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Abstract

Retrieval-Augmented Generation (RAG) offers a promising strategy to harness large lan-
guage models (LLMs) for delivering up-to-date, accurate clinical guidance while reducing
physicians’ cognitive burden, yet its effectiveness hinges on query clarity and structure.
We propose an adaptive Self-Query Retrieval (SQR) framework that integrates three refine-
ment modules—PICOT (Population, Intervention, Comparison, Outcome, Time), SPICE
(Setting, Population, Intervention, Comparison, Evaluation), and Iterative Query Refine-
ment (IQR)—to automatically restructure and iteratively enhance clinical questions until
they meet predefined retrieval-quality thresholds. Implemented on Gemini-1.0 Pro, we
benchmarked SQR using thirty postoperative rhinoplasty queries, evaluating responses for
accuracy and relevance on a three-point Likert scale and for retrieval quality via precision,
recall, and F1 score; statistical significance was assessed by one-way ANOVA with Tukey
post-hoc testing. The full SQR pipeline achieved 87% accuracy (Likert 2.4 ± 0.7) and
100% relevance (Likert 3.0 ± 0.0), significantly outperforming a non-refined RAG baseline
(50% accuracy, 80% relevance; p < 0.01 and p = 0.03). Precision, recall, and F1 rose from
0.17, 0.39 and 0.24 to 0.53, 1.00, and 0.70, respectively, while PICOT-only and SPICE-only
variants yielded intermediate improvements. These findings demonstrate that automated
structuring and iterative enhancement of queries via SQR substantially elevate LLM-based
clinical decision support, and its model-agnostic architecture enables rapid adaptation
across specialties, data sources, and LLM platforms.

Keywords: self-query retrieval; retrieval-augmented generation; large language models;
clinical decision support; decision support systems

1. Introduction
The modern healthcare system is experiencing an unprecedented increase in demand

due to the expanding aging population, the incidence and prevalence of chronic and infec-
tious diseases, the emergence of new conditions, and the demand for elective procedures [1].
With the recent COVID-19 pandemic, worldwide medical systems noticed their lack of
preparedness for providing prompt care when needed [2]. Moreover, the constant changes
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in evidence-based practices, combined with the heavy workload physicians face, can lead
to burnout and increase the risk of errors, such as misdiagnoses or treatment mistakes [3].
Artificial Intelligence (AI) presents a promising solution, as it mimics human reasoning,
judgment, and behavior and can easily handle the increasing volume of medical data,
aiding physicians in accessing and maintaining updated knowledge [1,4–7]. Advances in
computing power and the growing volume of electronic health record (EHR) data have
made AI a practical tool in healthcare [8]. Estimates suggest that AI could boost labor
productivity by 11–37% by 2035 and add $17.7 trillion to the global economy by 2030 [4].
By improving diagnostic accuracy, streamlining physician workflows, reducing errors, and
supporting patient monitoring, AI can help meet rising healthcare demands in a more
cost-effective way [9,10].

A notable area of AI in medicine involves Large Language Models (LLMs), Natural
Language Processing (NLP) models designed to comprehend and generate human lan-
guage [11,12]. By rapidly curating and synthesizing relevant evidence, LLMs can mitigate
the medical information overload [13,14]. Recent studies have demonstrated the capabili-
ties of these models in providing nuanced guidance for appropriate treatment decisions,
showcasing their potential for clinical decision support [15–21]. However, LLMs are not
without limitations, as their code to generate responses based on next-word predictions
sometimes precedes factuality, leading to the generation of fabricated responses when
lacking information, e.g., hallucination, which can result in deviations from established
medical practices [12,22,23]. Hallucinations can be presented as subtle errors and stated
in a convincing manner that makes users believe in their veracity, and this is especially
dangerous in clinical decision-making [22]. In a systematic review analyzing the ethical
considerations of LLM applications in surgery, the accuracy of the models and their con-
tent was identified as the most frequently cited concern, demonstrating the significant
weight this obstacle carries for proper implementation into clinical settings [23]. Even when
baseline domain knowledge appears strong on medical benchmarks, recent work shows
that clinically irrelevant properties, such as typos, slang, or writing style, can sway LLM
treatment recommendations, revealing brittleness not captured by standard exams [24].
These observations make explicit evaluation and reporting standards essential in healthcare
applications [25,26].

Fine-tuning, prompt engineering, in-context learning (ICL), and retrieval-augmented
generation (RAG) are techniques implemented to address these limitations [27–30]. RAG
enables LLMs to access up-to-date, external, and validated sources of information that can
be tailored to their specific use cases. This ensures that the information retrieved from the
models is accurate and controlled, therefore increasing LLMs’ safety, reliability, explainabil-
ity, and accountability [28,30–35]. Compared to fine-tuning, RAG has proven to be superior
in enhancing the models’ accuracy and reducing hallucinations [36–39]. Additionally, LLMs
become more flexible and adaptable to new knowledge while reducing resource inten-
sity, as the models do not need constant and extensive retraining [37,38]. Recent studies
have demonstrated the potential of RAG-LLMs for enhancing clinical decision support in
different areas, including nephrology, surgery, and oncology [31,32,40,41]. Despite these
advantages, RAG models are limited by the complexity of optimizing the functionality
of the components in their architecture [28]. A recent systematic review of point-of-care
QA systems found that most evaluations still use unrealistically simple questions, rarely
communicate uncertainty, and often lack user studies, highlighting a gap between research
prototypes and clinical needs [42]. This is not different when it comes to RAG; performance
is sensitive to retrieval design choices, and evaluation is not yet standardized [43].

In specialized areas such as medicine, the inherent semantic gap between natural
language user queries and the document structure within the knowledge database may
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limit the effectiveness of RAG models in retrieving the most pertinent information [44–46].
This may be caused by the input query not fully capturing the specific knowledge required
for retrieval, leading to less relevant documents being retrieved and ultimately poor per-
formance from the LLM [44,46]. Therefore, metadata-aware retrieval can be critical in
clinical contexts, as naïve RAG pipelines often struggle when document metadata, such as
date, patient population, or study design, must guide the selection of the most relevant
evidence [47,48]. Self-query retrieval (SQR) addresses this gap by having the LLM generate
follow-up, structured queries by extracting metadata elements from the initial user question
to filter and retrieve precisely targeted documents. In a typical clinical scenario, where time
is essential, offloading the prompt-structuring task to the model minimizes cognitive and
workflow burden on physicians.

In this work, we propose a self-query retrieval framework in which the RAG-LLM
automatically reformulates free-text clinical questions into established clinically oriented
schemas, such as PICOT (population, intervention, comparison, outcome, time), SPICE (set-
ting, population, intervention, comparison, evaluation), or specialty-specific frameworks,
and then uses these elements to guide document retrieval [49,50]. To further optimize
retrieval, we integrate iterative query refinement (IQR), which allows the model to dynami-
cally adjust its search terms in response to initial results and user feedback until it meets an
established quality score [44,45,51,52]. This approach ensures that retrieved information
aligns closely with clinicians’ needs, enhancing both the precision and explainability of
LLM-generated recommendations. Additional work has found that follow-up questions
and adaptive retrieval improve the quality of the answers on knowledge-intensive tasks,
strengthening the case for structured, metadata-aware querying for clinical uses [53].

This paper is the first one to present advanced techniques for developing a standard-
ized, generalizable RAG framework for clinical decision support. Here, we detail our
self-query retrieval and iterative refinement methods and demonstrate how they improve
accuracy, relevance, and information retrieval performance metrics in a specific clinical
setting addressing patient questions post-rhinoplasty.

Contributions:

(a) Adaptive Self-Query Retrieval: Clinically oriented schemas for metadata-aware
retrieval are implemented, with a robust fallback mechanism when reliable auto-
population is not feasible.

(b) Iterative Query Refinement: Implementation of a self-critiquing/rewriting loop that
updated the structured queries and related data until a predefined quality criterion
was met.

(c) Composite context scoring: Evidence is prioritized using a principled blend of seman-
tic similarity, lexical overlap, and length normalization to mitigate chunk-length bias.

(d) Model-agnostic, modular design: LLM, embedders, and corpora are swappable
without major architectural changes.

(e) Dual evaluation: Clinician-facing metrics (accuracy and relevance) are paired with
information-retrieval metrics (precision, recall, and F1) to link clinical utility with
retrieval quality.

(f) Empirical gains over a basic RAG baseline: Steady increase in all metrics evaluated
from the basic RAG model to the complete pipeline implementing SQR with fallback
mechanism and IQR.

(g) Statistical transparency: Standardized reporting in Results (two-sided α = 0.05; ANOVA
with Tukey for accuracy/relevance; IR metrics descriptive with clear definitions).

(h) Clinically grounded proof-of-concept: Demonstrated on postoperative rhinoplasty
queries, with a path to broader specialty-specific deployments.
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2. Methods
As model performance is highly influenced by prompt quality, delegating this task

to the model can substantially decrease clinicians’ burden while enhancing retrieval ac-
curacy [54]. To date, a standardized prompting method tailored for RAG models has not
been established. To address this challenge, we are proposing a self-query retrieval (SQR)
framework that restructures prompts into high-quality, clinically oriented question frame-
works and integrates an iterative query refinement (IQR) layer to dynamically adjust and
enhance queries based on intermediate retrieval results and the model’s feedback. To test
our pipeline, we utilized two different clinical question frameworks, PICOT (Population,
Intervention, Comparison, Outcome, Time) and SPICE (Setting, Population, Intervention,
Comparison, Evaluation), due to their proven performance [49,50]. However, because of
the model’s agnostic nature, it can adopt alternative custom formats tailored to specific
clinical settings. Figure 1 summarizes our proposed framework.

Figure 1. Implementation of our proposed self-query retrieval with iterative query refinement, using
PICOT and SPICE frameworks for enhancing retrieval in RAG-LLM for clinical decision support [55].

2.1. Study Design and Setting

We developed three RAG models, each leveraging SQR with a different prompt
strategy. The first model restructured the prompts based on the PICOT format, while the
second model restructured them using the SPICE framework. Conversely, the third model
consisted of the complete pipeline, where queries were initially restructured using PICOT,
reverted into SPICE whenever at least two PICOT components could not be determined,
and incrementally adjusted using IQR. The three different model pipelines, along with a
naive RAG model, were implemented on Gemini-1.0 Pro.

We developed a set of 30 queries addressing common postoperative concerns among
rhinoplasty patients at our clinic, as well as potential complications that can arise following
the procedure. Questions ranged from simple to complex. The model was provided with
the type of procedure performed (e.g., open rhinoplasty) and the timing of the procedure
(e.g., “1 week ago”). Each question was presented to the four models without employing
any additional prompting engineering techniques. After every question was asked to one
model, another was tested.
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2.2. Pipeline Implementation
2.2.1. Query Decomposition and Self-Query Generation

Upon receiving a free-text clinical question (denoted as Q), the first step is to instruct
the LLM to reformulate that question into a structured PICOT string (Population, Interven-
tion, Comparison, Outcome, Time). For example, given “I had open rhinoplasty two days
ago. How should I manage my swelling and pain?”, the LLM is prompted to extract:
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Time: “48 h post-op.”

This PICOT formulation becomes the self-query for retrieval, replacing the original
raw text. In cases where the LLM cannot identify at least two PICOT components (i.e., if
neither a Comparator nor an Outcome can be reliably extracted), the system automatically
falls back to a SPICE schema. The SPICE-derived string, similarly, is used to guide retrieval.
This two-stage approach ensures that our pipeline can handle both rigorously structured
clinical inquiries and broader, less explicit questions, guaranteeing that the subsequent
retrieval steps always receive a coherent prompt tailored for the specific clinical setting
in place.

2.2.2. Document Chunking via Recursive Character Splitting

For this initial testing, our knowledge corpus C consisted of authoritative sources on
rhinoplasty. All documents in C are preprocessed through hierarchical chunking. Each
document is first divided along paragraph boundaries; if a paragraph exceeds 1000 charac-
ters, it is further split at sentence breaks and, if necessary, at commas or semicolons until
each fragment falls below the 1000-character threshold. A fixed overlap of 100 characters is
maintained between adjacent chunks to preserve contextual continuity at chunk boundaries.
This recursive character splitting (RCS) method ensures that no clinically relevant sentences
are lost while keeping each chunk small enough for efficient embedding and retrieval.

2.2.3. Embedding Index Construction

Once chunking is complete, we compute a dense-vector embedding for each chunk
using the Vertex AI Embeddings service (e.g., the text-embedding-004 model). Each chunk
di is mapped to a vector Vdi

ϵ RD. At the same time, the structured query, either PICOT
or SPICE, is flattened into a single “self-query” string, which is likewise embedded to
produce VQ ϵ RD. All chunk embeddings, along with relevant metadata tags (such as
“postoperative day” or “rhinoplasty”), are stored in a Chroma vector index to enable
efficient nearest-neighbor retrieval and metadata-based filtering during subsequent steps.

2.2.4. Initial Retrieval and Composite Context Scoring

With the self-query embedding VQ in hand, we perform a cosine-similarity search
against all chunk embeddings in the index. Specifically, for each chunk di, we compute
Equation (1).

Ssem(Q, di) = cos(VQ , Vdi
) =

(VQ × Vdi
)∣∣VQ

∣∣ ∣∣Vdi

∣∣ , (1)

where
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• Q is the free-text clinical question;
• di refers to the embedded chunks.

and retrieve the top-k chunks whose embeddings are most semantically similar to VQ . To
refine the candidate set, each of the top-k chunks is then scored with a composite retrieval
function (Equation (2)).

S(di) = 0.5 Ssem(Q, di) + 0.3 Slex(Q, di) + 0.2 Slen(di), (2)

where

• Slex(Q, di) is the lexical overlap, defined as the proportion of shared keywords between
the flattened query and the chunk di.

• Slen(di) is a length-normalization term, equal to min (|di|, 1000) / 1000, which dis-
courages overly long passages from dominating retrieval.

Through ablation testing, we found that assigning 50% weight to the semantic component
prioritizes conceptual alignment with the query, 30% to lexical overlap anchors retrieval
in precise, factual terms, and 20% to length normalization prevents chunk length bias.
This weighting strikes an effective balance between relevance and conciseness, producing
high-precision contexts for downstream synthesis.

2.2.5. Initial Answer Generation and Scoring

The top-m chunks (commonly m = 3) ranked by S(di) are concatenated, along with
the flattened self-query, into a composite prompt for the Gemini 1.0-pro 002 LLM. This
prompt is structured to ask the model, for instance, “Using the following retrieved passages
(listed in order of relevance), please provide evidence-based postoperative guidance for the
query. Cite which chunk supports each recommendation.” The LLM’s response, denoted
A0, is then evaluated for relevance and factual alignment. We compute a confidence score
s0 Via two methods: re-embedding A0 to measure cosine similarity against VQ and/or
each evidence embedding, and, when necessary, invoking a smaller cross-encoder to verify
that each claim in A0 is supported by at least one retrieved chunk. The resulting s0 ∈ [0, 1]
quantifies how well the initial answer aligns with the evidence set.

2.2.6. Adaptive, Corrective Self-Refinement Loop

In the adaptive, corrective self-refinement loop, the pipeline repeats retrieval and
answer synthesis for up to ten iterations (Tmax = 10), ensuring that each pass corrects previ-
ous errors and incrementally improves factual grounding. At the start of each cycle, the
LLM is prompted to critique its prior response by identifying unsupported or ambiguous
statements and suggesting necessary corrections. This feedback is then integrated into the
original query Q to produce a refined query Qt, which adds domain-specific terms or clari-
fications that address gaps in the previous answer. Once Qt is formed, cosine similarities
between its embedding and every document-chunk embedding are recomputed, and each
chunk is re-ranked according to the composite score S = 0.5·Ssem + 0.3·Slex + 0.2·Slen. The
top-ranked chunks constitute an updated evidence set Dt

retrieved, which is then concatenated
with the refined query to form a revised prompt. Gemini produces a new answer At, in
response to this prompt, and a corresponding confidence score st is calculated by measuring
alignment with the retrieved context (e.g., Via cosine similarity or a claim-verification sub-
routine). Throughout all ten passes, the tuple (t, Qt, At, st) is logged, and upon completion
of the tenth iteration, the answer with the highest confidence score is selected as the final
output along with its supporting evidence. Empirical convergence testing has shown that,
by iteration ten, both the composite retrieval score S and the phrasing of the refined query
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and answer exhibit negligible change; accordingly, imposing the ten-step cap balances
iterative improvement against computational cost and latency.

2.2.7. Fallback Mechanism and Final Answer Synthesis

Whenever the PICOT decomposition fails to extract at least two coherent components
(e.g., Population, Outcome, or Time), the pipeline reverts to SPICE. Under SPICE, the LLM
extracts Setting, Population, Intervention, Comparator, and Evaluation from the original
question. This SPICE string then replaces PICOT as the self-query, and all subsequent
steps (composite scoring, answer generation, and iterative refinement) proceed identically.
By embedding this fallback logic, our system ensures robust handling of both granular,
guideline-style clinical questions and broader patient inquiries.

Once convergence is reached or the iteration limit is met, we select the answer At

associated with the highest confidence score st. The final output is accompanied by cita-
tions to the specific chunks that support each recommendation, preserving transparency
and enabling clinician review. All intermediate logs, including structured sub-queries,
retrieved chunk IDs, composite scores, and LLM outputs, are retained for auditability and
future analysis.

2.2.8. Implementation Details

The entire pipeline is orchestrated in Python 3.10.18, utilizing the Vertex AI API
for prompt-based decomposition and answer synthesis, as well as a Chroma index for
vector storage and nearest-neighbor retrieval. Embeddings are generated via Vertex AI
Embeddings (text-embedding-004), and cosine similarity calculations are performed with
NumPy operations. Composite scoring and iterative logic are handled by a driver script
that monitors convergence and enforces the ten-step cap.

2.3. Evaluation Tools and Outcome Metrics

To evaluate the medical accuracy of the models’ responses, we utilized a 3-point
Likert scale, where 1 point represented an entirely wrong response that contradicted es-
tablished medical knowledge, 2 points represented a somewhat accurate response that
contained a mix of correct and incorrect information, and 3 points represented a completely
accurate response that matched the information reference sources and known practice.
Alternatively, to determine the relevance and value of the responses to each specific clin-
ical query, we scored them on a 3-point Likert scale with the following values: 1 point,
irrelevant, the answer did not provide helpful information; 2 points, somewhat relevant,
the answer offered some general information but lacked specific guidance; 3 points, rele-
vant, the answer directly addressed the clinical scenario and provided helpful, actionable
steps. We used as ground truth authoritative sources on rhinoplasty, including “Essen-
tials of Septorhinoplasty: Philosophy, Approaches, Techniques,” Postoperative Care and
Management; “Plastic Surgery: A Practical Guide to Operative Care,” Rhinoplasty; “Rhino-
plasty Cases and Techniques,” Postoperative Care; “Plastic Surgery, Volume 2: Aesthetic
Surgery (Fifth Edition),” Open Rhinoplasty Technique, Closed Rhinoplasty Technique, and
Secondary Rhinoplasty.

We evaluated the models’ information retrieval performance using precision, recall,
and F1 score. Precision was defined as the fraction of retrieved items that were indeed
relevant (Precision = TP/(TP + FP)), recall was the fraction of all relevant reference items
actually retrieved by the model (Recall = TP/(TP + FN)), reflecting completeness of retrieval,
and F1 score represented the harmonic mean of precision and recall to balance these
two aspects (F1 = (2 × Precision × Recall)/(Precision + Recall)). We considered a true
positive (TP) any passage or recommendation retrieved by the models that appears in the
authoritative sources provided; a false positive (FP) any retrieved item not present in those
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sources or irrelevant for the clinical scenario; and a false negative (FN) any relevant item
that the model failed to retrieve. Higher precision denoted fewer irrelevant results, higher
recall represented fewer missed items, and a higher F1 score indicated an optimal trade-off
between precision and recall.

2.4. Statistical Analyses

For medical accuracy and relevance, we calculated and recorded the mean, mode,
standard deviation (SD), and range using a Microsoft Excel spreadsheet (Version 2503
Build 16.0.18623.20266 64-bit). To compare the models’ performance, we applied a one-way
analysis of variance (ANOVA) and Tukey’s post hoc analysis for pairwise comparisons
when applicable. Both tests were calculated using Microsoft Excel’s statistical package. A
p-value of less than 0.05 was considered statistically significant. As information retrieval
performance metrics primarily serve to illustrate practical retrieval improvements rather
than assess inferential differences, we did not conduct formal hypothesis tests and reported
only descriptive summary statistics.

3. Results
All experiments were conducted on 30 unique clinical queries addressing patient

concerns following rhinoplasty. Unless stated otherwise, all hypothesis tests were two-
sided with α = 0.05. Continuous outcomes are summarized as mean ± SD and categorical
variables as n (%). Medical accuracy and relevance were compared across models using
one-way ANOVA with Tukey’s post hoc tests for pairwise contrasts; we report group
summaries with corresponding p-values. Information-retrieval metrics (precision, recall,
and F1) are presented descriptively to illustrate retrieval behavior and were not subjected
to formal hypothesis testing. Full analytic details are provided in Methods Section 2.4.

3.1. Medical Accuracy

The model integrating the full SQR pipeline with PICOT, SPICE as a fallback mecha-
nism, and concomitant IQR outperformed the other three models—SQR for PICOT, SQR
for SPICE, and naive RAG—achieving a mean accuracy score of 2.40 on a three-point Likert
scale with a standard deviation (SD) of ±0.72. This meant that 53% (n = 16) of the model’s
responses were rated completely accurate, while 87% (n = 26) were at least somewhat accu-
rate. Although it proved to be superior to the other models, it was only statistically superior
to the naive RAG model, with a p-value of less than 0.01. The second-best performing
model utilized SQR to restructure prompts into the SPICE framework, achieving a mean
score of 2.17 ± 0.79. Specifically, 40% (n = 12) of the responses were fully accurate, and
77% (n = 23) were at least somewhat accurate. This was also statistically superior to the
naive model (p < 0.05). The model using SQR to restructure queries into PICOT achieved a
mean accuracy score of 2.07 ± 0.74, with 30% (n = 9) of the responses being fully accurate
and 67% (n = 23) at least somewhat accurate. Conversely, the naive model’s accuracy was
1.63 ± 0.72, and only 13% (n = 4) of the responses were considered fully accurate. Figure 2
illustrates the accuracy of the models.

Increasing the accuracy from 13% (50%) to 53% (87%) ensures that the information
retrieved from the models is safer to use for decision support.
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Figure 2. Bar graph showing the models’ accuracy scores on a 3-point Likert scale: “Basic” naïve RAG
model; self-query retrieval (SQR) using the PICOT framework; SQR using SPICE; SQR using PICOT
with SPICE as a fallback mechanism and iterative query refinement (IQR). A1: accuracy score of 1,
A2: accuracy score of 2, A3: accuracy score of 3. There is a distribution shift toward higher accuracy
from Basic RAG to PICOT, SPICE, and IQR, with a corresponding drop in low-accuracy ratings.

3.2. Clinical Relevance

Similarly to accuracy, the model integrating the full SQR pipeline, with SPICE as
a fallback mechanism to PICOT and IQR, achieved the highest relevance score of 100%,
outperforming the other models and being significantly superior to the naive RAG model
(p = 0.03). Restructuring queries into SPICE led to the second most relevant responses,
with a mean of 2.80 ± 0.55. Twenty-six were fully relevant (87%), and only two (7%) were
irrelevant. The model using the PICOT framework performed very closely to the naive
model, with a mean score of 2.63 ± 0.72 vs. 2.60 ± 0.81, respectively. Specifically, 80%
(n = 24) of the naive model’s responses and 77% (n = 23) of the PICOT’s were fully relevant,
while 7% (n = 4) of the latter and 20% (n = 6) of the former were irrelevant. Figure 3 shows
the relevance of the models’ responses.

Figure 3. Bar graph showing the models’ relevance scores on a 3-point Likert scale: “Basic” naïve
RAG model; self-query retrieval (SQR) using the PICOT framework; SQR using SPICE; SQR using
PICOT with SPICE as a fallback mechanism and iterative query refinement (IQR). R1: relevance score
of 1, R2: relevance score of 2, R3: relevance score of 3. Structuring queries with PICOT and SPICE
reduced low-relevance responses; IQR yielded uniformly high relevance across all prompts.
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By increasing the relevance of the information retrieved from 80% to 100%, the model
can significantly reduce the time spent retrieving clinically useful information.

3.3. Information-Retrieval Performance

For information retrieval, the full SQR pipeline with fallback and IQR demonstrated
the highest performance. The naive RAG model, utilizing unstructured free-text prompts,
achieved a precision of 0.17 and a recall of 0.40, resulting in an F1 score of 0.24. This
indicates that fewer than one in five retrieved passages were relevant, and less than half of
all relevant items were found. Conversely, integrating the fallback mechanism and IQR
increased the precision to 0.53, recall to 1.00, and consequently the F1 score to 0.70. In
practical terms, this adaptive SQR technique reduced the proportion of irrelevant results
nearly in half (from 83% false positives to 47%), while ensuring that no relevant evidence
was missed.

On the other hand, structuring prompts with the PICOT framework doubled the
precision to 0.39 and improved recall to 0.56, resulting in an F1 score of 0.46. SPICE-
formatted prompts further increased these metrics to 0.46, 0.75, and 0.57, respectively.
These results demonstrate that as prompts become more structured, and especially when
refined iteratively, the RAG-LLM provides more accurate and comprehensive clinical
guidance. Figure 4 provides a graphic comparison of these results.

Figure 4. Information Retrieval performance. Bars show precision (light red) and recall (dark red);
the line shows F1 (harmonic mean of precision and recall). Structuring queries with PICOT or SPICE
mainly increases recall by aligning the prompt with clinically salient elements, reducing missed
relevant items. Adding adaptive iterative-query refinement (IQR) further improves precision and
recall by iteratively clarifying the query, yielding the highest F1. Metrics are descriptive; definitions
appear in Methods.

3.4. Self-Query Retrieval and Iterative-Query Refinement

To illustrate how the IQR improves original user queries, Table 1 presents the different
restructured prompts, along with their worst- and best-scoring iterations and their final
retrieved responses.
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Table 1. Demonstration of the SQR restructured prompts and iterative refinement. Question 1 shows
the model using the PICOT framework and iterative query refinement to increase the composite
context score by 16%. Question 2 illustrates the self-query retrieval into the SPICE schema and
its iterative refinement, resulting in a 34% enhancement. Question 3 demonstrates the fallback
mechanism once the model encounters two missing components of the PICOT framework and the
subsequent iterative refinement.

1. Original query: “I had aesthetic rhinoplasty with an open technique three days ago. What should I apply to the incision?”
Worst scoring iteration:
Population: Patients three days post-open rhinoplasty
Intervention: Topical applications to the incision site
Comparison: No treatment/standard postoperative
care (this is implied as the query asks what can be
applied, suggesting they are not currently using
anything beyond standard care) or
surgeon-recommended treatment (as the query
specifically asks about surgeon recommendations,
comparing other options to the surgeon’s advice is
relevant)
Outcome: Improved healing and minimized scarring
Time: Three days post-surgery
Refined Query = Three days after open rhinoplasty,
what can I apply to my incision to aid healing and
minimize scarring? Is there anything my surgeon
specifically recommended I use?
Score = 0.4847764803303612

Best scoring iteration:
Population: Patients three days post-open rhinoplasty
Intervention: Topical application of ointments/creams
or other treatments to the surgical incision
Comparison: Keeping the incision dry, or alternative
surgeon-prescribed treatments (implicitly including
standard postoperative care)
Outcome: Improved healing and minimized scarring
Time: Three days post-operatively
Refined Query = Three days after open rhinoplasty,
what can I apply to my incision to aid healing and
minimize scarring? Should I be using an ointment,
keeping it dry, or something else prescribed by my
surgeon?
Score = 0.5628299422123852

Final Response:
After an open rhinoplasty, patients should do the
following to the incision three days after the
procedure:
Gently clean the visible sutures in the columella (if
present) and nasal vestibule to prevent crusting.
To clean the sutures, use a solution of half-strength
hydrogen peroxide (the patient may mix equal
amounts of water and hydrogen peroxide) applied
with a cotton-tipped applicator.
Instruct patients before surgery that doing this
consistently will make suture removal faster and less
painful, and they will almost always comply.
After cleaning the sutures, apply a thin coating of
antibacterial ointment to the sutures.
Clean in this way two to three times per day to prevent
crust accumulation in most cases.
Keep the cast dry if one has been applied.

2. Original query: “I had aesthetic rhinoplasty with an open technique three days ago. When can I wear my glasses?”
Worst scoring iteration:
Setting: Postoperative care, outpatient.
Population: Patients who have undergone open
rhinoplasty.
Intervention: Wearing glasses resting on the bridge of
the nose.
Comparator: Not wearing glasses or wearing glasses
without a bridge contact (e.g., taped to forehead).
Evaluation: Time until safe resumption of wearing
glasses on the bridge of the nose post-rhinoplasty (i.e.,
without risk of complications such as displacement of
nasal bones or cartilage).
Refined Query = I had open rhinoplasty three days
ago. When can I safely rest glasses on the bridge of
my nose again?
Score = 0.3924790531410891

Best scoring iteration:
Setting: Postoperative (3 days post-op)
Population: Adult patient who underwent open
rhinoplasty
Intervention: Wearing glasses
Comparator: Not wearing glasses/Alternative
methods of vision correction (e.g., contact lenses)
Evaluation: Time until safe resumption of glasses
wearing; Strategies to minimize nasal pressure
Refined Query = I had open rhinoplasty 3 days ago.
How long should I wait before wearing glasses, and
what can I do to minimize pressure on my nose in
the meantime?
Score = 0.5274241349913857

Final Response:
6 weeks: This is the general timeframe most surgeons
recommend waiting before wearing glasses again after
open rhinoplasty. This allows the nose adequate time
to heal and minimize the risk of pressure or
displacement on the newly restructured tissues.

3. Original query: “I had aesthetic rhinoplasty with an open technique three days ago. I have a persistent headache. What should I do?”
Fallback and worst scoring iteration:
Population: Patients who have undergone open
aesthetic rhinoplasty
Intervention: N/A (The intervention is the rhinoplasty
itself, and we are looking at a consequence, not
comparing interventions)
Comparison: N/A (Not comparing different
interventions or a lack of intervention)
Outcome: Persistent headache
Time: Three days postoperative
→ Missing components: 2
↪→ Iteration 0 PICOT failed/incomplete: Two of the
PICOT components are missing.
→ Switching to SPICE fallback.
Setting:Postoperative (3 days post-op)
Population: Patients who have undergone open
rhinoplasty
Intervention: Experiencing persistent headache
Comparator: (Implicit) Not experiencing a
headache/Normal postoperative course
Evaluation: Normality of the headache,
Management/treatment options for the headache
Refined Query = “Three days after open rhinoplasty,
I’m experiencing a persistent headache. Is this
normal, and what should I do about it?”
Score = 0.429184089201252

Best scoring iteration:
Setting: Postoperative (3 days post-op) open
rhinoplasty
Population: Patients undergoing open rhinoplasty
Intervention: Headache management strategies
Comparator: N/A (The question is about managing
an existing headache, not comparing interventions.)
Evaluation: Headache resolution/reduction;
Normality of persistent headache post-op. (Implicitly,
the query also seeks to evaluate whether contacting
the surgeon is necessary).
Refined Query = “I had open rhinoplasty three days
ago and I have a persistent headache. Is this normal,
and what can I do to alleviate it? Should I contact
my surgeon?”
Score = 0.526509184295481

Final Response:
I understand you are concerned about sun exposure
after your open aesthetic rhinoplasty a week ago.
Based on the information in the provided context, here
is what I can tell you:
Excessive heat and sun exposure to the nose should be
avoided for 3 months after the operation This includes
sunbathing, solarium treatments, and even prolonged
exposure to direct sunlight.
It is important to protect your nose while outdoors.
Wear a wide-brimmed hat and apply sunscreen with
an SPF of 30 or higher to the exposed areas of your
face, including your nose.

4. Discussion
This study evaluated a self-query retrieval (SQR) pipeline with iterative-query refine-

ment (IQR) to address the semantic gap that impedes naive RAG-LLM performance in a
clinical decision-support setting. By restructuring patient queries into PICOT and reverting
to SPICE when needed, and allowing the model to critique and refine its own prompts, we
demonstrated marked improvements in accuracy, relevance, and information-retrieval (IR)
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metrics for post-rhinoplasty questions. In particular, the full SQR + IQR pipeline achieved
a mean accuracy of 2.40 ± 0.72, a perfect recall of 1.00, and an F1 score of 0.70, substantially
outperforming both naive RAG (accuracy 1.63 ± 0.72, recall 0.40, F1 0.24) and partial
SQR implementations. These results suggest that embedding structured, metadata-aware
prompts and iteratively refining them can substantially enhance retrieval and potentially
reduce the likelihood of clinically unsafe or irrelevant recommendations.

4.1. Interpretation of Findings

Consistent with prior findings that prompt quality strongly influences LLM outputs,
the introduction of SQR alone, whether via PICOT or SPICE, already doubled the precision
(from 0.17 to 0.39–0.46) and more than doubled the recall (from 0.40 to 0.56–0.75) [54,56–59].
In our pipeline, forcing the LLM to decompose the user’s question into clinically meaningful
components ensured that retrieval focused on the most salient metadata, such as procedure
type, postoperative day, and target outcomes, thus narrowing the candidate document
set to highly relevant passages. In contrast, Naive RAG treats the entire free-text query
as a single embedding, making it prone to retrieving semantically similar but clinically
irrelevant content [60].

Iterative refinement further improved performance, with the full pipeline achieving
perfect recall (1.00) while reducing false positives from 83% in the naive RAG to 47%.
This result aligns with findings from Ma et al. and Peimani et al., who demonstrated
that rephrasing or rewriting queries prior to retrieval closes the semantic gap and yields
higher information retrieval (IR) quality. Specifically, Ma and colleagues demonstrated
that introducing a rewriting step before retrieval outperformed standard RAG on open
and multiple-choice questions, while Peimani et al. observed that adding domain-specific
terms improved top similarity scores. In our context, the IQR loop mimics these strategies
by having the LLM self-critique and refine, rather than relying on a single static rewritten
query [44,45]. Importantly, by the tenth iteration, both our composite retrieval score and
answer phrasing plateaued. This finding is consistent with prior convergence analyses,
which validate the ten-step cap as a practical compromise between performance gains and
computational cost [46,52].

Notably, the IQR-augmented pipeline also achieved 100% fully relevant outputs,
compared to 80% for naive RAG and 87% for SQR using SPICE, reinforcing the notion that
context and prompt specificity substantially influence outcome relevance [57]. Koopman
and Zuccon showed that in healthcare prompts, simply injecting evidence or turning
them to their negative can reduce LLM performance from 80% to 63%, illustrating that
even minor wording shifts can have a significant impact on accuracy [61]. Our structured
prompts resolve this by standardizing the query format, thereby protecting retrieval from
variations in idiosyncratic phrasing.

4.2. Comparison with Current Research

Previous work on prompt engineering has established that model responses are
highly sensitive to the wording and structure of the initial prompt, especially in healthcare
domains [54,56–59,61]. Chen et al. introduced a model-adaptive prompt optimizer (MAPO)
that tailors prompts to each LLM, demonstrating that even well-crafted prompts benefit
from model-specific tuning [54]. Our pipeline follows this logic by allowing the model to
rephrase its own query, thereby effectively adapting prompts in real-time to the LLM in
use, without requiring separate parameter tuning.

Efforts to bridge the semantic gap in RAG include multi-query rewriting [51], query-
enhanced retrieval [57], and generating question sets from knowledge databases [46].
Kostric and Balog demonstrated that rewriting conversational queries enhanced retrieval
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in passage retrieval models [51], whereas Yang et al.’s Query-Based RAG aligned a compre-
hensive question set with user input to better match documents [46]. These approaches
resonate with our SQR strategy of extracting metadata fields and reformulating queries
accordingly. Unlike static rewriting, our IQR mechanism continuously updates the prompt
based on intermediate retrieval results, therefore combining the benefits of meta-query
extraction with dynamic correction of residual errors [44,45].

Recent clinical implementations of RAG-LLMs have underscored the promise of re-
trieval to reduce hallucinations and improve answer fidelity [40]. In nephrology, Miao
et al. demonstrated that a RAG-LLM could outperform a fine-tuned model in suggest-
ing evidence-based interventions; similarly [31], Ong and colleagues showed that RAG-
enhanced LLMs improved guideline adherence in oncology [32]. However, they join other
authors’ conclusions, recognizing that optimizing RAG architectures still remains a chal-
lenge [28]. Our results extend this body of work by demonstrating that structured query
decomposition and adaptive refinement can further enhance retrieval gains in a specialized
setting such as post-rhinoplasty care.

4.3. Impact on the Medical Practice

By improving precision (0.53 vs. 0.17) and recall (1.00 vs. 0.40) compared to naive
RAG, the SQR + IQR pipeline directly addresses physician concerns about reliability and
accountability in AI-driven decision support [23,62]. In busy clinical settings, a rapid
and trustworthy answer is essential; poorly phrased prompts or inadequate retrieval can
mislead clinicians and compromise patient safety. In rhinoplasty care, where postoperative
instructions are well-defined, mis-retrieval carries a non-negligible but lower risk, enabling
us to demonstrate safety and efficacy in a controlled domain before scaling to higher-risk
specialties. Reducing false positives by nearly half not only minimizes noise but also saves
physicians time, as they do not need to strain while reading irrelevant passages, aligning
with our goal of decreasing cognitive burden and allowing physicians to focus on patient
interaction [54].

The implications extend beyond rhinoplasty. A robust SQR + IQR pipeline could
support any clinical domain with standardized care pathways (e.g., postoperative protocols
in orthopedics or chronic disease management), while still being useful in more unpre-
dictable domains due to its RAG nature and intermediate refinement architecture, such
as clinical or surgical decision support. By ensuring that no relevant evidence is missed
(e.g., perfect recall) and by maximizing precision, this approach can mitigate the risk of AI
hallucinations and enhance clinician trust. In turn, more confident adoption of RAG-LLMs
may accelerate integration of AI assistance into routine workflows, potentially improving
diagnostic accuracy, reducing preventable errors, and streamlining documentation [4,9,10].

4.4. Limitations

Despite the promising results, several limitations need to be addressed. First, our
evaluation was limited to 30 rhinoplasty queries, a number sufficient for a proof-of-concept
but small relative to the heterogeneity of clinical questions. This sample may not capture
the full spectrum of postoperative scenarios, such as late complications or complex revision
cases, potentially biasing performance estimates. Second, our knowledge corpus consisted
exclusively of authoritative rhinoplasty sources, whereas in real-world deployment, the
retrieval system would encounter a far larger and more heterogeneous document set,
including mixed-quality web articles, institutional notes, and potentially, dynamic data
from Electronic Health Records (EHR). The controlled corpus likely amplified retrieval
performance; scaling to an open corpus could introduce noise, requiring further tuning
of composite weights or more aggressive filtering. Future studies will focus on enriching
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our knowledge corpus to cover the broader spectrum of clinical decision-making, such as
including information on further diseases and procedures. Additionally, testing will not
only focus on medical accuracy and relevance but also real-time application and physician
perception of actual usability and workflow efficiency.

Third, we fixed the composite-score weights (0.5 semantic, 0.3 lexical, 0.2 length) based
on ablation tests within this domain. However, these weights may not generalize to other
specialties where lexical cues or chunk lengths behave differently. A dynamic, data-driven
weighting strategy might improve generalizability. Fourth, while our ten-iteration IQR
cap balanced performance and cost in preliminary tests, more complex queries or larger
corpora could require more iterations to converge; conversely, some queries might converge
in fewer passes, suggesting that adaptive stopping criteria (e.g., monitoring plateau rates)
could yield further efficiency gains without sacrificing accuracy. Future studies will assess
the feasibility of real-time application of the framework and determine its impact on clinical
workflow efficiency and the quality time spent with the patient.

Fifth, our results rely on a specific LLM and a chosen embedding model. Given
the known variability in embedding fidelity and LLM architectures, performance could
differ if alternative models are used [60,63]. Future evaluations should compare multiple
embedding and LLM combinations to identify optimal pairings. Finally, although our
focus on rhinoplasty minimized clinical risk, it also limits immediate generalizability to
high-stakes domains, such as oncology treatment planning or ICU management, where
erroneous guidance could have severe immediate consequences. Formal prospective
studies in those areas will be necessary before clinical deployment.

5. Conclusions
Our investigation demonstrates that combining self-query retrieval with iterative

refinement substantially improves RAG-LLM performance for clinical decision support, as
evidenced in the postoperative rhinoplasty setting. By leveraging structured metadata via
PICOT/SPICE and enabling the model to refine its own queries, we closed the semantic
gap that typically hinders naive RAG architectures. Although our work is confined to a
well-defined, low-risk domain, it lays the groundwork for more ambitious deployments
across a range of specialties. By reducing clinician workload and delivering highly accurate,
evidence-grounded answers, SQR + IQR pipelines have the potential to transform how
physicians access and apply knowledge, ultimately improving patient care and safety in an
increasingly data-driven healthcare environment.

6. Future Directions
Building on these findings, further research is warranted. Replication in other pro-

cedural domains would test the pipeline’s adaptability. Each specialty has its own set of
metadata attributes (e.g., implant type, fusion level, comorbidity scales); therefore, cus-
tomizing structured schemas beyond PICOT/SPICE, such as ONCO-PI(E) in oncology
or RADS-Q in radiology, could enhance performance. Moreover, integration with sim-
ulated real-time EHR feeds and patient-specific data (e.g., lab values, medication lists)
could personalize retrieval. For instance, post-renal transplant queries might automatically
incorporate the patient’s latest creatinine level, enabling the system to surface immunosup-
pression guidelines tailored to kidney function.

Additionally, a user study with practicing clinicians could evaluate downstream effects
on workflow efficiency, decision confidence, and patient outcomes. Metrics such as time
to answer, number of clinician corrections, and patient satisfaction would provide critical
validation beyond IR metrics. Exploring dynamic composite-score weighting, potentially
via reinforcement learning or meta-optimization, could further optimize retrieval for each
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query type, addressing the limitation of fixed weights. Fifth, expanding the IQR mechanism
to consider multimodal feedback, including clinician ratings of initial answers and click-
through data rather than solely LLM self-critique, could improve refinement accuracy and
reduce convergence time.

Finally, although our proposed framework addresses a crucial step in the RAG ar-
chitecture, further research is needed to explore how to improve various components in
the pipeline. Identifying optimal chunking methods and retrieval strategies could further
enhance the efficiency of RAG-LLMs and improve patient safety.
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