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Abstract

Background: The cerebral compliance (or compensatory reserve) index, RAP, is a critical
yet underutilized physiological marker in the management of moderate-to-severe trau-
matic brain injury (TBI). While RAP offers promise as a continuous bedside metric, its
broader cerebral physiological context remains partly understood. This study aims to
characterize the burden of impaired RAP in relation to other key components of cerebral
physiology. Methods: Archived data from 379 moderate-to-severe TBI patients were ana-
lyzed using descriptive and threshold-based methods across three RAP states (impaired,
intact/transitional, and exhausted). Agglomerative hierarchical clustering, principal com-
ponent analysis, and kernel-based clustering were applied to explore multivariate covari-
ance structures. Then, high-frequency temporal analyses, including vector autoregressive
integrated moving average impulse response functions (VARIMA IRF), cross-correlation,
and Granger causality, were performed to assess dynamic coupling between RAP and
other physiological signals. Results: Impaired and exhausted RAP states were associated
with elevated intracranial pressure (p = 0.021). Regarding AMP, impaired RAP was as-
sociated with elevated levels, while exhausted RAP was associated with reduced pulse
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amplitude (p = 3.94 x 10~Y). These two RAP states were also associated with compromised
autoregulation and diminished perfusion. Clustering analyses consistently grouped RAP
with its constituent signals (ICP and AMP), followed by brain oxygenation parameters
(brain tissue oxygenation (PbtO,) and regional cerebral oxygen saturation (rSOy)). Cerebral
autoregulation (CA) indices clustered more closely with RAP under impaired autoreg-
ulatory states. Temporal analyses revealed that RAP exhibited comparatively stronger
responses to ICP and arterial blood pressure (ABP) at 1-min resolution. Moreover, when
comparing ICP-derived and near-infrared spectroscopy (NIRS)-derived CA indices, they
clustered more closely to RAP, and RAP demonstrated greater sensitivity to changes in
these ICP-derived CA indices in high-frequency temporal analyses. These trends remained
consistent at lower temporal resolutions as well. Conclusion: RAP relationships with other
parameters remain consistent and differ meaningfully across compliance states. Integrating
RAP into patient trajectory modelling and developing predictive frameworks based on
these findings across different RAP states can map the evolution of cerebral physiology over
time. This approach may improve prognostication and guide individualized interventions
in TBI management. Therefore, these findings support RAP’s potential as a valuable metric
for bedside monitoring and its prospective role in guiding patient trajectory modeling and
interventional studies in TBL

Keywords: traumatic brain injury; cerebral compliance; RAP; cerebral physiology;
multimodal monitoring

1. Introduction

Traumatic brain injury (TBI) remains a leading cause of mortality and long-term
disability worldwide, particularly among young adults [1,2]. Within the neurocritical
care setting, continuous bedside monitoring of cerebral physiology is a cornerstone of
patient management, offering vital insights into intracranial dynamics. Current clinical
management strategies largely rely on guideline-driven interventions, in which intracranial
pressure (ICP) is frequently used as a surrogate for assessing intracranial compliance [2-5].
However, the methodologies associated with this approach are susceptible to inaccuracies,
as they often depend on subjective visual assessment of pulse waveform morphology
at the bedside—an approach that introduces variability due to inter- and intra-observer
inconsistencies. Therefore, the accurate and objective evaluation of continuous compliance
metrics is of paramount importance.

One such physiological marker, the cerebral compliance or compensatory reserve
index (RAP), has emerged as a promising indicator of cerebral compensatory reserve
(and therefore compliance). RAP is derived as the moving Pearson correlation coefficient
between ICP and its fundamental pulse amplitude (AMP) [6-10]. Here, the fundamental
component refers to the first dominant frequency peak of ICP pulse in the frequency
domain. The RAP index ranges from —1 to +1 [6,7,11]. For RAP, as ICP rises, an intact
cerebrovascular reactivity mechanism prevents significant changes in AMP; therefore, RAP
remains close to 0 [12]. However, when ICP continues to increase and cerebrovascular
reactivity becomes impaired, AMP also begins to rise (correlating to ICP) leading to higher
positive RAP values, which indicate compromised compliance [12]. If ICP keeps increasing
and exceeds a critical threshold, cerebral vessels reach a maximum vasodilation state and
cerebrovascular function breaks down, leading to reduced transmission of pulse pressure,
i.e., reduced AMP. This leads to lower RAP values (less correlated AMP and ICP) and is
characteristic of exhausted cerebral compliance [11-14].
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Recent findings in the hydrocephalus literature have demonstrated the utility of
the RAP index in predicting shunt failure, where increasingly positive RAP values have
been associated with deteriorating cerebral compliance [6-9]. Additionally, RAP can be
continuously derived at the bedside in patients undergoing invasive ICP monitoring,
making it particularly suitable for integration into TBI management protocols.

Despite its potential, the clinical adoption of RAP in TBI cases has been limited, largely
due to an incomplete understanding of its characteristics [12]. Previous investigations
have focused on characterizing the temporal dynamics of RAP and its constituent signals,
ICP and AMP, as well as addressing artifact management strategies [15]. However, there
remains a notable gap in the literature regarding the broader cerebral physiologic con-
text and the injury burden of impaired RAP in relation to other continuous multi-modal
monitoring (MMM) parameters [15]. A recent systematic review highlighted that various
MMM physiological indices consistently exhibited distinct patterns across different states
of compliance (i.e., intact, impaired, exhausted) in TBI patients, emphasizing the potential
for a more granular analysis of how RAP aligns with these physiologic parameters [11].
However, none of the prior studies had RAP as their primary focus. Furthermore, some of
the studies had a small dataset or excluded too many subjects and, therefore, their results
were not significant enough to apply the findings clinically. Additionally, a few of the
studies showed inconsistent findings that contrasted with most of the existing literature.

Therefore, this study aims to characterize the insult burden of impaired cerebral com-
pensatory reserve in moderate/severe TBI patients in relation to other critical aspects of
cerebral physiology by A. describing general associations between RAP and other physi-
ologic signals, B. exploring multivariate covariance patterns using clustering techniques,
and C. assessing high-resolution RAP responses to dynamic changes in related variables.
Impaired RAP (i.e., positive RAP values) is expected to be associated with increased ICP
and AMP, with cerebral autoregulation (CA) measurements expected to be more positive in
such states. Additionally, worsening RAP values (i.e., more positive values) are anticipated
to correspond with decreased cerebral perfusion pressure (CPP), mean arterial pressure
(MAP), regional cerebral oxygen saturation (rSO,), and brain tissue oxygenation (PbtO;).
While these relationships are likely to be more apparent in higher-resolution data, similar
trends should still be evident in lower-resolution datasets. This is because, even when
high-frequency fluctuations are averaged out in lower-resolution data, the underlying
patterns, such as shifts in physiologies associated with impaired compliance, remain pre-
served. The broader objective is to understand the overall burden of impaired RAP in the
context of cerebral physiology, thereby laying the groundwork for its future use in bedside
monitoring, patient trajectory modeling, and interventional clinical studies.

2. Materials and Methods
2.1. Study Design

This retrospective investigation utilized archived human subject data from the Cana-
dian High-Resolution Traumatic Brain Injury (CAHR-TBI) Research Collaborative [16]. At
each participating center, high-frequency physiological data were prospectively collected
from patients aged 18 years and older who were admitted to the intensive care unit (ICU)
with moderate-to-severe TBI. These data were subsequently accessed retrospectively and
aggregated to form the CAHR-TBI dataset [16]. For the data collection, each patient was
given a anonymized number by the collecting institution (with this patient information
being stored only locally in double secured format, as per institutional requirements). The
anonymized patient data are then sent to a single site (University of Manitoba) for storage
and harmonization. For more information, we refer the interested reader to the following
manuscript [16]. The periods of data collection varied by site: Foothills Medical Centre, Uni-
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versity of Calgary (2011-2021); Health Sciences Centre Winnipeg (Shared Health Manitoba),
University of Manitoba (2019-2023); Maastricht University Medical Center, University of
Maastricht (2017-2022); and Vancouver General Hospital, University of British Columbia
(2014-2019) [16].

As with the previous studies from our lab group [17,18], patients were included in the
database if they met all of the following criteria: they were 18 years of age or older, had a
diagnosis of moderate-to-severe TBI with a Glasgow Coma Scale (GCS) score of less than
13, were admitted to the ICU of a participating hospital, underwent both invasive ICP and
arterial blood pressure (ABP) monitoring, and had data collection initiated within 24 h of
clinical presentation [17,18].

In addition to high-resolution physiological data, the dataset included demographic
details (such as age, sex), admission-related characteristics (including admission GCS score
and pupillary reactivity), and imaging findings (e.g., Marshall computerized tomography
(CT) classification). All data were collected in a fully de-identified manner.

2.2. Ethics

Ethical approval for all aspects of data collection and anonymized data sharing
across participating centers was obtained from the respective institutional research ethics
boards: University of Manitoba Health Research Ethics Board (HREB; protocols H2017:181
(24 May 2017), H2017:188 (24 May 2017), H2020:118 (9 March 2020), H2024:266 (5 September
2024)), University of Calgary Conjoint Health Research Ethics Board (CHREB; protocol
REB20-0482 (20 April 2020)), University of British Columbia Clinical Research Ethics Board
(CREB; protocol H20-03759 (11 December 2020)), and the Medical Ethics Committee of
Maastricht University (protocol 16-4-243 (TA 31 August 2022)). Given that all data were
fully anonymized and retrospectively accessed, approval was granted to conduct the study
under a waived consent model.

2.3. Physiologic Data Acquisition

Consistent with our prior research [15,17,18], high-frequency full-waveform physi-
ological data were recorded from ICU bedside monitors using the Intensive Care Moni-
toring “Plus” (ICM+) software (version 8.5, Cambridge Enterprise Ltd., Cambridge, UK;
http:/ /icmplus.neurosurg.cam.ac.uk, accessed on 5 May 2024), with analog-to-digital
converters (Data Translations, DT9804 or DT9826) employed as needed.

For example, in the Manitoba ICUs, ICP and ABP signals were sampled at 100 Hz
from analog outputs. ICP was monitored using an intraparenchymal pressure sensor probe
(Codman ICP MicroSensor, Codman & Shurtleff Inc., Raynham, MA, USA; NEUROVENT-
TEMP, RAUMEDIC, Helmbrechts, Germany; or Camino ICP Monitor, Natus, Middleton,
WI, USA) inserted into the frontal lobe, or via an external ventricular drain (EVD; Medtronic,
Minneapolis, MN, USA) placed in the lateral ventricle. ABP was measured through a
pressure transducer continuously (Edwards, Irvine, CA, USA; Baxter Healthcare Corp.
CardioVascular Group, Irvine, CA, USA), which was zeroed at the level of the tragus using
either a radial or femoral arterial line [19,20]. Where available, PbtO, was measured using
the Licox Brain Tissue Oxygen Monitoring System (Integra LifeSciences Corp., Plainsboro,
NJ, USA). The initiation of PbtO, monitoring was determined by the treating clinical team
and, as such, was not uniformly applied across all patients or centers [17,18].

rSO; was assessed through near-infrared spectroscopy (NIRS) oximetry, targeting the
left (rSO,_L) and right (rSO,_R) frontal lobes using the INVOS 5100C or 7100 systems
(Covidien-Medtronic, Minneapolis, MN, USA) [17,18]. This measurement was performed
in a subset of patients where viable rSO; signal channels were available. Viable channels
were defined as those unaffected by underlying lesions, hematomas, or scalp abnormalities.
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Channels were validated against lesion annotations to confirm that only NIRS signal
streams from unaffected regions were included in the analysis [17,18].
The median data monitoring duration was 5811.23 s (IQR: 2872.90 s—9951.18 s)

2.4. Signal Processing

Post-acquisition signal processing was performed using ICM+ software, follow-
ing previously established and published methodologies. Initial steps involved calcu-
lating 10-s moving averages of ICP and ABP, updated every 10 s, to minimize data
redundancy [15,17,18]. Expert reviewers in neurophysiology and cerebral physiologic
signal analysis then manually identified and removed artifacts from non-clean ICP
and ABP data. From the cleaned ABP signal, MAP was derived using 10 s moving
averages updated every 10 s. Subsequently, CPP was calculated using the formula
CPP = MAP — ICP [15,17,18]. AMP was obtained through the Fourier analysis of the
fundamental harmonic of the ICP waveform [12,21]. RAP and CA indices were then calcu-
lated as moving Pearson correlation coefficients over 30 consecutive 10-s mean windows
(i.e., a 5-min analysis window), updated every minute [22-24]. Specifically, RAP was
derived from ICP and AMDP, the pressure reactivity index (PRx) from ICP and MAP, the
pulse amplitude index (PAx) from AMP and MAP, RAC from AMP and CPP, and the
cerebral oxygenation indices (COx and COx_a) from rSO, and CPP, and rSO, and ABP,
respectively [17,18,21,22,25].

The primary derived data was at 1-min intervals. To enable a comprehensive analysis
and assess the effects of reduced temporal resolution, the dataset was subsequently down
sampled using non-overlapping time windows. This was accomplished with the resample
function from the Pandas library [26]. The original data, calculated at a 1-min resolution,
was down-sampled to 5-min, 10-min, 30-min, and 1-h intervals.

2.5. Data Cleaning

Several missing data points were present across the dataset. These were excluded
from the analysis [15,18,25]. Although artifacts were removed by experts prior to the
calculation of derived parameters, some unrealistic values persisted. To ensure data
quality, further filtering was applied for ICP- and ABP-derived parameters. Data points
were excluded if any of the following criteria were met: ICP > 100 mmHg or <0 mmHg,
MAP > 200 mmHg or <0 mmHg, or AMP > 30 mmHg [15,18,25]. For NIRS-derived
parameters, visual inspection of scatterplots revealed a cluster of data points at rSO, values
below 20, particularly at or near 0, indicating likely recording errors. As a result, a threshold
of 20 was established for rSO,, and all data points below this value were excluded from
the NIRS-derived parameters-related analyses. The entire analysis was conducted using
custom Python (version 3.7.16) scripts.

2.6. Analysis of General Descriptive Relationships

Based on the results of our previous systematic review, patients were categorized into
three groups based on RAP threshold ranges: [—1, 0], [0.4, 1], (1, 0.4) [11]. These threshold
ranges were established based on cerebral physiological states (i.e., exhausted, intact, and
impaired states of cerebral compliance) and transitions inferred from RAP values [11,15].
Afterwards, general descriptive relationships between RAP and other physiology were
explored across the three RAP ranges. Initially, various plots were created for visualization,
including scatterplots with piecewise linear regression and boxplots across the entire
population. Subsequently, the medians of the cerebral physiological parameters were
assessed to explore how RAP values affect other physiological measures. Given the non-
parametric nature of the data and the presence of more than two groups, the Kruskal-Wallis
test was selected to perform a formal comparison among the groups [17,27]. Finally, the
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percentage time spent in different ranges of other parameters within different RAP states
was observed. For formal comparisons and percentage time calculations, the median value
across each patient’s entire recording was used.

Next, a reverse analysis was carried out using the thresholds of other physiological
parameters, examining how RAP changed in response. Similarly, these changes were
analyzed using the median measurements and statistical comparisons. Furthermore,
the percentage time RAP spent within each of the RAP states at these threshold ranges
was examined. The thresholds for various parameters were as follows: ICP (20 mmHg,
22 mmHg) [2,23], CPP (60 mmHg, 70 mmHg) [2], rSO, (60, 70, 80, 90) [28,29], PbtO,
(15 mmHg, 20 mmHg) [20,30,31], PRx (0, +0.25, +0.35), PAx (0, +0.25), RAC (0) [23,32],
COx/COx-a (0, +0.20) [29]. “The thresholds used for physiological parameters, including
ICP, CPP, CA indices (PRx, PAx, RAC, COx/COx-a), rSO,, and PbtO,, were based on
prior published studies and established clinical guidelines.” These values are not arbitrary
but represent empirically validated cutoffs linked to clinically relevant outcomes, such
as impaired cerebrovascular reactivity, secondary injury progression, and mortality in
TBI patients.

Mann-Whitney U-test was applied for pairwise comparisons between groups, due to
the non-parametric nature of the data [15,17,18].

2.7. Application of Algorithms for Parameter Clustering

To quantify covariance patterns in multivariate space for the previously discussed
physiological parameters, clustering methods, namely agglomerative hierarchical cluster-
ing (AHC), principal component analysis (PCA), and K-means clustering (KMCA), were
utilized [25,29,33].

AHC is an ML algorithm used for hierarchical clustering of data. The method works
by initially treating each data point as an individual cluster, and then iteratively merging
the closest clusters based on a defined distance metric. This process continues until all
data points are clustered into a single group [34,35]. In this study, the Euclidean distance
metric was employed, and dendrograms were generated for visualization of the output. By
examining the clustering and merging distances in the dendrogram, it became possible to
identify patterns of similar behavior among parameters across various instances, as well
as to uncover inherent subgroups within the data that displayed comparable dynamics.
This analysis was conducted using the hierarchy submodule from the SciPy library, with
the adequacy of fit of the resulting dendrogram quantified using cophenetic correlation
coefficients [36].

Next, PCA was employed, which is a statistical technique that reduces the dimension-
ality of multivariate data while retaining as much variance as possible. PCA transforms
the original set of variables into a new set of orthogonal components, known as principal
components, ranked by the amount of variance they capture [37,38]. In this study, a PCA
biplot was constructed using the first two principal components (PC1 and PC2), with
the directional vectors of the physiological parameters projected onto this reduced space.
Parameters that exhibited alignment in a similar direction within the biplot were inter-
preted as being positively correlated, indicating that they share similar variance structures
and contribute in a comparable manner to the principal components. Furthermore, to
assess the contribution and effectiveness of the principal components, scree plots of the
explained variance ratio and cumulative explained variance were analyzed. This analysis
was performed using the PCA class from the scikit-learn library [39].

Lastly, KMCA is a widely used semi-supervised learning algorithm that partitions data
into k distinct clusters by iteratively assigning points to the nearest centroid and updating
centroids based on a similarity measure [40,41]. In this analysis, the Euclidean distance was
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used as the similarity measure, and the elbow method was applied to identify the optimal
number of clusters (k). This technique involved plotting the within-cluster sum of squared
errors (WCSS) against varying values of k. As k increased, WCSS typically decreased;
however, after a certain point, the rate of decrease sharply declined. The “elbow” point on
the plot, where the curve starts to level off, indicated the optimal number of clusters. The
KMeans class from the scikit-learn library was used to carry out this analysis [42].

These three methods were chosen as they allow for both dimensionality reduction and
identification of subgroups within the data, thereby enabling a more robust characterization
of shared variance structures and covariance patterns across parameters.

To execute these algorithms, all parameters require complete data, thus necessitating
the exclusion of patients with any missing values. However, as seen in Section 3.1, out of
379 patients, only 133 and 116 patients had available data for both NIRS-derived parameters
(rSO,_L, rSO,_R, COx_L, COx_R, COx-a_L, COx-a_R) and PbtO,, respectively. Therefore,
using all parameters would have resulted in insufficient data, reducing analysis efficiency.
To overcome this, the population was divided into three groups: (a) ICP-ABP-derived
parameters (ICP, AMP, MAP, CPP, PRx, PAx, RAC), (b) ICP-ABP-derived parameters
with NIRS-derived parameters, and (c) ICP-ABP-derived parameters with PbtO,, and
separate analyses were conducted on these groups to ensure a more comprehensive and
effective approach.

The analysis was initially conducted on the original data (i.e., 1-min). Later, the entire
analysis was repeated on lower-resolution datasets. Afterwards, the whole dataset was
divided into three RAP states (intact, impaired, severely impaired), as defined in our
previous systematic review [11], and the analysis was conducted on these sub-groups
across all temporal resolutions.

2.8. High-Frequency Temporal Analysis of RAP vs. MMM Relationships

In regard to our research objective, high-frequency temporal analysis of RAP vs.
MMM relationships would enable us to capture the dynamic, time-resolved interac-
tions between RAP and other parameters. This section of the analysis includes vec-
tor autoregressive integrated moving average (VARIMA), impulse response function
(IRF) plots with corresponding quantitative evaluations, Granger causality testing, and
cross-correlation analysis.

The analysis was conducted on the 1-min, 5-min, and 10-min resolution data. Lower-
resolution data were excluded as these methods are unlikely to capture any meaningful
dynamics at such coarse temporal resolutions. This is because at lower resolutions, short-
term variability is smoothed, resulting in too few data points for robust analysis, thus
reducing the sensitivity of these methods.

The analysis was also further extended to the sub-group level. For Granger causality
testing and cross-correlation analysis, each patient’s recording was divided into three
segments based on the previously defined RAP thresholds, with each segment analyzed
separately. However, this segmentation approach was not feasible for IRF analysis involving
VARIMA models, as the RAP < 0 and 0 < RAP < 0.4 segments often lacked sufficient data
to reliably fit the optimal VARIMA models for many patients. To address this, the median
RAP value of the entire recording period was calculated for each patient, and patients were
then grouped into the three RAP states based on these median values.

2.8.1. Application of VARIMA IRF

VARIMA is a multivariate time series modeling approach that extends the autoregres-
sive integrated moving average (ARIMA) framework to capture temporal dependencies
and interactions across multiple variables [29,33,43]. It accounts for both autoregressive
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(AR) and moving average (MA) components, along with differencing (I) to ensure station-
arity. Impulse Response Function (IRF) analysis was then applied to the fitted VARIMA
models [29,33] to quantify the effect of a one-time impulse in a given physiological vari-
able (e.g., ICP, MAP) on RAP over subsequent time points, allowing for the temporal
propagation of influence to be assessed.

To determine the optimal AR order (i.e., p-order) and MA order (i.e., g-order) of
the VARIMA model, the optimal ARIMA orders were first determined. As ARIMA
modeling requires stationarity, and prior analyses confirmed that the dataset was
non-stationary [15,17,18], first-order differencing was applied to achieve stationarity. Op-
timal ARIMA models were then selected for each patient using the Akaike information
criterion (AIC), which was preferred over the Bayesian information criterion (BIC) and log-
likelihood (LL) due to its balanced trade-off between model fit and complexity [15,17,33].
Since the objective was to assess the influence of other physiological parameters on RAP,
pairwise VARIMA models were computed for each RAP-X combination, where X denotes
a secondary physiological variable. The VARIMA p-order for each RAP-X pair was de-
termined by multiplying the respective ARIMA p-orders of RAP and X [25,33,44]. The
VARIMA g-order was then computed by summing the individual ARIMA g-orders [33,44],
following approaches established in previous work. All VARIMA models were fitted
individually for each patient.

While determining the optimal orders for the VARIMA model, p- and g-orders were
capped at 10. This constraint was applied to prevent overfitting and to preserve the practical
applicability of the model for real-time monitoring. Moreover, prior studies have demon-
strated that limiting the model orders to 10 did not change the results significantly [25].

Afterwards, the IRF coefficients were derived from the fitted VARIMA model for each
RAP-X pair at the individual patient level. These coefficients were then used to generate
IRF plots, offering a graphical depiction of the effect of a one-unit orthogonal impulse of
first-order differenced X (AX) on first-order differenced RAP (ARAP) over time. To estimate
the population-level confidence intervals, a bootstrapping approach was employed [33,45].
This involved repeatedly sampling subsets of the data and recalculating the IRF, with
a standard percentile-based bootstrap interval generated from a number of iterations
to quantify variability and uncertainty in the response estimates [33,45]. In this study,
100 iterations were used.

Given the high variability across IRF plots and the limitations of relying solely on
visual interpretation in large datasets, a simplified classification approach was adopted to
distinguish between “more responsive” and “less responsive” models [33]. This involved
normalizing each impulse response to its original variable. A response was considered
“more responsive” if its absolute value exceeded 0.001 (i.e., a >0.1% change in the normal-
ized scale) within steps 11 to 15, consistent with thresholds used in prior studies [25,33].
The observation in these steps was effective since immediate responses might reflect noise
or autoregulatory transients, while sustained changes after a short delay are more likely
to reflect true, biologically meaningful interactions. Additionally, observing steps after
15 could reduce the practical utility of the analysis for real-time monitoring. To be noted,
each step represents one unit of the model’s temporal resolution.

The VARMAX class from the statsmodels library was employed to fit the VARIMA
optimal model [46]. While the VARMAX class facilitates the implementation of VARIMA
models, it does not include a specific argument for the differencing component (i.e., d-
order) [46]. To address this, first-order differenced data was used as input, effectively
setting the differencing order (d-order) to 1 during the VARMAX operation. In this manner,
the VARIMA model was successfully fitted. The IRF analysis was carried out using the
IRAnalysis class from the statsmodels library [47].
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2.8.2. Application of Granger Causality Testing

To assess potential directional relationships between RAP and other physiological
parameters, Granger causality testing was employed. This method determines whether
past values of one time series contain statistically significant information that helps predict
the future values of another series, beyond the information contained in its own past
values [48,49]. The test was conducted at the patient level for each AX—ARAP pair, where
associated p-values and F-statistics were calculated and compared against those from the
corresponding ARAP—AX direction. Initially, p-values were assessed for each ARAP-AX
pair. If only one direction yielded a statistically significant p-value (p < 0.05), that direction
was considered to represent Granger causality for the pair. In cases where both directions
were significant, the direction with the higher F-statistic was selected as the causal direction.
If neither p-value was significant, the observation was classified as having no Granger
causal directionality. First-order differenced data were used as inputs to ensure stationarity,
a prerequisite for performing Granger causality testing [25,33].

This analysis was also applied across the discussed resolutions and sub-groups. The
grangercausalitytests class from the statsmodels library was used to conduct the test [50].

2.8.3. Application of Cross-Correlation

Cross-correlation is a statistical method used to measure the similarity or degree of
association between two time series as a function of the lag of one relative to the other. In
physiological data analysis, it helps to identify whether changes in one signal lead, lag, or
coincide with changes in another [51,52].

To perform this analysis, each variable was first mean-centred to ensure a zero mean,
preventing biased cross-correlation results that could otherwise occur due to offset signals.
The resulting cross-correlation values were then normalized by dividing by the product
of the standard deviations of the mean-centred signals and the signal length. This stan-
dardization confined the correlation values within the range of —1 to 1, comparable to
Pearson’s correlation, and eliminated the influence of differing signal scales between RAP
and the corresponding variable. Finally, the entire analysis was performed on first-order
differenced data to prevent misleading correlation results and to more accurately capture
the true lagged relationships between the variables. The lag position of the peak correlation
provides insight into the temporal relationship between the signals: a peak near lag 0
suggests synchronous changes, a positive lag indicates that the other variable precedes
changes in RAP, and a negative lag indicates RAP precedes changes in the other signal.
Additionally, the magnitude of the peak correlation reflects the strength of the association.

This analysis was performed at the population level across three different data res-
olutions. For each patient, the maximum cross-correlation value and the corresponding
absolute lag value at which this maximum occurred were recorded. Median values of these
metrics were then calculated across all patients to provide a summarized overview of the
results. Subsequently, this was conducted at the sub-group level across all the resolutions.
The correlate class from the scipy library was used to conduct cross-correlation [53].

3. Results
3.1. Patient Demographics

A total of 379 patients were included in the study. Of these, 295 were male. The
median age was 38 years, with an interquartile range (IQR) of 24 to 55 years. Additional key
demographic and clinical characteristics of the patient cohort are summarized in Table 1.
This table also presents the number of patients with NIRS-derived parameters and PbtO,,
and the median percentage of each RAP state at the patient level.
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Table 1. Patient demographics.
Variable Median (IQR) or Number (%)
Duration of recording (minutes) 5811.23 (2872.90-9951.18)
Number of Patients 379
Age (years) 38 (24-55)
Sex (Male) 295 (77.83%)
GCS 6 (3-7)
GCS Motor 4 (1-5)
Pupils
Bilateral Reactive 250 (65.96%)
Unilateral Unreactive 63 (16.62%)
Bilateral Unreactive 56 (14.77%)
Marshall CT Classification
VI 6 (1.58%)
\% 104 (27.44%)
v 43 (11.34%)
III 90 (23.74%)
II 118 (31.13%)
Parameter groups
Patient with ICP-ABP-derived parameters 379 (100%)
Patient with combined NIRS-derived parameters 133 (35.09%)
Patient with PbtO, 116 (30.60%)
RAP states
RAP <0 4.78% (2.52-9.72%)
0<RAP <04 10.91% (5.97-17.19%)
RAP > 0.4 84.31% (72.17-91.29%)

ABP, arterial blood pressure; CT, computerized tomography; GCS, Glasgow Coma Score; ICP, intracranial pressure;
IQR, interquartile range; NIRS, near-infrared spectroscopy; PbtO,, brain tissue oxygenation; RAP, index of cerebral
compensatory reserve.

3.2. Graphical Relationships Between RAP and MMM Cerebral Physiologic Variables

After dividing the data according to three RAP threshold ranges ([0.4, 1], (0, 0.4), and
[—1, 0]), scatterplots were drawn with the piecewise linear regression for all the parameters,
illustrated in Figure S.1 of Supplementary A. For this figure, 1-min resolution was used.
The slope of the straight line for each threshold range obtained from the linear regression is
illustrated in Table 2.

As presented in the table and figures, ICP and AMP displayed similar slope signs (i.e.,
positive/negative slopes) across all segments. The significant positive slopes of ICP and
AMP in the RAP positive range indicate that both parameters increased as RAP increased,
consistent with the theoretical understanding of RAP. However, in the RAP < 0 state, AMP
showed a slightly smaller negative slope (—0.24). Regarding MAP and CPP, the reduction
in their values in the RAP < 0 state was evident in both figures. Furthermore, CPP decreased
with the increase of RAP in its positive range.

Theoretically, as cerebral compliance worsens, CA indices should increase and remain
positive, indicating impaired cerebrovascular reactivity. This pattern was observed in
the RAP < 0 state for most CA indices (PRx, RAC, COx_R, COx-a_L, COx-a_R), where
regression lines were in the positive region and showed an upward trend as RAP decreased
toward —1. However, interestingly, the opposite occurred in the RAP > 0.4 state, where
all CA indices decreased toward negative values as RAP increased. Additionally, at the
0 < RAP < 0.4 state, most slopes (RAC, COx_L, COx-a_L, COx-a_R) suggested that
reactivity worsened as RAP decreased, with regression lines remaining in the positive
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region. These findings suggested that impaired reactivity was associated with lower values
of RAP. This was due to the transitional phase of cerebral compliance when it worsens from
an impaired to an exhausted state.

Table 2. Slope of the piecewise linear regression.

Parameters RAP <0 0<RAP<<04 RAP > 0.4
ICP —3.43 0.92 3.73
AMP —0.24 1.09 1.81
MAP 1.85 —1.05 2.25
CPP 5.38 —1.95 —-15
PRx —0.08 0.0 —0.59
PAx 0.23 0.21 —0.25
RAC —-0.12 —0.08 —1.09
rSO,_L —2.51 0.14 —3.24
rSO,_R —1.57 1.44 —2.59
COx_L 0.02 —0.03 —-0.21
COx_R —0.05 0.03 —0.19
COx-a_L —0.12 —0.02 —0.05
COx-a_R —0.12 —0.02 —0.03
PbtO, —2.43 —-1.22 9.58

AMP, pulse amplitude of ICP; COx_L, cerebral oxygenation index of left hemisphere; COx_R, cerebral oxygenation
index of right hemisphere; COx-a_L, COx with ABP of left hemisphere; COx-a_R, COx with ABP of the right
hemisphere; CPP, cerebral perfusion pressure; ICP, intracranial pressure; MAP, mean arterial pressure; PAX, pulse
amplitude index; PbtO,, brain tissue oxygenation; PRx, pressure reactivity index; RAC, a cerebral autoregulation
index; RAP, index of cerebral compensatory reserve; rSO,_L, regional cerebral oxygen saturation of left hemisphere;
rSO,_R, regional cerebral oxygen saturation of the right hemisphere.

The NIRS-derived rSO,_L and rSO,_R showed a decrement with the increase of RAP
towards +1, indicating reduced oxygen saturation. Interestingly, rSO,_L and rSO,_R also
decreased as RAP moved towards —1 from 0. PbtO,, in contrast, was found to be elevated
in the RAP > 0.4 state. In the other two states, the change rate was minimal, i.e., the slopes
were much smaller (—2.43 and —1.22).

Figure S.2 in Supplementary A presents boxplots for all parameters across the entire
population. The patterns observed align with those in the scatterplots, with most parame-
ters exhibiting consistent increases or decreases within specific RAP states. This further
validates the findings of the plots.

3.3. Comparison of MMM Cerebral Physiology Across RAP Threshold Categories

Afterwards, the median values of different physiological parameters, along with
IQRs, were calculated across the three RAP states and presented in Table S.1 of
Supplementary A. This table also includes the p-values obtained from the Kruskal-
Wallis test conducted across the three RAP states. Furthermore, the percentage of
time spent in each RAP state for various parameters was also included in this ta-
ble. Most of these median values were consistent with the findings illustrated in
Figures S.1 and S.2 of Supplementary A. However, while ICP was expected to have higher
median values in the RAP < 0 state and CPP was anticipated to be lower compared to the
0 < RAP < 0.4 state, the results contradicted these expectations. This discrepancy was
likely due to uneven data distribution, particularly the limited availability of data in the
RAP < 0 state, which might have caused unexpected shifts in median values. Furthermore,
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consistent with previous figures, the median values of all CA indices indicated that im-
paired autoregulation (i.e., higher CA index values) was associated with lower RAP values,
with the exception of PAx. Regarding PbtO,, the 0 < RAP < 0.4 state exhibited the lowest
median PbtO, value, while the other two RAP states showed increasing trends, with the
RAP > 0.4 state having the highest PbtO, value.

In the formal statistical comparison analysis, ICP, AMP, MAP, PRx, and RAC demon-
strated significant differences (p < 0.05) across the RAP states, based on the Kruskal-Wallis
test. The percent time spent in these RAP states across predefined thresholds of different
physiological parameters was also depicted in the table, which showed a similar trend to
these findings.

Comparison of RAP Behaviour Across Different MMM Critical Thresholds

Next, a reverse analysis was conducted with other physiological thresholds. First, the
median values for each parameter across the segments were calculated, along with the
corresponding p-values obtained from the Mann-Whitney U-test (for two groups) and the
Kruskal-Wallis test (for three or more groups), enabling a formal comparison between the
groups. These results are presented in Table S.2 of Supplementary A. Furthermore, this
table also contains the % time spent with RAP within the three RAP states.

As shown in the table, while higher RAP was associated with higher ICP and CPP
threshold ranges, for the rest of the parameters, higher RAP was associated with lower
threshold ranges. In terms of CPP thresholds, the association of higher RAP with higher
CPP threshold contradicted the previous observations from the RAP-CPP scatterplots
(Figure S.1d of Supplementary A), boxplots (Figure S.2d of Supplementary A), and median
values from Table S.1 of Supplementary A. This discrepancy is likely because the scatterplots
and table provided a more continuous representation of the data, capturing localized
variations or specific trends within RAP states.

From the analysis of the percentage of time spent across different RAP threshold
ranges, it was evident that the RAP < 0 state was associated with a higher proportion of
time spent at elevated ICP levels. Specifically, for ICP > 20 and ICP > 22, the percentages
were 6.25% and 6.21%, respectively, compared to 4.69% and 4.66% for their corresponding
lower thresholds. This suggests that an exhausted RAP state (i.e., RAP < 0) was more
frequently associated with elevated ICP values (ICP > 20 and ICP > 22), consistent with
the previous findings in this study. A similar trend was observed across most CA indices,
where higher CA index values corresponded to greater percentages at higher threshold
ranges. In the RAP < 0 state, the percentage for PRx > 0 was 6.12%, whereas it was 3.12%
for PRx < 0.

Furthermore, in the formal comparison analysis across the different thresholds of the
parameters, RAP showed significant differences for PRx (thresholds 0, +0.25, +0.35), RAC
(threshold 0), rSO,_L (threshold 70), rSO,_R (thresholds 80, 90), COx_L (threshold 0), as
reported in Table S.2 of Supplementary A.

3.4. Clustering of the Parameters
3.4.1. Agglomerative Hierarchical Clustering (AHC)

As mentioned in Section 2.7, all the semi-supervised ML approaches were conducted
separately for three segments of data across different resolutions to ensure a more compre-
hensive analysis. Initially, AHC was applied to the 1-min resolution data, and the resulting
dendrograms are presented in Figure 1.



Bioengineering 2025, 12, 1006

13 of 31

Distance

3500

3000

2500

2000

1500

1000

500

Dendrogram of Cerebral Physiology Data

Dendrogram of Cerebral Physiology Data

3518.4

1504.8

1636.1

1278.0

3306.3

1400

1200

2426.8

1000

1705.6

Distance
@
=3
S

400 346.0

200

(a) ICP-ABP-derived parameters

RAC

o

maP PP RAP icp AMP
Parameters

COx_L COXAL COX R COXAR PRx PAx RAC MAP CPP RSO2LRSO2R RAP  ICP  AMP

Parameters

(b) ICP-ABP-derived and NIRS-derived parameters

Dendrogram of Cerebral Physiology Data
2467.9

2500

2000 1892.7

1829.2

1528.0

1500

Distance

1121.7
1063.0

1000
833.0

6293

0

maP cpp RAP POtO2 PR PAX RAC icP AMP

x
Parameters

(c) ICP-ABP-derived parameters and PbtO:

Figure 1. Dendrograms at 1-min resolution across whole population. The figure demonstrates
the dendrograms obtained by AHC applications to (a) ICP-ABP-derived parameters, (b) ICP-ABP-
derived and NIRS-derived parameters, and (c) ICP-ABP-derived parameters with PbtO,. Among all
the parameters, ICP, AMP and PbtO; (in (c) dendrogram) were in the same clusters with RAP. rSO,_L
and rSO,_R were in the next closest clusters to RAP(in (b) dendrogram). ABP, arterial blood pressure;
AMP, pulse amplitude of ICP; COx_L, cerebral oxygenation index of left hemisphere; COx_R, cerebral
oxygenation index of right hemisphere; COx-a_L, COx with ABP of left hemisphere; COx-a_R, COx
with ABP of the right hemisphere; CPP, cerebral perfusion pressure; ICP, intracranial pressure; MAP,
mean arterial pressure; NIRS, near-infrared spectroscopy; PAX, pulse amplitude index; PbtO,, brain
tissue oxygenation; PRx, pressure reactivity index; RAC, a cerebral autoregulation index; RAP, index
of cerebral compensatory reserve; rSO,_L, regional cerebral oxygen saturation of left hemisphere;
rSO,_R, regional cerebral oxygen saturation of the right hemisphere.

As illustrated in the figure, for the ICP-ABP-derived parameters, ICP-AMP-RAP first
clustered with MAP-CPP to form a large group, which then merged with the PAx-RAC-
PRx cluster, completing the dendrogram as shown in Figure 1la. When NIRS-derived
parameters were included, the ICP-AMP-RAP cluster joined with rSO,_L-rSO,_R, along
with MAP-CPP, to form a larger cluster. This cluster subsequently merged with the PAx-
RAC-PRx group, and finally with the COx_L-COx_R-COx-a_L-COx-a_R cluster to com-
plete the dendrogram, as depicted in Figure 1b. This structure closely resembled the
previous dendrogram, with the only notable difference being the addition of rSO,_L
and rSO,_R to the ICP-AMP-RAP-MAP-CPP cluster. In the last dendrogram shown in
Figure 1c, incorporating PbtO, into the ICP-ABP-derived parameters led to RAP clustering
with PbtO,, which then grouped with MAP and CPP to form a large RAP-PbtO,-MAP-
CPP cluster. This was later joined by the PAXx-RAC-PRx-ICP-AMP cluster to complete
the dendrogram.
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This analysis was also conducted across different data resolutions, with the resulting
dendrograms presented in Figures 5.1-5.4 of Supplementary B. For both the ICP-ABP-
derived parameter analysis and the combined ICP-ABP and NIRS-derived parameter
analysis, the dendrograms consistently showed the same clustering patterns as observed
in the 1-min resolution (Figure 1). However, in the analysis involving ICP-ABP-derived
parameters and PbtO,, RAP did not cluster directly with PbtO,. Instead, it initially grouped
with ICP and AMP, and this cluster later merged with the MAP-CPP-PbtO, group. This pat-
tern was consistently observed across all other lower resolutions. The difference observed
at the 1-min resolution compared to the lower resolutions was likely caused by the higher
temporal granularity of the data. The cophenetic correlation values for the dendrograms
are illustrated below in Table 3:

Table 3. The cophenetic correlations for the dendrograms across all the resolutions.

Data Groups 1-min 5-min-by-5-min  10-min-by-10-min  30-min-by-30-min Hour-by-Hour
ICP-ABP-derived parameters 0.89 0.89 0.89 0.89 0.89
ICP-ABP-derived and
NIRS-derived parameters 0.9 0.89 0.89 0.89 0.88
ICP-ABP-derived parameters 0.9 0.86 0.85 0.84 0.4

and PbtO,

ABP, arterial blood pressure; ICP, intracranial pressure; NIRS, near-infrared spectroscopy; PbtO,, brain
tissue oxygenation.

Across all groups and resolutions, the cophenetic correlation coefficients were con-
sistently high, with most cases nearing 0.9, indicating that the agglomerative hierarchical
clustering provided a strong and reliable representation of the data structure.

Furthermore, AHC analysis was performed across different RAP states at all the
discussed resolutions. The resulting dendrograms are presented in Figures 5.5-5.19 of
Supplementary B. Across all dendrograms, most of the larger clusters were consistent with
the findings from the analysis on the entire population. However, noticeable variations
appeared within the smaller clusters. For instance, in several dendrograms, particularly for
the RAP <0 and 0 < RAP < 0.4 states, RAP did not cluster directly with ICP-AMP. Another
interesting observation was the frequent direct clustering of PbtO, with RAP, suggesting a
potentially strong association between these two. Table S.1 of Supplementary B presents
the cophenetic correlation values from the subgroup analysis, with most values exceeding
0.85, suggesting that the AHC models demonstrated a strong overall fit.

3.4.2. Principal Component Analysis (PCA)

At first, PCA was conducted on 1-min resolution data. To assess the contribution
and effectiveness of the principal components, scree plots of the explained variance ratio
and cumulative explained variance were analyzed, as depicted in Figures S.1 and S.2 of
Supplementary C. Asillustrated in the figures, the first two principal components accounted
for 54%, 39%, and 51% of the variance in the data for the respective predefined analysis
groups. Notably, the ICP-ABP-derived and NIRS-derived parameter group explained less
than 50% of the variance (39%), likely due to the higher number of parameters included in
that group. The corresponding biplots for these data groups are shown in Figure 2.

As depicted in Figure 2, for the ICP-ABP-derived parameters, ICP-AMP-RAP, MAP-
CPP and PAx-RAC-PRx formed groups aligning in a similar direction (Figure 1a). Incor-
porating NIRS-derived parameters to this group resulted in forming the ICP-AMP-RAP-
rSO,_L-1SO,_R group, whereas COx and COx-a parameters formed another group in a
different direction, as depicted in Figure 1b. Notably, in both cases, RAP appeared slightly
offset from the core direction of its group. Lastly, for the ICP-ABP-derived parameters
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and PbtO;, Figure 1c illustrates the formation of a MAP-CPP-RAP-PbtO; group, while
ICP-AMP-PAx-RAC-PRx aligned along a different axis. These patterns were consistent
with the cluster structures observed in the AHC dendrograms presented in Figure 1.
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Figure 2. PCA biplots at 1-min resolution across whole population. The figure documents the PCA
biplots of (a) ICP-ABP-derived parameters, (b) ICP-ABP-derived and NIRS-derived parameters,
and (c) ICP-ABP-derived parameters with PbtO,. Among all the parameters, ICP, AMP and PbtO,
(in (c) biplot) aligned in the same direction as RAP within the PC1-PC2 axis system. rSO,_L and
rSO,_R were the next closest to RAP in direction (in (b) biplot). Similar to findings from dendrograms.
ABP, arterial blood pressure; AMP, pulse amplitude of ICP; COx_L, cerebral oxygenation index of left
hemisphere; COx_R, cerebral oxygenation index of right hemisphere; COx-a_L, COx with ABP of
left hemisphere; COx-a_R, COx with ABP of the right hemisphere; CPP, cerebral perfusion pressure;
ICP, intracranial pressure; MAP, mean arterial pressure; NIRS, near-infrared spectroscopy; PAx, pulse
amplitude index; PbtO,, brain tissue oxygenation; PRx, pressure reactivity index; RAC, a cerebral
autoregulation index; RAP, index of cerebral compensatory reserve; rSO,_L, regional cerebral oxygen
saturation of left hemisphere; rSO,_R, regional cerebral oxygen saturation of the right hemisphere.

Subsequently, this analysis was extended to the lower-resolution data. The scree plots
corresponding to these resolutions are presented in Figures S.3-5.10 of Supplementary C.
The proportion of variance explained by the first two principal components remained com-
parable to that observed in the 1-min resolution data. The PCA biplots for lower-resolution
data are presented in Figures 5.11-5.14 of Supplementary C. Across these resolutions, the
majority of biplots demonstrated grouping patterns consistent with those observed at the
1-min resolution. While some minor deviations were present—for instance, RAP was posi-
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tioned between MAP and CPP in Figures S.13a and S.14a of Supplementary C—the larger
clusters remained largely unchanged. The biplots of sub-group analysis are illustrated
in Figures 5.15-5.30 of Supplementary C. This analysis showed certain deviations in the
smaller groups from the results observed in the whole population, especially within the
RAP <0 and 0 < RAP < 0.4 states. Notably, in Figures 5.23a and S.24a of Supplementary C,
PRx was situated closer to the ICP-AMP-RAP cluster rather than with the PAX-RAC group,
as seen in previous results. In contrast, during the RAP > 0 state, RAP consistently aligned
more closely with MAP and CPP across all resolutions.

3.4.3. K-Means Clustering Analysis (KMCA)

As outlined in Section 2.7, the elbow method was employed to identify the optimal
value of k, with its visual representation provided in Figure 3.
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Figure 3. Application of the elbow method at 1-min resolution across whole population. The figure
presents the number of clusters vs. WCSS plots of (a) ICP-ABP-derived parameters, (b) ICP-ABP-
derived and NIRS-derived parameters, and (c) ICP-ABP-derived parameters with PbtO,. All the
plots showed, after k = 3, the rate of decrease in WCSS (Within-Cluster Sum of Squares) dimin-
ished considerably. ABP, arterial blood pressure; ICP, intracranial pressure; k, number of clusters;
NIRS, near-infrared spectroscopy; PbtO,, brain tissue oxygenation; WCSS, within-cluster sum of
squared errors.

As illustrated in the figures, at k = 1 and k = 2, there were sharp drops in WCSS.
Beyond k = 3, the reduction in WCSS became more gradual and consistent, indicating
diminishing returns with increasing k. This was noticeable across all the groups. This
pattern suggests that k = 3 is the optimal choice for KMCA and can be applied across all
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data groups. Using the optimal k = 3, KMCA was applied across the groups at the 1-min
resolution data, and the three clusters that were found are illustrated in Table 4.

Table 4. Clusters generated from KMCA across all resolutions.

Resolution ICP-ABP-Derived ICP-ABP-Derived and ICP-ABP-Derived
Parameters NIRS-Derived Parameters Parameters and PbtO,
0: [rSO,_L/, 1SO,_R’], 1: ['RAT,
T 1. T DD . [ ;g Y DB DA . ; 0: ['ICP’, PbtO3], 1: [MAP,
L-min 0: ['ICP’], 1: ['MAFP’, ‘CPP’], 2: ['RAP’, ‘ICP’,’AMP’, ‘PRx’, ‘PAX’, ' RAC/, ‘CPP’], 2: [RAP’, "AMP’, ‘PRX,

‘AMP’, ‘PRx’, ‘PAX’, ‘'RAC’] ‘COx_L, "COx_R’, ‘COx-a_L,

‘COx-a_R’], 2: ['MAP”’, ‘CPP] PAX, 'RAC

5-min-by-5-min

0: ['ICP’], 1: [MAP’, 'CPP’], 2: ['RAP’, ‘ICP’,"AMP’, ‘PRx’, 'PAX’, '‘RAC’,
‘AMP’, ‘PRx/, 'PAX’, ‘RAC’] ‘COx_L, "COx_R’, ‘COx-a_L,

0: [rSO,_L’, rSO,_R’], 1: ['RATP, 0: [ICP’, PbtO,], 1: [MAP,

‘CPP’], 2: [RAP’, "AMP”’, ‘PRx’,

‘COx-a_R’], 2: [ MAP’, ‘CPP’] PAX', "RAC]

10-min-by-10-min

0: 'ICP’], 1: [MAP’, ‘CPP’], 2: [RAP’, ‘ICP’,’AMP’, ‘PRx/, 'PAX, ‘RAC/,
‘AMP’, ‘PRX’, ‘PAX’, ‘RAC’] ‘COx_L, “COx_R/, “COx-a_L,

0: [1502 L, 180, R, 1: [RAP, (ions by 1 1, (AP,

‘CPP’], 2: [RAF’, "AMP’, 'PRX’,

‘COx-a_R’], 2: [MAP’, ‘CPP’] PAX, "RACT]

30-min-by-30-min

0: ['ICP’], 1: [MAP’, 'CPP’], 2: ['RAP’, ‘ICP’,”AMP’, ‘PRx’, 'PAX’, '‘RAC’,
‘AMP’, ‘PRx’, ‘PAX’, ‘RAC’] ‘COx_L, "COx_R’, ‘COx-a_L,

0: [150, L, S0, R, 1: [RAP,  on by 1 1. (AP,

‘CPP’], 2: [RAP’, "AMP’, ‘PRX/,

'COX-a_R’], - [JMAP/’ ICPPI] PAx P RAC ]

Hour-by-hour

0: ['ICP’], 1: [MAP’, 'CPP’], 2: ['RAP’, ‘ICP’,"AMP’, ‘PRx/, 'PAX’, '‘RAC’,
‘AMP’, ‘PRx/, 'PAX’, ‘RAC’] ‘COx_L, "COx_R’, ‘COx-a_L,

0: [rSO,_L’, 1SO,_R’], 1: ['RATP, 0: [ICP’, PbtO,], 1: [MAP,

‘CPP’], 2: [RAP’, "AMP”’, ‘PRx’,

‘COx-a_R’], 2: [ MAP’, ‘CPP’] PAX', "RAC]

In this table, the clusters were represented by numbers—"“0”, “1”, and “2” and the parameters within a cluster were
listed inside a bracket. ABP, arterial blood pressure; AMP, pulse amplitude of ICP; COx_L, cerebral oxygenation
index of left hemisphere; COx_R, cerebral oxygenation index of right hemisphere; COx-a_L, COx with ABP
of left hemisphere; COx-a_R, COx with ABP of the right hemisphere; CPP, cerebral perfusion pressure; ICP,
intracranial pressure; MAP, mean arterial pressure; PAX, pulse amplitude index; PbtO,, brain tissue oxygenation;
PRx, pressure reactivity index; RAC, a cerebral autoregulation index; RAP, index of cerebral compensatory reserve;
rSO,_L, regional cerebral oxygen saturation of left hemisphere; rSO,_R, regional cerebral oxygen saturation of the
right hemisphere.

The first row of the table presents the clustering results at the 1-min resolution. The
three clusters identified through KMCA showed some differences compared to those
observed in the AHC dendrograms and PCA biplots. Notably, in both the ICP-ABP-derived
parameters group and the ICP-ABP-derived parameters with PbtO, group, RAP was not
clustered with its source signal, ICP. Additionally, across all data groups, RAP consistently
clustered with the ICP-ABP-derived CA indices (i.e., PRx, PAx, and RAC).

Additionally, this analysis was extended to lower-resolution data. Using the elbow
method in the same manner, the optimal k was determined, with graphical illustrations
provided in Figures 5.1-5.4 of Supplementary D. Based on these visualizations, an optimal
k of 3 was consistently selected for all data groups and resolutions. The KMCA clustering
results for each resolution were summarized in Table 3, which clearly demonstrates that
the cluster structures remained consistent across all resolutions. Next, sub-group analysis
was conducted. The remaining figures in Supplementary D display the elbow method plots
for these sub-groups. In this context, the optimal number of clusters was also determined
to be 3 for all RAP states. The KMCA clustering outcomes were summarized in Table S.1 of
Supplementary D, indicating that the cluster structures remained consistent across all RAP
states and resolution levels.
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3.5. High-Frequency Temporal Response Patterns of RAP to MMM Changes
3.5.1. Vector Autoregressive Integrated Moving Average (VARIMA) Impulse Response
Function (IRF) Analysis

The optimal VARIMA model was determined for each patient and each RAP-X pair
across all analyzed resolutions. From these, the median values of the model orders were
computed, yielding the median optimal VARIMA models summarized in Table S.1 of
Supplementary E. Following model fitting, impulse response function (IRF) coefficients
were extracted and plotted over time. Figures S.1-5.3 in Supplementary E present sample
IRF plots for a representative patient across all the discussed RAP-X pairs and resolutions.
In most instances, the responses remained within the 95% confidence interval, suggesting
statistical reliability. Given the observed variability in responses, a thresholding approach
was applied to the normalized IRF data, as outlined in Section 2.8.1, to classify responses
as either “more responsive” or “less responsive.” The outcome for the “more responsive”
group was summarized in Table 5. In some cases, insufficient data points prevented the
test from yielding results; these instances were marked as not applicable (NA) in the table.

Table 5. Responsiveness of RAP to the orthogonal impulse of cerebral physiological parameters.

o 1-min 5-min-by-5-min 10-min-by-10-min
Direction >0.1% NA >0.1% NA >0.1% NA
AICP—ARAP 77.84% (295) 0 63.73% (239) 4 65.50% (243) 8
AAMP—ARAP 75.60% (285) 2 62.30% (233) 5 59.84% (222)
AMAP—ARAP 73.74% (278) 2 68.36% (255) 6 59.14% (220) 7
ACPP—ARAP 71.43% (270) 1 67.56% (252) 6 57.99% (214) 10
APRx—ARAP 78.99% (297) 3 53.60% (201) 4 44.09% (164)
APAx— ARAP 78.72% (296) 3 52.13% (196) 3 40.32% (150)
ARAC—ARAP 80.32% (302) 3 56.60% (210) 8 42.32% (157)
ArSO, L—ARAP 72.79% (107) 9 67.65% (92) 20 65.91% (87) 24
ArSO, R—ARAP 74.31% (107) 11 72.39% (97) 21 61.36% (81) 23
ACOx_L—ARAP 71.33% (102) 9 42.11% (56) 19 34.59% (46) 19
ACOx_R—ARAP 74.47% (105) 11 47.37% (63) 19 33.59% (44) 21
ACOx-a_L—ARAP 77.86% (109) 0 47.69% (62) 10 34.62% (45) 10
ACOx-a_R—ARAP 77.54% (107) 2 47.29% (61) 11 32.56% (42) 11
APbtO,—>ARAP 64.60% (73) 3 69.37% (77) 5 67.59% (73) 8

To calculate the percentage values in this table, the NA cases were excluded from the total number of patients.
A, first-order differenced; AMP, pulse amplitude of ICP; COx_L, cerebral oxygenation index of left hemisphere;
COx_R, cerebral oxygenation index of right hemisphere; COx-a_L, COx with ABP of left hemisphere; COx-
a_R, COx with ABP of the right hemisphere; CPP, cerebral perfusion pressure; ICP, intracranial pressure; MAP,
mean arterial pressure; NA, not applicable; PAx, pulse amplitude index; PbtO,, brain tissue oxygenation; PRx,
pressure reactivity index; RAC, a cerebral autoregulation index; RAP, index of cerebral compensatory reserve;
rSO,_L, regional cerebral oxygen saturation of left hemisphere; rSO,_R, regional cerebral oxygen saturation of the
right hemisphere.

The table presents the percentage and count of cases classified as belonging to the
“more responsive” group for each parameter pair across resolutions. At the 1-min resolution,
ICP-ABP-derived parameters consistently exhibited higher responsiveness percentages
compared to NIRS-derived parameters and PbtO,. While a general decline in respon-
siveness percentages was observed at lower resolutions, the trend of ICP-ABP-derived
parameters showing higher responsiveness largely persisted. The only notable excep-
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tion was rSO,_L and rSO;_R, which demonstrated comparatively higher responsiveness
percentages at the lower resolutions.

As outlined in Section 2.8, subgroup analysis was also performed based on patients’
median RAP values. The corresponding results are presented in Table 5.2 of Supplementary
E. As indicated, the number of patients within the RAP < 0 category was limited—only six
for ICP-ABP-derived parameters, one for NIRS-derived parameters, and four for PbtO,.
Similarly, the 0 < RAP < 0.4 category included relatively few patients. Due to these small
sample sizes, the findings from these two RAP states may lack sufficient reliability. In
contrast, the RAP > 0.4 group included a larger number of patients and produced results
largely consistent with those observed in the full cohort analysis.

3.5.2. Granger Causality Testing

By comparing the F-statistic values of AX—ARAP and ARAP— AX for each patient
example, the direction of the causality was determined. Since the focus of the research is
to check how RAP responds to changes in another variable, the percentage of AX—ARAP
was calculated and summarized in Table 6.

Table 6. Granger causality testing of AX and ARAP pairs across the resolutions for whole population.

Parameters Direction 1-min 5-min 10-min
AICP—ARAP 8.97% (34) 40.63% (154) 28.31% (107)
ARAP—AICP 54.62% (207) 20.05% (76) 15.87% (60)
AICP & ARAP NS 36.41% (138) 39.31% (149) 55.82% (211)
NA 0 0 1
AAMP—ARAP 12.4% (47) 54.09% (205) 32.54% (123)
ARAP—AAMP 44.33% (168) 16.36% (62) 22.22% (84)
AAMP & ARAP NS 43.27% (164) 29.55% (112) 45.24% (171)
NA 0 0 1
AMAP—ARAP 14.78% (56) 47.23% (179) 28.57% (108)
ARAP—AMAP 42.22% (160) 13.46% (51) 14.02% (53)
AMAP & ARAP NS 43.01% (163) 39.31% (149) 57.41% (217)
NA 0 0 1
ACPP—ARAP 16.09% (61) 46.17% (175) 29.1% (110)
ARAP—ACPP 37.47% (142) 13.72% (52) 17.72% (67)
ACPP & ARAP NS 46.44% (176) 40.11% (152) 53.17% (201)
NA 0 0 1
APRx—ARAP 30.87% (117) 14.78% (56) 12.17% (46)
ARAP—sAPRx 27.44% (104) 19.26% (73) 15.34% (58)
APRx & ARAP NS 41.69% (158) 65.96% (250) 72.49% (274)
NA 0 0 1
APAX—>ARAP 33.51% (127) 11.35% (43) 8.99% (34)
ARAP—APAX 22.69% (86) 24.54% (93) 17.2% (65)
APAX & ARAP NS 43.8% (166) 64.12% (243) 73.81% (279)
NA 0 0 1
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Table 6. Cont.

Parameters Direction 1-min 5-min 10-min
ARAC—ARAP 38.52% (146) 12.66% (48) 9.26% (35)
ARAP—ARAC 24.01% (91) 24.27% (92) 22.49% (85)
ARAC & ARAP
NS 37.47% (142) 63.06% (239) 68.25% (258)
NA 0 0 1

ArSO,_L & ARAP

ArSO, L—ARAP

11.35% (16)

23.74% (33)

14.6% (20)

ARAP—ArSO,_L

45.39% (64)

21.58% (30)

16.06% (22)

NS

43.26% (61)

54.68% (76)

69.34% (95)

NA

15

17

19

ArSO, R & ARAP

ArSO;_R—ARAP

13.67% (19)

19.57% (27)

11.76% (16)

ARAP—ArSO,_L

40.29% (56)

20.29% (28)

16.91% (23)

NS 46.04% (64) 60.14% (83) 71.32% (97)
NA 16 17 19
ACOx_L—ARAP 10.71% (15) 7.97% (11) 11.03% (15)
ARAP—ACOx_L 28.57% (40) 25.36% (35) 13.97% (19)
ACOX_L & ARAP NS 60.71% (85) 66.67% (92) 75.0% (102)
NA 12 14 16
ACOx_R—ARAP 15.11% (21) 5.07% (7) 6.62% (9)

ACOx_R & ARAP

ARAP—ACOx_R

20.14% (28)

26.09% (36)

17.65% (24)

ACOx-a_R & ARAP

NS 64.75% (90) 68.84% (95) 75.74% (103)
NA 13 14 16
ACOx-a_L—ARAP 11.03% (15) 6.72% (9) 9.85% (13)
ARAP—ACOx-a_L 34.56% (47) 20.9% (28) 16.67% (22)
ACOx-a_L & ARAP NS 54.41% (74) 72.39% (97) 73.48% (97)
NA 4 6 8
ACOx-a_R—ARAP 19.26% (26) 8.96% (12) 5.3% (7)

ARAP—ACOx-a_R

27.41% (37)

23.13% (31)

17.42% (23)

NS 53.33% (72) 67.91% (91) 77.27% (102)
NA 5 6 8

APbtO,—ARAP 8.7% (10) 15.93% (18) 16.07% (18)

ARAP—5APbtO, 16.52% (19) 16.81% (19) 14.29% (16)

APtO; & ARAP NS 74.78% (86) 67.26% (76) 69.64% (78)
NA 1 3 4

To calculate the percentage values in this table, the NA cases were excluded from the total number of patients.
A, first-order differenced; AMP, pulse amplitude of ICP; COx_L, cerebral oxygenation index of left hemisphere;
COx_R, cerebral oxygenation index of right hemisphere; COx-a_L, COx with ABP of left hemisphere; COx-
a_R, COx with ABP of the right hemisphere; CPP, cerebral perfusion pressure; ICP, intracranial pressure; MAP,
mean arterial pressure; NA, not applicable, NS, not significant; PAx, pulse amplitude index; PbtO,, brain
tissue oxygenation; PRx, pressure reactivity index; RAC, a cerebral autoregulation index; RAP, index of cerebral
compensatory reserve; 1SO,_L, regional cerebral oxygen saturation of left hemisphere; rSO,_R, regional cerebral
oxygen saturation of the right hemisphere.

As shown in the table, most parameter pairs had a large proportion of non-significant
(NS) cases, indicating that, in many instances, there was no statistically significant Granger
causality in either direction. Among the significant results, APRx, APAx, and ARAC
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were the only parameters for which AX—ARAP was more frequently significant than the
reverse direction (ARAP—AX) at the 1-min resolution. However, at lower resolutions, AICP,
AAMP, AMAP, and ACPP more often showed significant influence on RAP, suggesting
resolution-dependent patterns of directional association. A similar pattern was observed at
the subgroup level, as shown in Tables 5.1-5.3 of Supplementary F. However, given that
the majority of patient cases yielded non-significant results, the directional findings from
the remaining data should not be interpreted as broadly generalizable.

3.5.3. Cross-Correlation Analysis

Initially, cross-correlation analysis was performed at the patient level across the entire
population, with the results presented in Table 7.

Table 7. ARAP-AX cross-correlation analysis across the resolutions for whole population.

1-min 5-min 10-min

Parameter Pair (lz\:l)::ei?;;g; Maximum lag NA é\g:ﬁﬁ:ﬁg:‘ Maximum Lag NA é\g:ﬁ;‘:z:::‘ Maximum Lag NA
ARAP-AICP 00 gz'(z%élzz) 1.0 (0.0-5.0) 0 (o.ogél—%)?m) 1.0 (0.0-4.0) 0 (041%;1—%?237) 1.0 (0.0-4.0) 0
ARAP-AAMP 0.115 0.0 (0.0-4.0) 0 0.165 0.0 (0.0-1.0) 0 0205(0.14-0289) 0.0 (0.0-3.0) 0

(0.081-0.166) (0.109-0.222)

ARAP-AMAP 0.062 (0.044-0.1) 2.0 (0.0-6.0) 0 0.157(0.1-0.238) 0.0 (0.0-3.0) 0 (0.13?9'1_90?315) 0.0 (0.0-6.0) 0
ARAP-ACPP 0.064 (0.044-0.1) 2.0 (0.0-6.0) 0 (0.0351_%2227) 1.0 (0.0-4.0) 0 018(0.124-0289) 0.0 (0.0-6.5) 0
ARAP-APRx (0.0%1_%?23 6 0.0 (0.0-0.0) 0 0.191(0.116-0.3) 0.0 (0.0-3.0) 0 (0.1252_%)?33 " 0.0 (0.0-6.0) 0
ARAP-APAX (o.ogzil—%.zz i) 0.0 (0.0-0.0) 0 0167(0.1-0264) 0.0 (0.0-40) 0 (04135_%288) 0.0 (0.0-6.5) 0
ARAP-ARAC  0.194 (0.11-0.306) 0.0 (0.0-0.0) 0 (0.15%2_%‘%376) 0.0 (0.0-0.0) 0 (0.1&3_%?432) 0.0 (0.0-1.0) 0
ARAP-ArSO;_L (0.0?3%?121) 3.0 (1.0-8.0) 9 015(0.105-0.22)  2.0(0.0-120) 9 (041341_{)?253) 30(05-100) 9
ARAP-AfSO, R 0.075 (0.05-0.132) 3.0 (1.0-7.0) 10 (0_184{%?208) 40(00-140) 10 (0.13617%?2 o0 40(00-11.0) 10
ARAP-ACOx_L (o.ogz'%i 08) 40 (1.0-11.75) 6 (0.09051_%?179) 40 (1.0-12.0) 6 (o.1§iljfz & 5.0 (0.0-12.0) 6
ARAP-ACOX_R (0.023"3%‘.‘098) 40 (1.0-10.0) 7 (0.0;’31_%7193) 6.0(1.0-150) 7 (0.133'1_@ 6) 50(10-120) 7
ARAP-ACOx-a_L (0.05(;)2'%%11 " 2.0 (0.0-9.0) 4 (0.18;_%?181) 3.0 (0.0-8.0) 4 (0.1%1_%?2 65) 40 (0.0-12.0) 4
ARAP-ACOx-a_R (0.0249%?122) 3.0 (1.0-8.0) 5 0129(0.09-021)  50(0.0-120) 5 (013;%?269) 60(1.0-120) 5
ARAP-APbtO; (o,ogﬁ(zg.6122) 6.0 (2.0-12.0) 1 (0.0361%,71 - 5.0 (1.0-12.0) 1 (0.039‘1_%.7201) 4.0 (1.0-12.0) 2

To calculate the percentage values in this table, the NA cases were excluded from the total number of patients.
A, first-order differenced; AMP, pulse amplitude of ICP; COx_L, cerebral oxygenation index of left hemisphere;
COx_R, cerebral oxygenation index of right hemisphere; COx-a_L, COx with ABP of left hemisphere; COx-
a_R, COx with ABP of the right hemisphere; CPP, cerebral perfusion pressure; ICP, intracranial pressure; MAP,
mean arterial pressure; NA, not applicable; PAx, pulse amplitude index; PbtO,, brain tissue oxygenation; PRx,
pressure reactivity index; RAC, a cerebral autoregulation index; RAP, index of cerebral compensatory reserve;
rSO,_L, regional cerebral oxygen saturation of left hemisphere; rSO,_R, regional cerebral oxygen saturation of the
right hemisphere.

Among the variables, AICP, AAMP, and the ICP-ABP-derived CA indices—APRYX,
APAx, and ARAC—exhibited relatively higher median correlation values with ARAP,
particularly when compared to NIRS-derived CA indices. These parameters also showed
median maximum lags of 0 or 1 (i.e., the lag values at which peak correlation occurred),
suggesting they fluctuated synchronously with ARAP. The findings were largely consistent
across all resolutions. Notably, in the lower-resolution data, AMAP and ACPP showed
correlation values comparable to or greater than those of AICP and AAMP, with similarly
low median maximum lags, indicating synchronous behavior with ARAP.
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Tables S.1-5.3 of Supplementary G present the results from the subgroup analysis. The
RAP > 0.4 subgroup largely resembled the trends observed in the full dataset. In contrast,
the RAP < 0 and 0 < RAP < 0.4 subgroups displayed notable differences. These groups
showed generally higher median maximum lags across most parameter pairs, although
APRx, APAx, and ARAC showed the lowest lag values. Interestingly, in these states, the
NIRS-derived parameters demonstrated stronger correlation magnitudes than the ICP-ABP-
derived indices. Additionally, a higher frequency of NA cases was observed, especially at
lower resolutions, highlighting the impact of insufficient data on the analysis.

4. Discussion

Our objective was to investigate the burden of impaired cerebral compliance, defined
as RAP, in moderate-to-severe TBI patients and how it relates to other key components of
MMM cerebral physiology. First, a detailed descriptive analysis to assess statistical associa-
tions across different sub-groups and threshold ranges was performed. Next, clustering
techniques were applied to examine parameter clustering, with a particular focus on how
RAP grouped with other variables. Finally, high-frequency temporal response patterns
were analyzed to evaluate how RAP dynamically responds to changes in other MMM
parameters. Several key aspects deserve highlighting.

4.1. General Descriptive Relationships

Firstly, the analysis of general descriptive relationships showed that higher ICP and
AMP were associated with impaired RAP, whereas in the exhausted RAP state, ICP re-
mained high but AMP was comparatively lower. This explains the negative RAP values
in the exhausted cerebral compliance state. Furthermore, CPP was observed to be lower
during impaired and exhausted RAP states, consistent with the concept of diminished
perfusion resulting from compromised cerebral autoregulation [13,54]. Clinically, this
suggests that RAP can serve as an integrated marker reflecting the combined impact of
elevated ICP, reduced AMP, and diminished CPP, thereby providing clinicians with a more
comprehensive indicator of cerebral reserve status rather than considering each parameter
in isolation.

In the context of CA indices, theoretical expectations indicate that worsening com-
pliance is associated with positive CA indices [12,13,54]. As such, both impaired and
exhausted compliance states should exhibit positive CA indices, with the exhausted state
showing the most elevated values [12,13,54]. The conducted analyses aligned with these
expectations in the exhausted RAP state but not in the RAP > 0.4 and 0 < RAP < 04
ranges. This discrepancy can be explained by the typical progression of TBI patients into
an exhausted compliance state. Initially, in an impaired compliance phase, patients may
experience further deterioration, leading to arteriolar dilation failure and discontinuity
in cerebral blood flow (CBF). This reduces the transmission of arterial pulse pressure to
the intracranial compartment, resulting in decreased AMP. Consequently, RAP begins to
decline and may pass through the 0 < RAP < 0.4 range, which is normally indicative
of intact compliance. However, in this context, it represents a transitional phase toward
negative RAP values, indicating exhausted compliance. Therefore, the analyses showed
that CA indices were higher when RAP was near zero or negative, compared to when
RAP was greater than 0.4. This transitional behavior also highlights the importance of not
interpreting RAP thresholds in isolation but rather in the broader temporal and physio-
logical trajectory of the patient, as misclassification may lead to delayed recognition of
compliance exhaustion.

This relationship between cerebral compliance and cerebral autoregulation is also
supported by pre-clinical and clinical literature examining the pathophysiological basis
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of ICP-AMP dynamics and their link to autoregulatory function [55-57]. Experimental
studies from the Cambridge group and subsequent animal model investigations in rabbits
have demonstrated that as ICP rises toward critical thresholds, a distinct break-point
in AMP occurs [57]. This inflection point has been theorized to represent the critical
closing pressure of small- to medium-sized cerebral vessels [55,56]. Beyond this point,
progressive ICP elevations lead to diminished transmission of arterial pulsatility into the
intracranial compartment, reflected by falling AMP values and corresponding negative
RAP [57]. These findings provide a mechanistic foundation for the current results, where
intact autoregulation and preserved compliance correspond to low RAP, while impaired
autoregulation coincides with elevated RAP, and exhausted compliance (negative RAP)
reflects breakdown of vascular reactivity.

Changes in PbtO, can similarly be explained by this theoretical framework. As
RAP transitioned from the impaired to the exhausted state, CBF decreased, resulting in
reduced brain tissue oxygenation; thus, PbtO, levels were also lower compared to the
RAP > 0.4 state. These findings were mostly consistent across the graphical representation,
the analysis of MMM physiology compared to RAP thresholds, and the reverse analysis of
RAP against different parameter thresholds. Both the median values and the percentage
time spent across different threshold ranges align with the findings from the graphical
illustrations. The observed fall in PbtO, underscores that RAP deterioration may serve as
an early surrogate for impending brain tissue hypoxia, thereby guiding timely interventions
such as optimization of CPP or oxygen delivery strategies.

Secondly, the analysis of the percentage of time spent in different RAP threshold
ranges revealed that, across all cases, the majority of the population remained in the
RAP > 0.4 state for most of their recording period, as illustrated in Table S.2 of
Supplementary A, suggesting that most TBI patients experienced a high positive RAP,
indicating a potential association between TBI and impaired cerebral compliance. The
analysis of MMM physiology compared to RAP thresholds also revealed that TBI patients
spent a significant amount of time with impaired cerebrovascular reactivity, as a substantial
portion of time was associated with positive CA index values. Lastly, formal comparison
tests showed that ICP, AMP, MAP, PRx and RAC were significantly different across the RAP
states. In the reverse analysis, notably, RAP was significantly different across the thresholds
of PRx and RAC. The consistent involvement of these two ICP-derived CA indices in both
analyses suggests a potential bidirectional relationship between cerebral autoregulation
and cerebral compliance. This mutual association supports the concept that cerebral com-
pliance and autoregulation are interlinked physiological processes, and disturbances in one
may reflect or contribute to dysfunction in the other. This finding explains the frequent
association between impaired compliance and impaired autoregulation in the majority of
TBI patients in this study.

Section 3.3 also reinforces the rationale for the predefined RAP thresholds and es-
tablished thresholds for other physiological parameters. Table S.2 of Supplementary A
illustrates the percentage time spent by different RAP states within literature-defined pa-
rameter thresholds. For instance, considering the threshold PRx at 0, the percentage of
time spent in RAP <0, 0 < RAP < 0.4, and RAP > 0.4 states was 3.12%, 7.69%, and 88.26%
when PRx < 0, compared with 6.12%, 12.86%, and 80.86% when PRx > 0. These findings
indicate that during compromised autoregulation (PRx > 0), the time spent in RAP <0
and 0 < RAP < 0.4 states increased, while the time in RAP > 0.4 decreased. This supports
the interpretation of RAP < 0 as representing exhausted compliance, 0 < RAP < 0.4 as a
transitional state, and PRx > 0 as “compromised” autoregulation. In addition, Table S.1 of
Supplementary A further summarizes the percentage of time spent across different RAP
categories relative to thresholds of other parameters.
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Lastly, the associations identified between RAP, PbtO;, and rSO, are one of the novel
findings of this study. To date, few studies have explicitly explored RAP in relation to
PbtO,, while no prior work has reported a direct association between RAP and rSO, [7,11].
As observed in the previous literature [58,59], a reduction in PbtO; in transitional and
exhausted RAP states was also observed in this study. However, prior work has more
frequently examined cerebral autoregulation indices in relation to rSO, and PbtO,. For
rSO,, limited studies have demonstrated that impaired autoregulation is associated with
reductions in cerebral oximetry. These observations are consistent with the interpretation
that NIRS-derived indices serve as surrogates for pulsatile cerebral blood volume (CBV),
akin to ICP [60]. Accordingly, the RAP-rSO, association observed here may reflect the
well-described RAP-ICP (or RAP-CBV) relationships, linking compensatory reserve to
fluctuations in intracranial blood volume. By contrast, PbtO, reflects extracellular oxygen
diffusion and cellular utilization. Prior studies have shown that impaired autoregulation
is frequently coupled with deteriorating PbtO; levels [58,59]. In this context, the present
finding that worsening RAP is associated with reductions in PbtO, suggests that impaired
compensatory reserve may compromise cerebral oxygen delivery.

Taken together, these associations provide translational relevance, suggesting that
RAP could serve as an integrative marker, not only of compliance but also of oxygen-
related physiologic stability. Specifically, impaired RAP states may act as early indicators
of downstream derangements in oxygenation (as captured by PbtO; and rSO5), thereby
supporting the potential role of RAP in real-time bedside monitoring to anticipate oxygen-
related secondary insults in TBI management.

4.2. Comparative Clustering Patterns of the Parameters

The consistency in clustering across both AHC and PCA suggests stable underlying
relationships among physiological signals. When comparing ICP-derived parameters with
NIRS-derived parameters, rSO, was the closest to RAP, after ICP and AMP, which may
reflect RAP’s sensitivity to cerebral perfusion and oxygenation changes. Furthermore,
when PbtO; was considered alongside ICP-derived parameters, it emerged as the closest to
RAP, surpassing even ICP and AMP, suggesting a potentially tighter physiological coupling
between brain tissue oxygenation and intracranial compliance. None of the CA indices
were closer to RAP than ICP, AMP, rSO,, or PbtO,, except in sub-group analyses, where
PRx was found to be the closest to RAP under the RAP < 0 and 0 < RAP < 0.4 conditions,
indicating that cerebrovascular reactivity becomes more functionally linked to compliance
in compromised autoregulatory states. In this context, the 0 < RAP < 0.4 range is referred
to as a “compromised” autoregulatory state, rather than an intact state. As previously
discussed, this range may reflect a transitional phase in which RAP decreases from high
positive values, marking the shift from impaired to exhausted cerebral compliance.

Additionally, in the majority of the PCA biplots, RAP appeared slightly offset from
the core direction of its groups, suggesting that although it was statistically associated with
parameters like ICP and AMDP, it also captured additional variance not fully explained by
these constituent signals alone. This is consistent with the findings from one of our group’s
previous studies.

Although AHC and PCA produced highly similar outcomes, KMCA revealed a slightly
different clustering pattern. The result of KMCA was the most consistent across all the
resolutions and sub-groups. In this analysis, all CA indices clustered with RAP, along with
AMP. This contrasts with the findings from AHC and PCA, which indicated that CA indices
were not closely associated with RAP. Additionally, KMCA indicated that RAP was more
closely associated with AMP than with ICP.
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This contrast in results may be because of the fundamental differences in the un-
derlying methodologies of these three models. While PCA and AHC primarily capture
linear associations and are sensitive to Euclidean distance or linear variance, they may
miss nonlinear or more subtle functional relationships. KMCA, being kernel-based, is
designed to capture nonlinear patterns and higher-dimensional associations, which allows
it to detect nonlinear coupling or shared variance structures that linear methods overlook.
Furthermore, unlike AHC and PCA, KMCA partitions data strictly based on centroid dis-
tances, making it more sensitive to the choice of initial cluster centers and the assumption
of spherical cluster structure. Importantly, the relatively modest subgroup sample sizes
likely exacerbated these sensitivities, amplifying variability in the clustering output. These
methodological and sample size limitations together help explain the divergence in KMCA
results, rather than indicating true physiological discrepancies.

4.3. High-Frequency Temporal Response Patterns

The VARIMA IRF analysis revealed that ICP-ABP-derived parameters were consis-
tently more responsive to changes in RAP across all resolutions, particularly at the 1-min
scale, compared to NIRS-derived parameters and PbtO,, suggesting a strong physiological
coupling between RAP and ICP-ABP-derived measures, likely reflecting their direct math-
ematical and physiological interdependence. Interestingly, rSO,_L and rSO,_R showed
comparatively increased responsiveness at lower resolutions, potentially reflecting delayed
or cumulative oxygenation dynamics that become more apparent when fine temporal
fluctuations are minimized. Sub-group analysis confirmed similar trends in the RAP > 0.4
group, though limited patient numbers in the RAP <0 and 0 < RAP < 0.4 groups reduce
confidence in the results of these two RAP states.

In the context of Granger causality testing, while the analysis revealed limited overall
directionality due to the predominance of non-significant cases, some resolution- and
parameter-specific patterns did emerge. The finding that AX—ARAP was more frequently
significant for APRx, APAx, and ARAC at the 1-min resolution suggests that ICP-derived
autoregulatory indices might exert predictive influence on RAP during periods of finer
temporal granularity, potentially reflecting faster physiological responses. In contrast, the
shift at lower resolutions, where parameters like ICP, AMP, MAP, and CPP more often
Granger-caused RAP, might point to broader systemic influences becoming more apparent
over longer time windows. However, due to the high prevalence of non-significant results,
these associations should be interpreted cautiously and might not reflect consistent causal
dynamics across all patient cases.

The cross-correlation analysis demonstrated that ARAP fluctuates synchronously with
its constituent signals (AICP, AAMP) and ICP-derived CA indices, supporting RAP’s physi-
ological relevance in real-time cerebrovascular monitoring. However, at lower resolutions,
AMAP and ACPP showed stronger associations, suggesting a greater influence of systemic
hemodynamics over longer timescales. Analysis at the sub-group level revealed that in im-
paired states (RAP <0 and 0 < RAP < 0.4), NIRS-derived parameters (and also CA indices)
showed stronger correlations than ICP-derived CA indices, indicating their potential role
in compromised autoregulatory conditions. From a clinical standpoint, this stresses the
need for high-frequency data capture to appreciate fast compliance-related changes that
may be missed at lower sampling rates.

The differences observed between clustering results and high-frequency temporal
analyses reflect the distinct purposes and temporal scales of these methods. The clustering
methods quantify overall covariance patterns across the dataset, capturing stable, long-
term relationships among variables. Conversely, high-frequency temporal analyses assess
dynamic, time-dependent interactions, revealing that RAP responds more immediately
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to changes in ICP. Thus, the two approaches provide complementary insights: clustering
methods reflect global co-variance structure, whereas high-frequency analyses capture
temporal responsiveness, helping to interpret both the stable and dynamic physiological
relationships in TBI patients.

4.4. Bilateral Consistency of Cerebral Physiology

Across all analyses, parameters recorded from both the left and right hemispheres
(rSO,, COx, and COx-a) exhibited similar behavior, and in the clustering results, each pair
of corresponding hemispheric parameters consistently grouped together. This suggests
that the physiological processes they represent, such as cerebral oxygenation (rSO,) and
cerebrovascular reactivity (COx and COx-a), are similarly regulated or influenced in both
hemispheres, and are likely to exert a comparable influence on RAP and vice versa. This
consistency indicates that unilateral monitoring may often suffice for assessing global
compliance-related physiology, though bilateral recordings may still be valuable in cases
with asymmetric injury patterns.

4.5. Impact of Temporal Resolution and RAP Sub-Groups on Analytical Consistency

In both the clustering and high-frequency temporal analyses, lower temporal resolu-
tions were applied in addition to the original 1-min data. Across all models, the clustering
results remained largely consistent across resolutions, with only minor variations observed
in the AHC and PCA analyses. Similarly, high-frequency response patterns were generally
stable across resolutions, with the exception of some differences noted in the Granger causal-
ity tests. Overall, these findings suggest that co-variance structures and high-frequency
temporal dynamics are largely preserved regardless of the resolution, indicating that these
patterns are not strongly influenced by the sampling frequency.

Moreover, the sub-group analysis revealed that deviations from the overall popula-
tion results were more frequent in the RAP < 0 and 0 < RAP < 0.4 states, whereas the
RAP > 0.4 state largely mirrored the full cohort findings. This is likely because
RAP < Qreflects a state of exhausted compliance, and 0 < RAP < 0.4 represents a transitional
phase toward this exhaustion. These conditions mark the late stages of cerebrovascular
dysfunction. Consequently, physiological relationships in these states may become more
unstable and variable across individuals, resulting in greater inconsistency in how cerebral
parameters relate to RAP. This variability underlines the clinical challenge of interpreting
RAP in late-stage or exhausted compliance, where individualized monitoring and adaptive
thresholds may be necessary rather than relying on fixed cut-off values.

4.6. Prognostic Significance of Parameter Behaviours in RAP States

The observed patterns in specific RAP states, including RAP < 0 (exhausted com-
pliance) and 0 < RAP < 0.4 (transitional compliance), are mostly consistent with the
theoretical progression of cerebral compensatory reserve. For example, in the exhausted
compliance state, ICP values were elevated, AMP was reduced, CPP tended to decrease,
and CA indices consistently indicated impaired cerebrovascular reactivity. Similarly, PbtO,
and NIRS-derived oxygenation measures often showed reduced brain tissue oxygenation
or altered responsiveness.

These combined parameter patterns reflect critical depletion of cerebral compliance
and impaired autoregulation, which may predict a higher risk of secondary brain injury or
poor neurological outcomes. Likewise, in the transitional RAP range (0 < RAP < 0.4), these
parameters highlight a phase in which patients are moving from impaired to exhausted
compliance. Monitoring these trends during this phase may allow early identification of
deterioration, thus providing a potential window for timely interventions.
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Therefore, integrating RAP with multimodal monitoring, including ICP, AMP, CPP,
CA indices, and oxygenation measures, not only offers physiological insight but also serves
as a potential prognostic tool in the management of TBI patients.

5. Limitations

Even though this study yielded several important findings, it was not without limi-
tations. Firstly, although the ICP-ABP-derived parameters included 379 data points, the
NIRS-derived parameters collectively had only 133, and PbtO, had 116, which are rela-
tively small sample sizes for drawing reliable conclusions from this analysis. Secondly, in
the sub-group analysis, the RAP < 0 and 0 < RAP < 0.4 categories often yielded results
that differed from those observed in the RAP > 0.4 group and the overall population.
These discrepancies may be caused by the fact that the former two states (RAP < 0 and
0 < RAP < 0.4) reflect a condition of exhausted cerebral compliance, where cerebrovascular
dysfunction is present, potentially leading to altered physiological relationships. However,
these differences could also be attributed to the limited data available for these states.
Dividing patients into subgroups inevitably reduced sample sizes, which limited statis-
tical power and restricted the generalizability of the findings, particularly in the smaller
RAP < 0 and 0 < RAP < 0.4 groups. Nevertheless, this investigation was conducted on
the largest available multi-center high-frequency multimodal monitoring dataset to date,
with the next largest being the CENTER-TBI high-resolution ICU cohort, which contains
approximately 200 viable patient datasets. Taken together, these findings emphasize both
the necessity of careful interpretation of subgroup analyses and the need for larger, multi-
center collaborative studies to validate and expand upon these results while preserving
adequate statistical power.

Next, RAP, particularly when calculated at higher temporal resolutions, is susceptible
to artifacts arising from transient signal disturbances, sensor noise, or abrupt physiological
changes. Such artifacts can potentially compound the results by introducing spurious
fluctuations in RAP, which may affect both descriptive and temporal analyses. In this study;,
manual artifact removal was applied by experts in this field, which includes the exclusion
of clearly erroneous signal segments and preprocessing to remove extreme outliers using
custom scripts. Nevertheless, residual artifacts may still influence high-resolution RAP
measurements, and caution should be exercised when interpreting fine-scale temporal
dynamics. Future studies could benefit from more advanced artifact detection algorithms
and multimodal validation to further ensure the reliability of high-frequency RAP data.

Furthermore, much of this work focuses on the linear population-wide modeling
of data. Unique facts surrounding individual patients are lost, with the methodological
assumption that sustained biologically meaningful relationships will be consistent and
similar across the population. As databases increase with MMM, and a better understand-
ing of the driving factors behind individualized measure responses is gained, work in
this area needs to explore selective patient characteristics to more completely document
real-time interactions.

Lastly, like all work exploring TBI, there are numerous heterogeneous factors associ-
ated with the patient that could impact cerebral pathophysiology. These factors, such as
pre-existing neurological conditions, incomplete datasets, or early mortality, can introduce
bias and denote underlying patient differences that could impact RAP as a measure. Future
research should explore these relationships and document their impact.

6. Conclusions

In this analysis, we set out to describe the multivariate relationship between RAP
and other aspects of cerebral physiology. There were consistent patterns of the cerebral
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physiologic parameters across the three predefined RAP states for the majority of cases,
which were also observed in the reverse analysis (i.e., consistent pattern of RAP values
across the sub-groups of other parameter thresholds). Furthermore, both the clustering
and high-frequency temporal response analyses revealed physiologically coherent and
largely stable patterns across all examined temporal resolutions. These findings collectively
suggest that RAP maintains a consistent and meaningful relationship with other cerebral
physiological parameters. Additionally, the observed differences between the impaired
and exhausted compliance states highlight the potential of these relationships to inform
bedside monitoring, patient trajectory modeling, and future interventional studies. While
further research is needed to translate these findings into clinical practice, this analysis
demonstrates RAP’s potential as a valuable physiological marker.
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