

Table 1. Examples of dimensionless capillary numbers in micro- and nano-scale blood-flow studies,
related to the range considered in this work.

Application Ca∗ [-] Reference

Red-blood-cell organization in straight
micro-capillaries

0.07 [21]

Platelet mechanotransduction 0.2 (derived) [22]

Red-blood-cell diffusivity and margination 0.3 [23]

Platelet–red blood cell interaction 0.7 [24]

As Ca increases, platelets undergo tank-treading motions and flattening that enhance
their lateral drift toward the vessel wall (margination), whereas at low Ca they retain a
more rigid, discoidal shape with limited near-wall transport and adhesive surface area [25].
These deformation-driven changes also modulate platelet–red blood cell collision rates
and shear-gradient diffusivity, both of which sensitively scale with Ca∗ and determine
how frequently platelets encounter and adhere to the endothelium [26]. In thrombosis,
where clot initiation is based on the interplay between shear-driven transport and receptor–
ligand binding kinetics, capturing the full spectrum of Ca∗-dependent behaviors is essential.
Systematic studies of Ca∗ therefore provide the mechanistic underpinning for training and
validating neural-operator surrogates like DeepONet across the physiologically relevant
deformation regimes encountered in vivo.

In this study, we quantify the accuracy of a DeepONet-based surrogate in capturing the
time-dependent deformation of a simplified model of a platelet suspended in Couette flow.
The platelet geometry is a 3D ellipsoid represented by network of roughly 20,000 particles
linked by harmonic springs, with variations in the capillary number achieved by adjusting
the spring constant. At each time step, the neural operator receives the current flow
conditions and membrane parameters and returns the platelet’s instantaneous particle
configuration. To assess the surrogate’s robustness, we systematically evaluated model
performance across a range of capillary numbers, conducting both interpolation tests
within the training regime and extrapolation tests beyond it. This framework allows us to
determine the surrogate’s predictive limits and to establish guidelines for its deployment
in multiscale thrombosis simulations.

The platelet’s particle-based model and the governing hemodynamics are presented
in Section 2. In Section 3, we detail the neural operator architecture applied in this work.
Finally, Section 4 discusses the surrogate’s error across varying capillary numbers.
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2. Particle-Based Platelet Model
The learning dataset was generated with LAMMPS [27] by coupling dissipative parti-

cle dynamics (DPD) [28] for the surrounding blood flow to a spring-network representation
of the platelet as a 3D hollow ellipsoid, following the workflow established in our previous
studies. This simplified geometry was chosen deliberately as our objective in this work for
methodological purposes: to demonstrate that a neural-operator surrogate can learn and
reproduce the full, time-resolved deformation of a three-dimensional particle-based model
and to quantify its accuracy across a broad range of capillary numbers. A discoid ellipsoid
is sufficiently non-trivial to exhibit the canonical Jeffery-type rotation and tank-treading
observed for quiescent platelets in shear flow, yet it keeps the cost of generating the O(106)

training snapshots per trajectory tractable. In our initial work [3], we sampled 101 discrete
shear stresses (50–250 Pa) but recorded only the end-state platelet shapes after one Jeffery
orbit, whereas a subsequent study [4] resolved the full time evolution at a single shear
stress (50 Pa). In the present work, we capture complete deformation trajectories across
10 different capillary numbers, obtained by varying the harmonic-bond stiffness. In to-
tal, 101 distinct time instants are sampled for the 10 values of the harmonic-bond elastic
constant K (Table 2). The resulting dimensional capillary number

Ca∗ =
µ γ̇ a
Gs

(1)

covers the physiologically relevant range 0.07 < Ca∗ < 0.7, where µ is the blood viscosity,
γ̇ the imposed shear rate, a the platelet’s characteristic radius, and Gs the in-plane surface
shear modulus linked to K.

Table 2. Parameter sweep defining the capillary-number dataset. The bond constant K is varied from
0.0003 to 0.0030 N m−1 in steps of 0.0003 N m−1.

Shear Stress σ [Pa] Bond Constant K [N m−1] Resulting Ca∗

50 K = {0.0003–0.0030} 0.07–0.70

2.1. Simulation Domain and Boundary Conditions

The goal of the simulation is to determine the dynamical evolution of a 3D ellipsoid
embedded in a Couette flow. The fluid flow is described by the hydrodynamic interaction
of approximately 4 million particles mediated by dissipative particle dynamics. The 3D
ellipsoid is modeled by 18 thousand particles interacting via harmonic bonds characterized
by a common elastic constant K. The computational box measures 16× 16× 8 µm (Figure 1).
Opposing translational velocities U are prescribed at the top and bottom walls to realize
a Couette flow; this choice is motivated by the fact that, at platelet scale, more complex
flow structures can be neglected, as they happen on shorter scales than the typical viscous
relaxation times. The required velocity for a target shear stress σ follows the linear relation

U =
σ L
2µ

, (2)

with L = 16 µm the wall spacing. The velocity boundary conditions are enforced on the
wall at y = ±8µm via ghost particles moving with velocity U in opposite directions (see
Figure 1). Periodic boundary conditions are enforced in the remaining directions. The time
step ∆t = 2.4 × 10−10 s ensures numerical stability across all Ca∗ cases, and each run is
advanced for one Jeffery period, providing a complete flip-and-deform cycle of the platelet.
By numerical stability, we mean that the characteristic frequency of the ellipsoid’s elastic
bonds can be resolved by the selected time step in the sense of the Nyquist theorem.
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Figure 1. Steady-state distribution of DPD fluid particle velocities around the platelet in its initial
position (dark ellipsoid at center, for reference). Each blue dot represents the x-component of a fluid
particle’s velocity after relaxation, plotted against its y-coordinate, with a Couette flow of σ = 50 Pa.
The clear gap around the ellipsoid arises from the no-penetration boundary condition.

Dissipative particle dynamics (DPD) provides a mesoscale framework for capturing
viscous flow effects at the particle level [29]. In our implementation, the blood is modeled
as DPD particles whose velocities evolve according to [28]:

dvi =
1
m

N

∑
j=1

(
Fc, ij dt + Fd, ij dt + Fr, ij

√
dt
)

, (3)

where Fc, Fd, and Fr denote the conservative, dissipative, and random force contributions,
respectively. The increment dvi is the resulting change in velocity of particle i. The
conservative force between particles i and j depends on their separation rij via

Fc, ij = α̂ ωc(rij) eij, ωc(rij) =

1 − rij
rc

, rij < rc,

0, rij ≥ rc,

with rc the interaction cutoff and eij the unit vector from j to i. The dissipative force is
defined as

Fd, ij = −γ̂ ωd(rij) (eij ·vij) eij,

where vij = vi − vj. The stochastic component is

Fr, ij = σ̂ ωr(rij) ζij eij,

with ζij a zero-mean, unit-variance Gaussian random variable. Thermodynamic consistency
requires ωd = ω2

r and σ̂2 = 2 γ̂ kBT [30]. The amplitude α̂ of the conservative force is set by
α̂ = 75 kBT/(ρ f rc) [28], where ρ f is the fluid particle density. After these constraints, the
only remaining free parameters are the friction coefficient γ̂ and the cutoff radius rc, both
calibrated in [29] for our blood-flow conditions.
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2.2. Platelet Membrane Model

The platelet is initialized as a hollow ellipsoid 4 × 4 × 1 µm discretized into
≈18,000 particles by 3D Delaunay triangulation. Nearest neighbors are linked by har-
monic bonds,

Uharm = ∑
bonds

K (r − r0)
2, (4)

where K is varied to realize the desired Ca∗ range. Non-bonded blood–platelet interactions
use a truncated Lennard-Jones potential plus dissipative and random DPD forces to enforce
a no-slip, non-penetrating interface [29]. The coupling between the DPD fluid and the
platelet membrane is realized through a non-bonded pairwise force, giving each membrane
particle an incremental velocity change:

dvi =
1
m ∑

j ̸=i

(
∇U(rij)dt + Fd, ij dt + Fr, ij

√
dt
)

, (5)

where the conservative interaction derives from a truncated Lennard–Jones potential,

∇U(rij) = 4 εLJ

[( σLJ
rij

)12 −
( σLJ

rij

)6
]
, (6)

capturing both short-range repulsion and longer-range attraction between fluid and mem-
brane beads. The dissipative Fd and stochastic Fr terms exchange momentum thermally,
while the steep repulsive core enforces an effective no-slip condition at the membrane sur-
face. All Lennard–Jones parameters εLJ and σLJ follow the calibration of Zhang et al. [29].
The resulting dynamics is depicted in Figure 2, where three representative snapshots from
a single LAMMPS trajectory at Ca∗ = 0.38 are presented, illustrating how the platelet de-
forms during one Jeffery-type flip. The left panel captures the initial stage: the membrane
is still close to its ellipsoid rest shape and the color map representing the magnitude of
the displacement vector u(t) normalized by the maximum initial displacement, shows
negligible motion. By the intermediate frame (center), the platelet has rotated about 45◦

relative to the shear plane; viscous stresses have stretched the front and rear rims, produc-
ing the red bands (25% relative displacement) and a slight concavity in the mid-section.
The late-time snapshot (right) corresponds to the end of the flip. The particle ensemble has
now experienced up to 30% of the initial-diameter displacement (deep red), concentrated
at the tips that momentarily align with the flow direction, while the central annulus under-
goes minimal motion (gray). This spatially heterogeneous pattern characterized by large
excursions near the rims and modest displacements on the flatter faces is a hallmark of
shear-induced tank-treading and is reproduced consistently across all ten stiffness levels in
the training set. The snapshots therefore provide a qualitative benchmark against which
the surrogate’s color-by-displacement reconstructions are later compared.

For every value of K, we record the particle positions at each time step, yielding O(106)

labeled states per trajectory. The resulting database underpins the DeepONet-based surro-
gate, which is trained on 80% subset of the trajectories and validated both interpolatively
(within the spanned parameter grid) and extrapolatively, as detailed in Section 3.
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Figure 2. Time-resolved deformation of a platelet under Couette flow from LAMMPS simulations.
Left, center, and right panels correspond to early, intermediate, and late time points within one Jeffery
orbit. The color scale denotes the magnitude of each particle’s displacement vector u(t) normalized
by the maximum initial displacement, i.e., ∥u(t)∥/ max

p
∥up(0)∥.

3. Neural Operator Surrogate Model
The surrogate model is trained to emulate the operator

G :
(
x0, t; σ, K

)
7−→ x(t), (7)

where x0 = (x0, y0, z0) denotes the initial position of a membrane particle, t is the simulation
time, σ = 50 Pa is the imposed wall shear stress, and K the harmonic-bond elastic constant
that sets the capillary number. For every membrane particle in the platelet, the network
returns the particle’s instantaneous coordinates x(t) = (x(t), y(t), z(t)). Thus the surrogate
learns the full, time-resolved deformation field of a platelet given its initial geometry and
the governing flow–material parameters.

The neural network implementation (see Figure 3, left panel) follows the architecture
of DeepONet [2]. Both the branch net and the trunk net are fully connected neural networks.
The branch net contains 2 hidden layers with 32 and 16 nodes, while the trunk net contains
3 hidden layers with 32, 32, and 16 nodes. The latent space dimension (which is the same
for both networks) is given by 32 nodes. The ReLU activation function is employed at
the nodes of the hidden layers, whereas the linear activation function is reserved for the
outputs. The scalars (σ, K) form the branch input, while (x0, t) is supplied to the trunk.
The output of the two network is processed via an inner product, and the corresponding
output is the particle’s absolute position x(t).

Figure 3. (left panel) Schematics of the DeepONet architecture; (right panel) convergence of the
DeepONet: training and validation mean squared error (MSE) drop rapidly within the first ∼
25 epochs, with no divergence between the two curves, indicating good generalization.

The training dataset is drawn from the LAMMPS simulations (Section 2) and split 90%
for training and 10% for validation. The network weights are optimized using the Adam
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algorithm over 100 epochs, with an initial learning rate of 10−3 that is adaptively reduced
to 10−7 on plateau. The loss function is the mean squared error between the network
prediction and ground truth, and we track the mean absolute error on the validation set to
detect overfitting. The resulting convergence is shown in Figure 3 (right panel).

A preliminary performance assessment compares the relative displacement error of
DeepONet predictions (computed on the held-out validation set) with the corresponding
LAMMPS ground truth. As shown in Figure 4 (left), the error distribution sharply peak
below 1% and exhibits a long, thin tail extending to 5%. The right panel of Figure 4
demonstrates that the surrogate accurately tracks the platelet’s center-of-mass displacement
throughout the Couette-flow trajectory. Achieving sub-percent error while accelerating
the time-dependent deformation by several orders of magnitude highlights the surrogate’s
promise for multiscale blood-flow modeling.

Figure 4. (left panel) Histogram of relative displacement errors on the validation set, showing that
mode of DeepONet predictions incur less than 1% error relative to LAMMPS. (right panel) Time
series of the platelet’s normalized center-of-mass displacement demonstrating near-perfect agreement
between DeepONet and LAMMPS over the full time evolution.

The DeepONet surrogate introduced above is conceived as the microscopic engine
of a future multiscale hemodynamic framework. Because each prediction reduces to a
single, inexpensive forward pass, the model might allow for molecular-level detail at a
cost compatible with continuum CFD, offering a viable alternative to lattice-Boltzmann
or immersed-boundary hybrids. Naturally, its usefulness hinges on how faithfully it
reconstructs the underlying particle-dynamics trajectories: the central research question
examined in this work. The following subsections outline the inference workflow and
sketch, in broad terms, how the surrogate could be embedded in a continuum solver, e.g.,
through a force-based coupling interface to achieve platelet-resolved accuracy without
resorting to prohibitively fine meshes or time steps.

3.1. Model Workflow

At a given time step t, the CFD solver provides the wall shear σ experienced by a
platelet and a material-specific bond stiffness K (set by the target Ca∗). Those two scalars are
concatenated, min–max normalized, and fed into the branch network. Simultaneously, each
membrane particle supplies its initial coordinates x0 = (x0, y0, z0) and the dimensionless
time t̂ = t/TJ to the trunk network. The resulting 32-dimensional latent vectors b(σ, K)
and t(x0, t̂) are combined by an inner product,

∆x(t) = W
[
b(σ, K) · t(x0, t̂)

]
,

where W is a final linear layer mapping the scalar product to the three Cartesian compo-
nents of the displacement. Adding ∆x(t) to x0 instantly yields the deformed node position
x(t), closing the loop without time integration. During training,

(
x0, t̂

)
samples are drawn
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uniformly from the 106 molecular dynamics states per trajectory and batched together
with the corresponding (σ, K). Inference re-uses the same normalization statistics but skips
gradient tracking, reducing each evaluation to ∼1 µs on a single GPU.

3.2. Embedding in a Continuum Solver

The surrogate is designed to interface with any finite-volume, finite-element, or
lattice-based CFD solver through the following generic two-way coupling loop. A typical
time step would proceed as follows:

1 The macroscopic solver evaluates the local shear or velocity gradient acting on each
platelet and passes the scalar σ to the surrogate.

2 The DeepONet returns the updated membrane node positions x(t) or, equivalently,
the platelet stresslet.

3 That information is converted into an effective body force or boundary traction via
force-coupling, immersed-boundary, or any other particle–fluid exchange scheme and
applied to the Eulerian flow field.

4 The continuum equations are advanced by the CFD solver, yielding the updated
velocity field and closing the loop for the next surrogate query.

Because each surrogate evaluation is a single forward pass, the per-platelet overhead
is O(10−4) CPUs orders of magnitude smaller than the cost of the fluid solver while
maintaining subplatelet-scale geometric fidelity.

3.3. Why DeepONet Is Advantageous

Compared with traditional reduced-order fits (POD, radial-basis interpolation) or
direct coarse-grained MD–CFD coupling, the proposed operator-learning approach offers:

• Speed: Several orders of magnitude faster than on-the-fly particle dynamics. When
embedded in a multiscale loop like the one introduced in the previous subsection, it
could reasonably permit 105 platelets in a patient-specific artery on a commodity GPU.

• Generalizability: Differentiable mapping across a continuous band of Ca∗; no need to
store lookup tables for every stiffness/shear pair.

• Memory efficiency: The full surrogate weighs a few megabytes, versus terabytes for
raw MD trajectories.

• Compatibility: The feed-forward nature of DeepONet can integrate cleanly with
existing CFD codes and is amenable to adjoint or PINN-based optimization, an option
not readily available with lattice-Boltzmann or immersed-boundary hybrids.

Coupling this surrogate to a continuum CFD solver provides a nanometer-resolved,
data-driven alternative to low-fidelity empirical models (e.g., the Nobili damage index [31]).
By directly embedding molecular-level deformation dynamics into the CFD domain, the
surrogate reduces a key source of uncertainty in multiscale thrombosis predictions, poten-
tially offering a significant long-term advantage compared to traditional approaches.

4. Per-Capillary Number Analysis
The aim of this section is to quantify how the surrogate error varies with membrane

stiffness, expressed through the capillary number Ca∗(σ, K). A pragmatic training strategy
was adopted: rather than excluding an entire stiffness level, the network was trained
on a uniformly random 90% subset of

{
x0, t, σ, K

}
tuples, leaving the remaining 10% for

validation. Consequently, every value of K appears in the optimizer mini-batches, but only
a sparse selection of time–particle samples at that K influences the weights. The per-K
study presented below evaluates the fully trained network on complete platelet trajectories,
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including time instants and particle indices never seen during training, thus providing a strict
interpolation benchmark across the full Ca∗ span.

While a leave-one-K cross-validation would yield a pure extrapolation metric, it would
also entail retraining ten separate models on datasets exceeding 108 samples each, which is
beyond the scope of the present work. The interpolation results reported here therefore
represent the surrogate’s expected accuracy when embedded in multiscale hemodynamic
simulations that operate within the calibrated capillary-number range.

The per-capillary-number results are summarized in Table 3, which reports the me-
dian, 90th-percentile, and maximum relative errors between DeepONet predictions and
LAMMPS simulations. Relative errors increase with the capillary number (as lower bond
stiffness produces larger deformations), but even in the most extreme cases the maxi-
mum error stays below 4%, demonstrating the surrogate’s high fidelity. Interestingly, the
stiffest case (lowest Ca∗) shows a slightly higher maximum error than some intermediate
stiffnesses. This is attributable to its location at the edge of the training domain, where
the model effectively operates in a quasi-extrapolative regime. A focused assessment of
extrapolation performance is presented in Section 4.

Table 3. Validation-set relative displacement errors for each bond stiffness K and corresponding cap-
illary number Ca∗.The median (50th percentile), 90th percentile, and maximum errors of DeepONet
predictions versus LAMMPS ground truth are shown.

K [N/m] Ca∗ [-] Rel. Error (50%) Rel. Error (90%) Rel. Error (Max)

0.0003 0.7698 0.0094 0.0224 0.0389
0.0006 0.3849 0.0076 0.0179 0.0314
0.0009 0.2566 0.0070 0.0165 0.0288
0.0012 0.1925 0.0066 0.0158 0.0270
0.0015 0.1540 0.0062 0.0152 0.0262
0.0018 0.1283 0.0058 0.0145 0.0244
0.0021 0.1100 0.0057 0.0131 0.0212
0.0024 0.0962 0.0056 0.0122 0.0208
0.0027 0.0855 0.0058 0.0122 0.0214
0.0030 0.0770 0.0056 0.0126 0.0228

A qualitative comparison of surrogate and ground-truth displacement fields is shown
in Figure 5 for the worst-case capillary number. Left and central panels display the per-
particle displacement magnitudes from the LAMMPS simulation and the DeepONet pre-
diction, respectively, using the same color scale. Visually, the two fields are almost indistin-
guishable: the red bands marking the leading and trailing rims, the gray mid-zone, and the
subtle saddle-like depression at the platelet’s center all appear at the correct locations and
amplitudes in the surrogate. The right panel maps the point-wise relative error, revealing
the spatial distribution of prediction discrepancies and highlighting the regions where the
surrogate deviates most from the molecular-dynamics reference. Discrepancies remain
below 2% over most of the membrane and peak at 6% only in two small patches near the
high-curvature tips, where the membrane briefly self-contacts. Importantly, no systematic
bias is observed: the error alternates in sign and stays localized, indicating that the network
has captured the global deformation modes and that residuals stem from highly localized
geometric features rather than a misrepresentation of the overall dynamics. This worst-case
snapshot therefore corroborates that the surrogate maintains high fidelity even under the
most challenging deformation regime.
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Figure 5. Per-particle displacement comparison at the worst-case capillary number: (left panel)
ground-truth magnitudes from LAMMPS, (central panel) DeepONet-predicted magnitudes, and
(right panel) corresponding point-wise relative error, illustrating the spatial distribution of surrogate
discrepancies.

To pinpoint when the surrogate deviates most from the molecular-dynamics reference,
we plotted the space-averaged relative displacement error versus time in Figure 6 for
the most compliant platelet (Ca∗ = 0.77) and the stiffest (Ca∗ = 0.077) one. In both
cases the error climbs rapidly when the inner faces of the hollow membrane first touch,
a kinematic discontinuity that the network finds hardest to replicate. Because the stiffer
platelet deforms more slowly, this contact (and its associated error peak) occurs later in the
trajectory. Such self-contact is an artifact of the hollow-shell idealization; a realistic platelet,
with cytoplasm and spectrin cytoskeleton, would not experience it, so the challenge to
the surrogate should lessen in future models. A secondary drift in error appears toward
the end of the run, reflecting the non-periodic post-contact dynamics and the growing
flow–structure complexity. Incorporating physics-informed regularization, e.g., enforcing
zero net hydrodynamic torque, offers a path to reduce this late-stage error growth.

Figure 6. Space-averaged relative displacement error of the DeepONet surrogate versus LAMMPS
ground truth over one Jeffery period for two capillary numbers (Ca∗ = 0.77 in blue, Ca∗ = 0.077 in
orange). Error peaks coincide with initial membrane self-contact and rise again in the post-contact,
non-periodic regime, highlighting regions of greatest model challenge.

At the moment of first self-contact, the spatial error distribution on the most compliant
platelet (Ca∗ = 0.77) reveals a clear dependence on local membrane curvature (Figure 7).
Each hexagon represents a patch of particles binned by its curvature proxy (mean distance
to nearest neighbors) and point-wise relative displacement error. A distinct cluster at
higher curvature values exhibits elevated errors, indicating that regions with tight bends
and kinematic discontinuities pose the greatest challenge for the fully connected DeepONet
trunk net. To better respect the platelet’s bead-spring topology and improve accuracy in
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these high-curvature zones, future work might replace the trunk net with a graph neural
network that directly replicates the membrane graph structure.

Figure 7. Hexagonal-bin scatter of point-wise relative displacement error versus local curvature for
the most compliant platelet (Ca∗ = 0.77) at first self-contact (time step 37). Local curvature is proxied
by the average distance to nearest neighbors, and bin color indicates the number of particles. The
elevated error cluster at higher curvature values highlights the surrogate’s difficulty in capturing
sharp bends and kinematic discontinuities.

Extrapolation Study

The extrapolation study trains the DeepONet surrogate model by holding out the
trajectory data for the two extreme Ca∗ cases while keeping all training hyper-parameters
identical to the baseline case. Performance is then evaluated solely on the excluded capillary
numbers. Figure 8 shows the resulting relative error histograms: a clear bimodal distri-
bution arises, with the lower-error peak corresponding to the stiff-platelet extrapolation
(green) and the higher-error peak to the compliant-platelet extrapolation (orange). In full
extrapolation mode, most particles incur errors between 1% and 3%, and the maximum
error remains below 8%, underscoring the surrogate’s high-fidelity performance even
outside its training envelope.

Figure 8. Relative displacement error histograms for the extrapolation study. The surrogate is
evaluated on held-out capillary numbers: the soft-platelet case (Ca∗ = 0.77, orange) and the stiff-
platelet case (Ca∗ = 0.08, green), with the combined extrapolation set in blue.
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5. Conclusions
We developed and benchmarked a DeepONet surrogate that reproduces the full, time-

resolved deformation of a platelet in shear flow at a fraction of the cost of particle-based
simulation. Training on ten capillary numbers spanning 0.07 ≤ Ca∗ ≤ 0.77 and 106 particle
states per trajectory, the network achieves sub-percent median errors and keeps the worst-
case error below 4 % across the entire calibrated range. A leave-extreme extrapolation test
confirms that accuracy degrades acceptably: 90% of the predictions for the held-out stiff and
compliant platelets remain within 3% of the LAMMPS reference, and the maximum error
never exceeds 8%. These results place the surrogate firmly in the high-fidelity class while
delivering speed-ups of four to five orders of magnitude—opening the door to organ-scale
hemodynamic simulations with clinically realistic platelet counts.

Error analysis highlights two outstanding challenges. First, localized peaks occur
when the hollow membrane self-contacts, revealing the difficulty of capturing kinematic
discontinuities with a fully connected trunk net. Second, a slow drift appears in the non-
periodic post-contact phase. Both issues motivate future extensions: (i) replacing the trunk
with a graph neural network that respects the bead–spring topology and (ii) incorporating
physics-informed regularization terms (such as zero net hydrodynamic torque) to constrain
long-term behavior. More realistic platelet geometries that include the cytoplasm and
cytoskeleton, thereby preventing self-contact, will further reduce surrogate error. An
additional input for the surrogate model that will be considered in future works is the
initial orientation of the platelet with respect to the shear direction. This information plays
a relevant role when computing, for example, the stresslet experienced by a platelet, and
cannot be neglected in possible future coupling mechanisms with CFD solvers.

These results constitute a promising first step toward a true multiscale thrombosis
framework. Key challenges remain, such as incorporating platelet–platelet interactions,
vessel-wall effects, red-blood-cell collisions, and coagulation kinetics, before clot initiation
and growth can be captured. In future work, we will explore the surrogate’s flexibility
to address each of these components, with the ultimate goal of enabling computationally
efficient, platelet-resolved hemodynamic simulations.

Funding: M.L. was supported by Swedish Research Council Grant No. 2022-03032. The numerical
computations were enabled by resources provided by the National Academic Infrastructure for
Supercomputing in Sweden (NAISS) at the PDC Center for High Performance Computing, KTH
Royal Institute of Technology, Sweden, partially funded by the Swedish Research Council through
grant agreement no. 2022-06725.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The model weights and the training dataset can be provided by the
author upon reasonable request.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys.

2021, 3, 422–440. [CrossRef]
2. Lu, L.; Jin, P.; Pang, G.; Zhang, Z.; Karniadakis, G.E. Learning nonlinear operators via DeepONet based on the universal

approximation theorem of operators. Nat. Mach. Intell. 2021, 3, 218–229. [CrossRef]
3. Laudato, M.; Manzari, L.; Shukla, K. High-Fidelity Description of Platelet Deformation Using a Neural Operator. arXiv 2024,

arXiv:2412.00747. [CrossRef]
4. Laudato, M.; Manzari, L.; Shukla, K. Neural Operator Modeling of Platelet Geometry and Stress in Shear Flow. arXiv 2025,

arXiv:2503.12074.

http://doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.48550/arXiv.2412.00747


Bioengineering 2025, 12, 958 13 of 14

5. MacRaild, M.; Sarrami-Foroushani, A.; Lassila, T.; Frangi, A.F. Accelerated simulation methodologies for computational vascular
flow modelling. J. R. Soc. Interface 2024, 21, 20230565. [CrossRef]

6. Xu, Z.; Chen, N.; Kamocka, M.M.; Rosen, E.D.; Alber, M. A multiscale model of thrombus development. J. R. Soc. Interface 2008,
5, 705–722. [CrossRef]

7. Tomaiuolo, M.; Brass, L.F.; Stalker, T.J. Regulation of platelet activation and coagulation and its role in vascular injury and arterial
thrombosis. Interv. Cardiol. Clin. 2017, 6, 1. [CrossRef]

8. Zhang, J.-n.; Bergeron, A.L.; Yu, Q.; Sun, C.; McIntire, L.V.; López, J.A.; Dong, J.-f. Platelet aggregation and activation under
complex patterns of shear stress. Thromb. Haemost. 2002, 88, 817–821. [CrossRef]

9. Zhang, Y.; Barocas, V.H.; Berceli, S.A.; Clancy, C.E.; Eckmann, D.M.; Garbey, M.; Kassab, G.S.; Lochner, D.R.; McCulloch, A.D.;
Tran-Son-Tay, R.; et al. Multi-scale modeling of the cardiovascular system: Disease development, progression, and clinical
intervention. Ann. Biomed. Eng. 2016, 44, 2642–2660. [CrossRef]

10. Laudato, M.; Mosca, R.; Mihaescu, M. Buckling critical pressures in collapsible tubes relevant for biomedical flows. Sci. Rep. 2023,
13, 9298. [CrossRef]

11. Laudato, M.; Mihaescu, M. Analysis of the contact critical pressure of collapsible tubes for biomedical applications. Contin. Mech.
Thermodyn. 2024, 36, 217–228. [CrossRef]

12. Laudato, M.; Zea, E.; Sundström, E.; Boij, S.; Mihaescu, M. Sound generation mechanisms in a collapsible tube. J. Acoust. Soc. Am.
2024, 155, 3345–3356. [CrossRef] [PubMed]

13. Gutiérrez, N.G.; Mukherjee, D.; Bar, D., Jr. Decoding thrombosis through code: A review of computational models. J. Thromb.
Haemost. 2024, 22, 35–47. [CrossRef] [PubMed]

14. Karmonik, C.; Bismuth, J.X.; Davies, M.G.; Lumsden, A.B. Computational hemodynamics in the human aorta: A computational
fluid dynamics study of three cases with patient-specific geometries and inflow rates. Technol. Health Care 2008, 16, 343–354.
[CrossRef]

15. Sundström, E.; Laudato, M. Machine learning-based segmentation of the thoracic aorta with congenital valve disease using MRI.
Bioengineering 2023, 10, 1216. [CrossRef]

16. Bornemann, K.M.; Jahren, S.E.; Obrist, D. The relation between aortic morphology and transcatheter aortic heart valve thrombosis:
Particle tracing and platelet activation in larger aortic roots with and without neo-sinus. Comput. Biol. Med. 2024, 179, 108828.
[CrossRef]

17. Zhang, P.; Sheriff, J.; Einav, S.; Slepian, M.J.; Deng, Y.; Bluestein, D. A predictive multiscale model for simulating flow-induced
platelet activation: Correlating in silico results with in vitro results. J. Biomech. 2021, 117, 110275. [CrossRef]

18. Wang, P.; Sheriff, J.; Zhang, P.; Deng, Y.; Bluestein, D. A multiscale model for shear-mediated platelet adhesion dynamics:
correlating in silico with in vitro results. Ann. Biomed. Eng. 2023, 51, 1094–1105. [CrossRef]

19. Gupta, P.; Zhang, P.; Sheriff, J.; Bluestein, D.; Deng, Y. A multiscale model for multiple platelet aggregation in shear flow. Biomech.
Model. Mechanobiol. 2021, 20, 1013–1030. [CrossRef]

20. Krüger, T. Effect of tube diameter and capillary number on platelet margination and near-wall dynamics. Rheol. Acta 2016,
55, 511–526. [CrossRef]

21. Liao, C.T.; Liu, A.J.; Chen, Y.L. Flow-induced “waltzing” red blood cells: Microstructural reorganization and the corresponding
rheological response. Sci. Adv. 2022, 8, eabq5248. [CrossRef] [PubMed]

22. Abidin, N.A.Z.; Timofeeva, M.; Szydzik, C.; Akbaridoust, F.; Lav, C.; Marusic, I.; Mitchell, A.; Hamilton, J.R.; Ooi, A.S.; Nesbitt,
W.S. A microfluidic method to investigate platelet mechanotransduction under extensional strain. Res. Pract. Thromb. Haemost.
2023, 7, 100037. [CrossRef] [PubMed]

23. Malipeddi, A.R.; Sarkar, K. Shear-induced gradient diffusivity of a red blood cell suspension: Effects of cell dynamics from
tumbling to tank-treading. Soft Matter 2021, 17, 8523–8535. [CrossRef]

24. Vahidkhah, K.; Diamond, S.L.; Bagchi, P. Hydrodynamic interaction between a platelet and an erythrocyte: Effect of erythrocyte
deformability, dynamics, and wall proximity. J. Biomech. Eng. 2013, 135, 051002. [CrossRef]

25. Dynar, M.; Ez-Zahraouy, H.; Misbah, C.; Abbasi, M. Platelet margination dynamics in blood flow: The role of lift forces and red
blood cells aggregation. Phys. Rev. Fluids 2024, 9, 083603. [CrossRef]

26. Tuna, R.; Yi, W.; Crespo Cruz, E.; Romero, J.; Ren, Y.; Guan, J.; Li, Y.; Deng, Y.; Bluestein, D.; Liu, Z.L.; et al. Platelet biorheology
and mechanobiology in thrombosis and hemostasis: Perspectives from multiscale computation. Int. J. Mol. Sci. 2024, 25, 4800.
[CrossRef]

27. Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; In’t Veld, P.J.; Kohlmeyer, A.; Moore,
S.G.; Nguyen, T.D.; et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [CrossRef]

28. Groot, R.D.; Warren, P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem.
Phys. 1997, 107, 4423–4435. [CrossRef]

http://dx.doi.org/10.1098/rsif.2023.0565
http://dx.doi.org/10.1098/rsif.2007.1202
http://dx.doi.org/10.1016/j.iccl.2016.08.001
http://dx.doi.org/10.1055/s-0037-1613308
http://dx.doi.org/10.1007/s10439-016-1628-0
http://dx.doi.org/10.1038/s41598-023-36513-6
http://dx.doi.org/10.1007/s00161-023-01271-3
http://dx.doi.org/10.1121/10.0026093
http://www.ncbi.nlm.nih.gov/pubmed/38758053
http://dx.doi.org/10.1016/j.jtha.2023.08.021
http://www.ncbi.nlm.nih.gov/pubmed/37657562
http://dx.doi.org/10.3233/THC-2008-16503
http://dx.doi.org/10.3390/bioengineering10101216
http://dx.doi.org/10.1016/j.compbiomed.2024.108828
http://dx.doi.org/10.1016/j.jbiomech.2021.110275
http://dx.doi.org/10.1007/s10439-023-03193-2
http://dx.doi.org/10.1007/s10237-021-01428-6
http://dx.doi.org/10.1007/s00397-015-0891-6
http://dx.doi.org/10.1126/sciadv.abq5248
http://www.ncbi.nlm.nih.gov/pubmed/36427318
http://dx.doi.org/10.1016/j.rpth.2023.100037
http://www.ncbi.nlm.nih.gov/pubmed/36846647
http://dx.doi.org/10.1039/D1SM00938A
http://dx.doi.org/10.1115/1.4023522
http://dx.doi.org/10.1103/PhysRevFluids.9.083603
http://dx.doi.org/10.3390/ijms25094800
http://dx.doi.org/10.1016/j.cpc.2021.108171
http://dx.doi.org/10.1063/1.474784


Bioengineering 2025, 12, 958 14 of 14

29. Zhang, P.; Gao, C.; Zhang, N.; Slepian, M.J.; Deng, Y.; Bluestein, D. Multiscale particle-based modeling of flowing platelets in
blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell. Mol. Bioeng. 2014, 7, 552–574.
[CrossRef]

30. Espanol, P.; Warren, P. Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 1995, 30, 191. [CrossRef]
31. Nobili, M.; Sheriff, J.; Morbiducci, U.; Redaelli, A.; Bluestein, D. Platelet activation due to hemodynamic shear stresses: Damage

accumulation model and comparison to in vitro measurements. ASAIO J. 2008, 54, 64–72. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12195-014-0356-5
http://dx.doi.org/10.1209/0295-5075/30/4/001
http://dx.doi.org/10.1097/MAT.0b013e31815d6898

	Introduction
	Particle-Based Platelet Model
	Simulation Domain and Boundary Conditions
	Platelet Membrane Model

	Neural Operator Surrogate Model
	Model Workflow
	Embedding in a Continuum Solver
	Why DeepONet Is Advantageous

	Per-Capillary Number Analysis
	Conclusions
	References

