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Abstract

Diagnosing gastrointestinal disorders (GIDs) remains a significant challenge, particularly
when relying on wireless capsule endoscopy (WCE), which lacks advanced imaging en-
hancements like Narrow Band Imaging (NBI). To address this, we propose a novel frame-
work, the Spectrum-Aided Vision Enhancer (SAVE), especially designed to transform
standard white light (WLI) endoscopic images into spectrally enriched representations that
emulate both hyperspectral imaging (HSI) and NBI formats. By leveraging color calibration
through the Macbeth Color Checker, gamma correction, CIE 1931 XYZ transformation, and
principal component analysis (PCA), SAVE reconstructs detailed spectral information from
conventional RGB inputs. Performance was evaluated using the Kvasir-v2 dataset, which
includes 6490 annotated images spanning eight Gl-related categories. Deep learning models
like Inception-Net V3, MobileNetV2, MobileNetV3, and AlexNet were trained on both orig-
inal WLI- and SAVE-enhanced images. Among these, MobileNetV2 achieved an Fl-score
of 96% for polyp classification using SAVE, and AlexNet saw a notable increase in average
accuracy to 84% when applied to enhanced images. Image quality assessment showed high
structural similarity (SSIM scores of 93.99% for Olympus endoscopy and 90.68% for WCE),
confirming the fidelity of the spectral transformations. Overall, the SAVE framework offers
a practical, software-based enhancement strategy that significantly improves diagnostic
accuracy in Gl imaging, with strong implications for low-cost, non-invasive diagnostics
using capsule endoscopy systems.
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1. Introduction

GID comprises a broad spectrum of pathogenic abnormalities influencing the digestive
tract, each with unique morphological, vascular, and inflammatory traits [1,2]. If these
disorders go undetected in their early stages, they can lead to long-term impairment or
become life-threatening cancer [3,4]. Early identification is thus not only advantageous but
also essential for efficient clinical treatment [5-7]. Eight distinct categories of GID were
considered in this analysis because of their high clinical relevance. Polyps, which arise from
the mucosal surface as either pedunculated or sessile growths, are a common and clinically
significant target for early detection due to their established role as precursors to colorectal
cancer [8-10]. While many are benign, certain types of particularly adenomatous polyps
carry a substantial risk of malignant transformation. Their endoscopic look can vary greatly
in size, color, and surface texture; hence, efficient cancer prevention plans depend on their
accurate detection [11]. A more complex class, dyed-lifted polyps, are treated during endo-
scopic mucosal resections (EMRs) using staining agents like indigo carmine or methylene
blue to raise and improve the polyp from surrounding tissue [12-14]. However, this method
changes the image’s color profile, which makes automated classification tasks more difficult
and calls for strong image enhancement algorithms. Dyed-resection margins constitute
another clinically important category [15]. Dyes are used to mark the resected area’s edge
following polyp removal to guarantee no abnormal tissue remains free. It is difficult to
differentiate these margins from normal or inflammatory mucosa using traditional white
light imaging (WLI) because they often look like uneven, low-contrast areas. Esophagitis,
an additional class featured in this dataset, is an inflammation of the esophagitis lining that
may result from acid reflux, infections, or allergic reactions [16-19]. It is marked by mucosal
erythema, friability, linear erosions, and, in advanced cases, ulcerations. Timely detection
is essential, as untreated esophagitis can progress to more severe conditions, including
Barrett’s esophagitis and esophageal adenocarcinoma [20,21]. Ulcerative colitis is a rare,
chronic inflammatory disease of the colon and rectum, characterized by persistent mucosal
ulceration, crypt distortion, bleeding, and loss of vascular pattern [22,23]. Its endoscopic
features often overlap with those of other colitises and early neoplasia, making accurate
differentiation challenging. The inflammation presents in a widespread, uneven pattern,
often obscured by scarring, necessitating high-resolution imaging with strong contrast to
ensure diagnostic accuracy. Normal cecum, Z-line, and pylorus are the other three classes;
they are more important for contextual categorization and GI tract localization than diseases
themselves, but they do represent anatomical features [24]. Usually used as a landmark for
a full colonoscopy, the cecum is the first segment of the large intestine. It typically appears
as a pale, glistening mucosa with visible anatomical landmarks such as the appendiceal
orifice and ileocecal valve. The Z-line, or squamocolumnar junction, marks the transition
between the esophageal squamous epithelium and gastric columnar epithelium. Pylorus,
the muscular gateway between the stomach and duodenum, exhibits variable appearance
depending on its state of contraction and must be carefully distinguished from ulcerations,
neoplasms, or hypertrophic abnormalities. Including these normal classes in the dataset
guarantees a more balanced model training and strengthens the pathological classification
by avoiding false positives.
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Early identification of these GIDs remains a great difficulty, with utmost clinical im-
portance [25]. Under conventional WLI, most early-stage lesions cause only minor changes
in mucosal structure, texture, and vascular patterns. Moreover, the way endoscopic images
are interpreted depends much on the experience and knowledge of the clinician; thus,
they remain quite subjective. Particularly for flat lesions, non-polypoid development, and
inflammatory changes, the interobserver variability is high and diagnosis results often
suffer. The emergence of wireless capsule endoscopy (WCE) as a revolutionary diagnostic
alternative enables non-invasive, full-length imaging of the gastrointestinal tract, partic-
ularly the small intestine [26,27]. The procedure entails ingesting a capsule-sized device
equipped with a miniature camera, which autonomously captures and transmits images as
it traverses the GI tract. This method eliminates the need for sedation, intubation, or direct
manipulation with an endoscope, making it particularly suitable for paediatric patients,
elderly individuals, and those with contraindications to conventional endoscopy [28,29]. It
relies on low-resolution, standard RGB WLI and lacks integrated enhancement technologies
such as Narrow Band Imaging (NBI) [30,31]. Additionally, WCE does not support biopsies
or therapeutic interventions, restricting its utility to diagnostic observation alone. The
capsule’s passive transit through the GI tract results in inconsistent frame capture, motion
artifacts, and occasional gaps in mucosal visualization. These limitations, coupled with
the narrow spectral range of RGB imaging, impair both clinical interpretation and the
performance of machine learning models trained on WCE data.

The traditional WLI method in endoscopy is widely used due to its simplicity and
accessibility, as it captures the appearance of tissue using the red, green, and blue (RGB)
spectrum [32]. It lacks the diagnostic accuracy and spectral clarity needed to expose minute
vascular or epithelial differences, which are necessary to differentiate between benign and
neoplastic lesions. It naturally generates diluted data since it compresses complicated
spectral information into only three broad channels, affecting image contrast and limited
diagnostic detail. To address these limitations, NBI has been introduced as an optical
enhancement technique that improves mucosal and vascular visualization by utilizing two
narrow bands of wavelengths 415 nm and 540 nm, which match the absorption peaks of
hemoglobin, which provide selective illumination on GID and make the detection more
effective. It is not available in WCE, though, and is only applicable to some endoscopic
systems, including Olympus. Furthermore, NBI only employs two wavelengths; hence, it
does not offer complete spectral information and may not be able to differentiate tissues
with comparable hemoglobin content. Hyperspectral imaging (HSI) is a more extensive
method of spectral imaging that captures hundreds of adjacent spectral bands in the visible
and near-infrared spectrum. Every pixel in an HSI image has a complete spectral signa-
ture that allows for thorough tissue characterization, depending on inherent reflectance
characteristics. It offers significant advantages, including the potential for real-time optical
biopsy by capturing detailed spectral signatures of tissues. However, several factors have
hindered its clinical adoption in endoscopy; for example, machines are typically large,
expensive, and not yet integrated into conventional or capsule-based endoscopic platforms.
Moreover, the high-dimensional nature of hyperspectral data introduces considerable com-
putational overhead and redundancy, necessitating dimensionality reduction techniques
such as PCA [33,34]. The substantial data volume generated per frame also presents chal-
lenges for real-time processing, further limiting the feasibility of HSI in routine clinical
workflows. Maintaining compatibility with the RGB image format used in standard and
capsule endoscopy, this study presents SAVE, a new technique meant to convert WLI into
HSI data and replicate NBI [35]. Starting with spectral reconstruction using Macbeth Color
Checker calibration, the SAVE algorithm converts the RGB color space into CIE 1931 XYZ
space by gamma correction and linearization. The most important spectral features are
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then obtained by means of PCA, lowering dimensionality while maintaining necessary
diagnostic information. The CIEDE2000 metric is used for additional color correction to
guarantee the simulated outputs correspond with actual Olympus NBI images. Without
any hardware modification, this change helps standard and capsule endoscopy systems
to approximate the diagnostic benefits of NBI and HSI. SAVE has the potential to greatly
progress the field of gastrointestinal diagnostics and help to improve patient outcomes
worldwide by means of enhanced picture contrast, improved classification accuracy, and
early illness detection.

The suggested methodological innovation and validation framework in GI imag-
ing is far more comprehensive than prior studies, which predominantly concentrated on
polyp-specific datasets or one-class endoscopic classification. The integration of Macbeth
Color Checker calibration, PCA-based spectral reconstruction, and regression error cor-
rection enabled us to guarantee that SAVE photos closely resemble Olympus NBI while
maintaining high spectral fidelity. This study further extends the applicability of SAVE
to a cross-architecture evaluation of MobileNetV2, MobileNetV3, Inception-NetV3, and
AlexNet utilizing the Kvasir-v2 dataset, comprising 6490 photos across eight clinically
distinct categories. The results indicate substantial improvements in classification accuracy
across multiple categories, with MobileNetV2 achieving a superior F1-score of 96 in polyp
detection, while AlexNet demonstrated an increase of up to 18 percent in F1-score classifi-
cation for each lesion type. The translational benefit of the software-only SAVE technology
is its ability to integrate into the existing workflow of wireless capsule endoscopy, which is
presently constrained in NBI or HSI functionalities. The methodological advancements,
reported experimental results, and translational applications collectively affirm that the
current research significantly surpasses previous reports, presenting a feasible and scalable
solution for enhancing non-invasive gastrointestinal diagnostics.

2. Materials and Methods
2.1. Dataset

This study works on the publicly available GI endoscopy image dataset “Kvasir-v2
dataset” created by Simula Research Laboratory in association with Vestre Viken Health
Trust, Norway [36,37]. It has 6490 annotated images in eight classes: polyp, dyed-lifted
polyp, dyed-resection margin, esophagitis, ulcerative colitis, normal cecum, pylorus, and Z-
line. Medical experts have annotated and classified every image, which qualifies the dataset
for supervised deep learning projects in GI image classification. Several preprocessing
steps were implemented to prepare the dataset for model training and evaluation. Convo-
lutional neural networks (CNN5s) used input images that were resized to 224 x 224 pixels.
To standardize image intensity across all inputs, pixel values were brought into line with
the [0, 1] range. Data augmentation methods were used to solve class imbalance and
enhance models’ generalizing capability. These comprised random zoom, minor trans-
lations, horizontal and vertical flipping, and small rotation (£15°). Only the training
set was augmented to prevent data leakage. To guarantee that every subset included a
proportional representation of all eight classes, the dataset was stratified and split into
training, validation, and test sets at a ratio of 70:15:15, helping to perform best on unseen
data. Table 1 illustrates that all eight classes, encompassing normal anatomy and diverse
pathologies, are adequately represented across the training, validation, and test divisions
of the dataset. The stratified distribution of 6490 images guarantees that our model is
trained and assessed on a balanced and comprehensive array of cases. Figure 1 presents a
workflow diagram that clearly delineates each phase of our methodology, encompassing
image preprocessing, dataset partitioning, SAVE spectral transformation, and qualitative
comparison of WLI against virtual narrow-band outputs. This elucidates the process by
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which color checker calibration and PCA-based regression yield the transformation matrix
employed for producing enhanced endoscopic images.

Table 1. Distribution of the 6490-image dataset among eight categories. For each category—dyed
lifted polyps, normal z-line, dyed resection margins, normal pylorus, normal cecum, polyps, and
ulcerative colitis—the distribution of images is as follows: training set (4535), validation set (1294),
and test set (661), with per-class totals varying from 439 to 995 images.

Class Name Train Validation Test Total
Dyed Lifted Polyps 637 182 93 912
Normal Z-line 582 166 85 833
Dyed Resection Margins 366 104 55 525
Normal Pylorus 569 162 83 814
Normal Cecum 682 195 99 976
Polyps 696 199 100 995
Ulcerative Colitis 307 87 45 439
Esophagitis 696 199 101 996

Total 4535 1294 661 6490
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Figure 1. The study pipeline involves cropping and augmenting raw endoscopic frames, which are

subsequently divided into training, validation, and test sets. Concurrently, a 24-patch color checker is
captured using both a spectrometer and the endoscope. Its spectral reflectance is transformed through
PCA and multiple regression into a camera-correction matrix, which converts white-light input into
SAVE virtual narrow-band images. Representative outputs of WLI and SAVE are displayed side by
side, and classification performance is evaluated using accuracy, precision, recall, and F; score.

2.2. Spectrum Aided Vision Enhancer

Any color that is visible to the human eye can be depicted using RGB values. Different
colors result from the numerous combinations of red, green, and blue components. Regard-
ing HSI, the colors are determined by these principles in addition to the light absorption
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and reflection intensity. By means of a reflectance chart, the SAVE technique converts colors
existing in an RGB image acquired by a digital camera into an HSI image. Consequently,
the Macbeth Color Checker, also called X-Rite Classic, helps to calibrate the system. X-Rite
Classic consists of six shades of grey, primary colors (red, green, and blue), secondary
colors (cyan, magenta, and yellow), and 24-color patches [38]. To properly view the colors
based on human vision, the images in the 24-color patch are transformed to the CIE 1931
XYZ color space that normalizes the RGB values to a narrower range and further linearizes
them to the CIE 1931 color spectrum. The digital camera’s photos could be contaminated
by some noise or error, so utilizing a variable matrix as stated in Equation (1) corrects the
error. Equation (2) computed the fresh X, Y, and Z values following corrections.

[C] = [XYZSpectrum] X PinV([VD (@)

[XYZCOrrect] = [C] X [V] (2)

The method converts spectrometer and camera colors into the XYZ color space.
Equations (3)—(6), respectively, allow the spectrometer’s convergence of reflectance spectra
into the XYZ color space to translate sRGB into the XYZ color spectrum on the camera side.

700nm _

X = k/400nm S(AR(A)F(A)dA 3)

Y=k [ S(RM)FA)A

k[ SRM) @

700nm

i~ A L S(RMEAAA 5)
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The dark current component of the imaging device is expressed by a set value. We
derive the variable matrix V by standardizing the V qjor and Vnon-Linear product together
with Vp,k. Standardizing is limited by up to the third order to prevent the situation of
overcorrection. Along with a 24-color patch reflectance spectrum, Ocean Optics QE65000
(Dunedin, FL, USA) transforms color into the XYZ color system. The spectrometer first
achieves XYZ values by first measuring the colors on a 24-color patch board. By means
of a precise mathematical relationship established by means of the regression analysis
procedure, color space conversion errors were minimized, so the transformation matrix
(M) as optimized by considering sensor-specific variations in Equation (7). To account
for sensor-specific deviations, a second regression analysis was performed, aligning the
estimated XYZ values with reference spectrometer data (see Supplement Table S1 for the
RMSEs of the XYZ values before and after calibration).

[M] = [Score] x pinv([Vcolor]) (7)

Reflectance spectrum data (Rgpectrum) then enables a development of a transforma-
tion matrix for colors. The correctness of the transformation between the reference XYZ
values (from spectrometer data) and the estimated XYZ values (from camera RGB data) is
measured by the score. Rgpectrum then undergoes PCA to identify six main components,
sometimes referred to as PCs, which effectively justified 99.64% of the data. This work
mostly depends on normal CIE 1931 transformation values for the transformation matrix
from sRGB to XYZ. Specifically in our imaging system, an experimental calibration using
a color checker under controlled lighting conditions helped us to confirm the correctness.
This calibration improved the transformation matrix by factoring spectral response varia-
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tions and camera sensor characteristics, therefore guaranteeing consistency in color space
conversion for the enhanced SAVE picture analysis. A transformation matrix was generated
and connected with the PCA components, so a very low RMSE value of 0.056 and a color
difference of 0.75 showed that great color similarity emerged. This approach effectively
turns RGB photos taken into HSI images. The average chromatic aberration decreases
from 10.76 to 0.63 after calibration, therefore improving color accuracy (see Supplement
Figure 525 for the color difference before and after camera calibration). The results re-
vealed that red displayed the greatest variation in longer wavelengths between 600 and
780 nm, therefore indicating a restriction of this research from the reflectance variations
between major colors, including red, green, blue, yellow, cyan, and magenta. Black is the
one with the lowest RMSE value of 0.015; the other 23 color blocks have RMSE values
less than 0.1; hence, the average RMSE is 0.056, demonstrating great color reproduction
accuracy. The mean color difference was discovered to be 0.75, showing the visual accuracy
of colour reproduction, when the RMSE values were visually and quantitatively expressed.
This method transforms RGB photos into NBIs suitable for use in Olympus cameras to
detect GID by use of HSI conversion. This guarantees that the images produced by this
technique and the NBI images taken with the Olympus endoscope barely differed (see
Supplement Figure 526 for the RMSEs between analog and measured spectra of each color
block). This color calibration is performed using the same 24-color checker. Following the
matching between the SAVE-generated and real NBI, three main elements influencing color
difference are mostly considered: the color matching function, the light function, and the
reflection spectrum. Most of the light is absorbed in the 450-540 nm range, so a notable
variation in the intensity of wavelengths was observed there. Along with the annealing
optimization mechanism provided by Equation (8), this light spectrum was calibrated using
Cauchy-Lorentz visiting distribution (see Supplementary Figure 527 for the LAB values of
the simulated and observed colors).

fx;x0,7) = ! . l i (8)

Ty {1 + (";‘0)2] 7T | (x = x0)* + 72

Classical simulated annealing (CSA) is simplified here into fast annealing (FSA).

The color difference was thus limited to a meager value of 5.36. Though the maximal
hemoglobin absorption level was observed at 415 nm and 540 nm, the Olympus endoscope
also detected traces of brown shade matching the wavelength of 650 nm in the genuine
NBI image. Thus, to improve GID detection, which accounted for minor post-processing
effects, other wavelengths, including 600 nm, 700 nm, and 780 nm, were also incorporated
into the calibration process. This improves the matching between the calibrated photos and
actual NBI images. While entropy averaged 0.37%, SSIM for the SAVE pictures increased to
94.27%. With a PSNR of 27.88 dB, the Olympus images validated the accuracy of the spectral
conversion method and its implementation in medical imaging. Figures 2 and 3 provides
a visual overview of the six target categories in our dataset, highlighting the distinctive
endoscopic features that drive accurate class differentiation in the WLI and SAVE imaging

modalities, respectively (see Supplement Section S2 for more detailed information about
color tables and SAVE).

2.3. Model Architecture
2.3.1. Inception-Net V3

Inception-Net V3 is a deep CNN that is widely used for image classification due
to its high accuracy and its stability [39]. It scales up the convolution network without
adding extra computational costs. This model extensively uses factorized and asymmetric
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(d)

convolutions in the inception modules, which replace larger convolutions with smaller
ones such as 3 x 3 or 1 x 3 followed by 1 x 3, which reduces the computational cost. It
includes dimension reduction through 1 x 1 before performing expensive operations, which
optimizes both the speed and size of the model. As it is built on the original inception
framework, it inherits features like multiple stacked Inception modules with nuanced
modifications. The network starts with convolutional layers followed by several Inception
modules arranged at various spatial resolutions. The final layers include average pooling,
dropout, and a dense soft max classifier for 1000 classes (ImageNet).

(b)

Figure 2. Representative endoscopic images for each of the six classes in the WLI modalities.
(a) Dyed-lifted polyps—A polyp lifted by submucosal injection and stained with indigo-carmine
dye. (b) Dyed-resection margins—The mucosal resection margin highlighted by dye after endoscopic
removal. (c) Esophagitis—Erythematous, edematous mucosa consistent with inflammatory change
in the esophagus. (d) Normal cecum—Unremarkable cecal mucosa with no pathological findings.
(e) Polys—An untreated polyp under standard white-light endoscopy. (f) Ulcerative-colitis—Inflamed
colonic mucosa with superficial ulceration and exudate.

2.3.2. MobileNetV2

MobileNetV2 is a cutting-edge, lightweight CNN that has been specifically engi-
neered to achieve high-performance image classification with minimal computational
overhead [40,41]. While still attaining competitive accuracy compared to larger models, it
is especially suited for deployment in settings with limited resources, such as mobile or
embedded medical devices. For GI image classification, where real-time processing and
efficiency are vital, especially in WCE, MobileNetV2 offers an ideal mix of speed and accu-
racy. It uses the ideology of inverted residual blocks and linear bottlenecks. MOBILETV2
uses inverted residuals, expanding the input features before applying the transforma-
tion and then projecting them back to a compact representation, unlike conventional
residual connections, in which identity mappings are applied across high-dimensional
feature spaces. Every block comprises a 1 x 1 pointwise convolution for expansion, a
3 x 3 depthwise convolution for spatial filtering, and a 1 x 1 linear projection for dimen-
sionality reduction [42].

2.3.3. MobileNetV3

MobileNetV3 is the most recent and sophisticated variant in the Mobile Net series,
specifically engineered to optimize the trade-offs between accuracy, latency, and model



Bioengineering 2025, 12, 953 9of17

size [43]. This makes it particularly well-suited for real-time, edge-based medical appli-
cations such as WCE. Having a strong foundation of MobileNetV1 and V2, MobileNetV3
presents a set of architectural improvements guided by neural architecture search (NAS)
and tuned for mobile and embedded environments. It blends modern architectural in-
novations, including squeeze and excitation (Se) modules, hard-swish activation, and
automated block selection using NAS with the inverted residual blocks and linear bot-
tlenecks of MobileNetV2. Every inverted residual block comprises a projection layer, a
lightweight 3 x 3 depthwise convolution, a with attention module, and an expansion layer,
crucial for the capture of subtle GID. MobileNetV3 also replaces the ReLU6 activation with
hard swish, a computationally efficient approximation of the swish activation function.
This improves the model’s non-linearity while maintaining speed, contributing to better
accuracy, particularly in fine-grained classification tasks.

(b)

(d) (€)

PRI O

ALK
-1

Figure 3. Representative endoscopic images for each of the six classes in the SAVE imaging modality
after the conversion algorithm was applied. (a) Dyed-lifted polyps—A polyp lifted by submucosal
injection and stained with indigo-carmine dye. (b) Dyed-resection margins—The mucosal resection
margin highlighted by dye after endoscopic removal. (c) Esophagitis—Erythematous, edematous
mucosa consistent with inflammatory change in the esophagus. (d) Normal cecum—Unremarkable
cecal mucosa with no pathological findings. (e) Polys—An untreated polyp under standard
white-light endoscopy. (f) Ulcerative-colitis—Inflamed colonic mucosa with superficial ulceration
and exudate.

2.3.4. AlexNet

The AlexNet architecture has been a groundbreaking CNN that has significantly
contributed to the development of deep learning for computer vision [44—46]. Its simplic-
ity, robustness, and effective training behavior on rather small datasets make it relevant
in medical imaging applications, even if it is rather shallow compared to contemporary
networks. Five convolutional layers and then three fully connected layers make up the
architecture. Particularly crucial in separating normal from pathological tissue patterns in
endoscopic images, the first convolutional layers learn low- to mid-level spatial features,
including edges, textures, and contours. Layers of max pooling interweave to progressively
shrink spatial dimensions while still preserving salient features. Applied across the net-
work, Relu (Rectified Linear Unit) activations add non-linearity, accelerating convergence
during training. AlexNet uses dropout regularization in the fully connected layers to
reduce overfitting.
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3. Results

This study is based on a series of experiments performed using four deep learning
architectures, Inception-Net V3, MobileNetv2, MobileNetv3, and AlexNet, in order to assess
the performance of the proposed SAVE algorithm and its impact on GI image classification.
Every model was tested and trained on the SAVE-enhanced dataset produced via spectral
reconstruction, as well as the original WLI dataset. Particularly in identifying minor or
visually complex GI conditions such polyps, ulcerative colitis and dyed-resection margins,
the main goal was to evaluate whether the spectral augmentation introduced by SAVE
could improve classification accuracy. Calculated both per class and over the entire dataset,
performance was assessed using conventional classification metrics, including accuracy,
precision, recall, and F1-score. Furthermore, image quality metrics, including SSIM, PSNR,
and entropy, were used to evaluate the fidelity of the SAVE generated images against their
WLI counterparts. The comparison study not only shows the diagnostic value added by
the SAVE transformation but also emphasizes how different model architectures react to
enhanced spectral input. The efficacy of SAVE in improving both machine interpretability
and diagnostic performance across several GID classes is shown in the following sections
by comprehensive quantitative and visual results (see Supplement Section S1 for more
detailed information about the results of models).

3.1. MobileNetV2

MobileNetV2 exhibited robust classification capabilities in both SAVE-enhanced
datasets and WLI datasets (see Supplement Figure S1 for the confusion matrix of Mo-
bileNetV2 for the WLI image dataset). Table 2 shows MobileNetv2's general classification
accuracy of almost 90% on both imaging modalities, demonstrating its resilience and adapt-
ability to many spectral inputs (see Supplement for Figure S2 for the loss and accuracy
history of MobileNetV2 for the WLI image dataset). Especially for classes, most importantly
polyps, where the Fl-score rose to 96% using SAVE, the SAVE dataset produced noticeably
better results than WLI (see Supplement Figure S3 for the classification Report of Mo-
bileNetV2 for the WLI image dataset). This development emphasizes how well the model
uses the improved spectral characteristics given by the SAVE technique, especially in cases
of lesions with faint contrast in normal RGB imaging (see Supplement Figure S4 for the
confusion matrix of MobileNetV2 for the SAVE image dataset). SAVE also outperformed
WLI in classifying ulcerative colitis and dyed-resection margins, both of which depend
mostly on fine-grained texture and vascular detail enhanced in the simulated hyperspectral
bands (see Supplement Figure S5 for the loss and accuracy history of MobileNetV2 for the
SAVE image dataset). The performance between WLI and SAVE remained similar, never-
theless, for anatomically stable or high-contrast structures, including the Z-line, pylorus,
and normal cecum (see Supplement Figure S6 for the Classification Report of MobileNetV2
for the SAVE image dataset).

Table 2. Classification Report of MobileNetV2.

Type Classes Precision Recall F1-Score Accuracy
Normal (Merged) 91% 93% 92%
Polyps 88% 89% 89%
Dyed-Lifted Polyps 91% 90% 91%
WLI 90%
Esophagitis 86% 82% 84%
Ulcerative Colitis 88% 93% 90%

Dyed-Resection Margins 94% 87% 91%
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Table 2. Cont.

Type Classes Precision Recall F1-Score Accuracy
Normal (Merged) 91% 92% 92%
Polyps 94% 97% 96%

SAVE Dyed-Lifted Polyps 91% 90% 91% 90%

Esophagitis 86% 82% 84%
Ulcerative Colitis 88% 93% 90%
Dyed-Resection Margins 94% 87% 91%

3.2. MobileNetV3

Maintaining an overall accuracy of 88%, MobileNetV3 showed regularly good clas-
sification performance on both the WLI and SAVE enhanced datasets (see Supplement
Figure S7 for the Confusion Matrix of MobileNetV3 for the WLI image dataset). With
notable strengths and some subtle variations between the two imaging modalities, the
model displayed balanced precision and recall across most classes as shown in Table 3
(see Supplement Figure S8 for the Loss and Accuracy History of MobileNetV3 for the
WLI image dataset). It recorded especially high performance in the dyed lifted polyp
and dyed resection margin classes under the WLI configuration, both with an Fl-score
of 92%, demonstrating the model’s capacity to faithfully capture textural and contrast-
based features in standard RGB inputs (see Supplement Figure S9 for the classification
report of MobileNetV3 for the WLI image dataset). With a recall of 93% and an F1-score
of 89%, polyp classification also performed admirably (see Supplement Figure S10 for
the confusion matrix of MobileNetV3 for the SAVE image dataset). While achieving F1-
scores of 80% in WLI and 79% in SAVE the results generally show that MobileNetV3 is
well suited for leveraging the spectral richness of SAVE while retaining high performance
on standard WLI even if esophagitis remained a rather difficult class to classify in both
setups (see Supplement Figure S11 for the loss and accuracy of MobileNetV3 for the SAVE
image dataset and Figure S12 for the classification report of MobileNetV3 for the SAVE
image dataset).

Table 3. Classification Report of MobileNetV3.

Type Classes Precision Recall F1-Score Accuracy

Normal 98% 100% 99%
Ulcer 98% 72% 83%

WLI 92%
Polyps 80% 97% 87%
Esophagitis 98% 100% 99%
Normal 97% 100% 98%
Ulcer 89% 96% 93%

SAVE 95%
Polyps 97% 85% 91%
Esophagitis 99% 100% 99%

3.3. Inception-Net V3

Inception-Net V3 was assessed on the SAVE-enhanced images, as well as the original
WLI dataset, to find out how spectral augmentation affected classification accuracy (see
Supplement Figure 513 for the confusion matrix of Inception-Net V3 for the WLI image
dataset). Table 4 shows that, using Inception-Net V3, WLI images routinely produced
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better overall performance with an accuracy of almost 89% (see Supplement Figure 514
for the loss and accuracy of Inception-Net V3 for the WLI image dataset). By contrast,
using the SAVE dataset produced an accuracy of 86% (see Supplement Figure S15 for
the classification report of Inception-Net V3 for the WLI image dataset). But when the
performance of each class was looked at separately, SAVE clearly performed better in some
areas (see Supplement Figure 516 for the confusion matrix of Inception-Net V3 for the SAVE
image dataset). In particular, SAVE-enhanced images helped to better classify ulcerative
colitis and polyps, implying that the extra spectral detail added by the SAVE technique
enhanced the model’s capacity to identify features, sometimes subtle under standard WLI
(see Supplement Figure S17 for the loss and accuracy history of Inception-Net V3 for the
SAVE image dataset). On the other hand, WLI-based classification outperformed SAVE
for structurally significant classes, including esophagitis, dyed-lifted polyps, and Z-line,
most likely because Inception-Net V3’s deeper architecture favored high-contrast spatial
features over spectral variations (see Supplement Figure S18 for the classification report
of Inception-Net V3 for the SAVE image dataset). These findings show that although
Inception-Net V3 is quite good with conventional imaging, spectral augmentation has more
benefits for inflammation-related or texture-dependent conditions.

Table 4. Classification matrix of Inception-Net V3.

Type Classes Precision Recall F1-Score Accuracy

Dyed-Lifted Polyps 90% 77% 83%
Dyed-Resection Margins 77% 85% 81%

WLI Esophagitis 77% 78% 78% 9%
Normal (Merged) 91% 92% 92%
Polyps 81% 87% 84%
Ulcerative Colitis 85% 73% 79%
Dyed-Lifted Polyps 79% 81% 80%
Dyed-Resection Margins 76% 64% 69%

SAVE Esophagitis 78% 71% 75% 86%
Normal (Merged) 90% 89% 89%
Polyps 84% 84% 84%
Ulcerative Colitis 83% 76% 79%

3.4. AlexNet

AlexNet demonstrated a significant enhancement in performance when applied to
SAVE enhanced images in comparison to standard WLI (see Supplement Figure 519 for
the confusion matrix of AlexNet for the WLI image dataset). Table 5 shows that general
accuracy rose from 81% with WLI to 84% with SAVE, so stressing the value of spectral
augmentation even with a rather small architecture (see Supplement Figure S20 for the loss
and accuracy history of AlexNet for the WLI image dataset). It performed reasonably in the
normal (merged) class (F1-score: 88%) and somewhat less on polyps and esophagitis under
WLI (see Supplement S1 Figure S21 for the classification report of AlexNet for the WLI
image dataset). With Fl-scores of 73% and 71%, respectively, it battled more difficult classes,
including dyed-lifted polyps and dyed-resection margins (see Supplement Figure S22 for
the confusion matrix of AlexNet for the SAVE image dataset). The model showed significant
improvement in almost all aspects using SAVE (see Supplement Figure 523 for the loss
and accuracy of AlexNet for the SAVE image dataset). Reaching F1-scores of 90%, 91%,
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and 88%, respectively, polyp, dyed-lifted polyp, and dyed-resection margin classification
clearly improved. Ulcerative colitis also sprang from 75% to 85% (see Supplement Figure
524 for the classification report of AlexNet for the SAVE image dataset).

Table 5. Classification report of AlexNet.

Type Classes Precision Recall F1-Score Accuracy

Normal (Merged) 86% 90% 88%
Polyps 78% 80% 79%

WLL Dyed-Lifted Polyps 79% 69% 73% 1%
Esophagitis 77% 75% 76%
Ulcerative Colitis 79% 71% 75%
Dyed-Resection Margins 70% 73% 71%
Normal (Merged) 89% 90% 89%
Polyps 88% 92% 90%

SAVE Dyed-Lifted Polyps 91% 91% 91% 84%
Esophagitis 80% 78% 79%
Ulcerative Colitis 88% 82% 85%
Dyed-Resection Margins 90% 85% 88%

4. Discussion

This study illustrates the substantial influence of spectral image enhancement on
the classification accuracy of GID. SAVE tackles important constraints of conventional
endoscopic imaging, i.e., its limited spectral resolution and poor contrast in small mucosal
or vascular abnormalities, by converting ordinary WLI into simulated HIS- and NBI-like
outputs. When compared to their WLI equivalents, across all four deep learning models
assessed, Inception-Net V3, MobileNetv2, MobileNetv3, and AlexNet SAVE, enhanced
photos either matched or improved classification performance. Crucially, these changes
were especially noticeable in demanding disease categories, including ulcerative colitis
dyed-resection margins and dyed-lifted polyps. Usually lacking contrast and modest
inflammatory signals in traditional imaging, these classes are challenging to find with
conventional RGB-based feature extraction. Particularly about tissue texture and vascular
variation, the spectral richness given by SAVE helped the models to more precisely learn
class-distinctive patterns. With a remarkable 96% F1-score in polyp identification utilizing
SAVE and high Fl-scores in both the WLI and SAVE circumstances, MobileNetV2 was
among the best-performing architectures. When backed by rich input data, this emphasizes
how well the model balances architectural simplicity with great classification strength.
Likewise, Mobile NetV3 made good and consistent performance across both imaging
modalities, especially in ulcerative colitis and dyed-resection margins, where it made
use of improved spatial and channel-wise characteristics supplied by SAVE. Whereas
Inception-Net V3, a deeper and more sophisticated network, performed well on WLI
with an overall accuracy of 88%, the same model showed no appreciable performance
increase with SAVE overall. Using SAVE, however, improved classification in inflammatory
diseases like esophagitis and ulcerative colitis on a per-class basis, suggesting that the
method offered significant spectrum clues for classes when spatial structure alone may be
inadequate. This implies that enhanced spectral input helps even high-capacity networks,
especially in cases of discriminating against subtle lesions that are difficult to find under
traditional imaging. Being the shallowest architecture, AlexNet showed the most advantage
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from SAVE. Its accuracy of 81% on WLI was somewhat poor, but with SAVE, it rose to
84%. Emphasizing SAVE’s function in increasing feature richness for simpler models,
classes including dyed-lifted polyps and dyed-resection margins witnessed F1-score gains
of up to 18%. In clinical settings involving edge or portable devices, where lightweight
models like AlexNet are more practical because of their reduced computing demand, this is
especially pertinent.

Clinically speaking, these outcomes are quite exciting. Usually limited to proprietary
hardware, SAVE allows the modeling of enhanced imaging modalities through a software-
based transformation of RGB inputs. This has important consequences for scenarios like
WCE, where sophisticated imaging technologies like NBI or hyperspectral endoscopy are
lacking. Clinicians can increase diagnosis sensitivity by including SAVE into the image
capture or post-processing pipeline without changing current gear or sacrificing workflow
effectiveness. Moreover, the use of SAVE in machine learning pipelines not only raises
model accuracy but also guarantees dependability in GID classification with overlapping
information. Conditions like ulcerative colitis and esophagitis, which could seem visually
similar in WLI, become more distinctive with SAVE-enhanced inputs, for instance. This
helps to improve clinical judgement and lower false positives. The general efficacy of SAVE
in enhancing classification performance across architectures and GI classes indicates that
spectral improvement should be given great thought for incorporation into endoscopic
image analysis systems. SAVE offers a useful and significant development in the field of
computer-aided GI diagnosis, given its interoperability with conventional RGB imaging
systems, low processing overhead, and proven influence on diagnostic accuracy.

5. Conclusions

This study introduces SAVE as a clinically viable and robust solution for enhancing
GI image analysis through simulated HSI and NBI equivalent. SAVE greatly improves
visual contrast and feature depth by converting standard WLI into spectrally enriched
representations, especially in cases when subtle inflammatory or structural changes are
challenging to find. For important GI conditions, including polyps, ulcerative colitis, and
dyed-resection margins, evaluations across four deep learning architectures, Inception-Net
V3, MobileNetv2, MobileNetv3, and AlexNet, showcased consistent improvements in
classification performance. Lightweight models like AlexNet, which most benefited from
SAVE’s spectral augmentation, showed the clearest performance improvements. SAVE-
enhanced datasets repeatedly outperformed WLI, improving Fl-scores in challenging
to classify categories and closing the performance difference between high- and low-
capacity models. These results strongly support SAVE’s inclusion into practical diagnostic
procedures, particularly in settings where hardware restrictions limit the use of built-in
enhancement technologies such as NBI or HSI endoscopy. SAVE has the potential to increase
present diagnostic capabilities without requiring extra hardware given its compatibility
with current RGB imaging systems, including WCE. Adoption of it in clinical practice could
result in early, more accurate diagnosis of GID, improving patient outcomes.
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