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Abstract

This study presents a hybrid ensemble learning framework for the joint detection and motor
severity prediction of Parkinson’s disease (PD) using biomedical voice features. The pro-
posed architecture integrates a deep multimodal fusion model with dense expert pathways,
multi-head self-attention, and multitask output branches to simultaneously perform binary
classification and regression. To ensure data quality and improve model generalization,
preprocessing steps included outlier removal via Isolation Forest, two-stage feature scaling
(RobustScaler followed by MinMaxScaler), and augmentation through polynomial and
interaction terms. Borderline-SMOTE was employed to address class imbalance in the
classification task. To enhance prediction performance, ensemble learning strategies were
applied by stacking outputs from the fusion model with tree-based regressors (Random
Forest, Gradient Boosting, and XGBoost), using diverse meta-learners including XGBoost,
Ridge Regression, and a deep neural network. Among these, the Stacking Ensemble with
XGBoost (SE-XGB) achieved the best results, with an R? of 99.78% and RMSE of 0.3802
for UPDRS regression and 99.37% accuracy for PD classification. Comparative analysis
with recent literature highlights the superior performance of our framework, particularly
in regression settings. These findings demonstrate the effectiveness of combining advanced
feature engineering, deep learning, and ensemble meta-modeling for building accurate
and generalizable models in voice-based PD monitoring. This work provides a scalable
foundation for future clinical decision support systems.

Keywords: Parkinson’s disease; motor severity prediction; biomedical voice measures;
hybrid ensemble learning; multimodal fusion; stacking ensemble

1. Introduction

Parkinson’s disease (PD) is a chronic, progressive, neurodegenerative disorder that
affects millions of people worldwide [1,2]. Clinically, it is characterized by motor symp-
toms such as tremor, rigidity, bradykinesia, and postural instability, alongside non-motor
symptoms including cognitive impairment, sleep disturbances, and mood disorders [3,4].
Accurate early diagnosis and continuous severity assessment are critical to delaying disease
progression and improving patient outcomes [5]. Traditional clinical evaluations, such as
the Unified Parkinson’s Disease Rating Scale (UPDRS), though effective, are subjective and
resource-intensive, necessitating the development of objective, scalable, and automated
diagnostic tools [6].
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Biomedical voice measurements have gained significant attention as a non-invasive,
accessible biomarker for PD, offering an attractive avenue for early detection and mon-
itoring [7]. Nevertheless, the heterogeneity of patient data, limited sample sizes, noise
artifacts, and inherent class imbalance pose substantial challenges to developing robust
machine learning and deep learning models [8]. In this context, there is a compelling need
for advanced methodologies capable of addressing these limitations while achieving high
diagnostic accuracy and reliability.

To address both diagnostic classification and disease severity estimation, this study
adopts a dual-dataset strategy. One dataset contains binary labels for distinguishing
between PD patients and healthy individuals, while the other includes continuous UPDRS
scores for modeling motor severity. This dual-task design supports the development of a
multitask learning framework that jointly captures complementary aspects of PD diagnosis
and progression.

Our study proposes a generalized multi-model ensemble learning framework that
integrates rigorous data preprocessing, advanced feature engineering, deep multimodal
fusion networks, and ensemble meta-learning techniques. Key innovations include the use
of Isolation Forest for outlier removal, a two-step scaling strategy (RobustScaler followed
by MinMaxScaler) to standardize feature distributions, and Borderline-SMOTE to enhance
minority class representation. A multimodal fusion model based on attention mechanisms
enables the simultaneous handling of classification and regression tasks, further refined
through specialized output branches optimized with focal and composite loss functions.

Beyond the deep fusion model, the study implements ensemble learning strategies,
combining the outputs of tree-based regressors and the fusion model through stacking and
voting mechanisms to boost generalization and stability. Experimental results demonstrate
that the proposed Stacking Ensemble with XGBoost (SE-XGB) consistently outperforms
traditional methods, achieving superior R? scores and minimal Root Mean Squared Error
(RMSE) in severity prediction, alongside high classification accuracy for PD detection.

This work not only advances automated PD diagnosis but also lays the groundwork
for future research in building intelligent clinical decision support systems leveraging
hybrid machine learning and deep learning architectures.

2. The State of the Art

The application of machine learning (ML) and deep learning (DL) techniques in PD
diagnosis and progression monitoring has garnered significant attention in recent years.
Voice analysis has emerged as a non-invasive and cost-effective modality for early detection
and assessment of PD severity. This section categorizes recent efforts in PD research into
three major areas: classification-focused models, regression-oriented severity estimation,
and dual-task and attention-based approaches.

2.1. Classification-Centered Approaches

Lambea et al. [9] proposed a hybrid feature selection framework called MIRFE, which
combines Mutual Information Gain and Recursive Feature Elimination to optimize voice-
based PD detection. Using the University of California Irvine (UCI) Machine Learning
Repository’s Parkinson’s Telemonitoring Voice Dataset, they reduced a high-dimensional
feature set by 94.69%, and their XGBoost-based classifier achieved an accuracy of 93.88%,
precision of 94.06%, recall of 93.91%, and AUC of 0.978, demonstrating the effectiveness of
targeted feature refinement techniques in acoustic-based classification pipelines.

Ali et al. [10] introduced a pipeline integrating L1-regularized SVMs with a deep
neural network to enhance feature quality for PD detection. The study utilized two publicly
available voice datasets: the UCI Parkinson’s Dataset collected by Max Little and another
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dataset collected by Sarkar et al. [11], both comprising sustained phonation samples from
PD patients and healthy controls. Their model achieved an accuracy of 97.13%, recall
of 97.40%, precision of 96.80%, and Fl-score of 97.10%, emphasizing the role of deep
refinement in achieving high prediction accuracy for PD presence.

Saleh et al. [12] evaluated 20 different machine learning models across two datasets,
the UCI Parkinson’s Voice Dataset and the Turkish Parkinson’s Speech Dataset (TuPARK),
and built ensemble voting classifiers that achieved classification accuracies of 96.41% and
97.35%, with AUCs of 0.98 and 0.99, respectively. These results highlight the benefits
of ensemble learning for voice-based classification, although the study did not address
severity prediction or incorporate attention mechanisms.

2.2. Regression-Based PD Severity Estimation

Grover et al. [13] proposed a deep neural network framework to predict the severity
of PD using the UCI Parkinson’s Telemonitoring Voice Dataset. The model was designed
to classify severity levels based on motor UPDRS and total UPDRS scores. Their DNN
achieved 62.73% test accuracy for total UPDRS and 81.67% for motor UPDRS. While their
use of voice-based features and UPDRS metrics align with clinical relevance, the method
framed severity estimation as a binary classification problem, limiting the granularity
of severity assessment. Furthermore, the model did not include multitask learning or
regression-based prediction on a continuous scale.

Mahmood et al. [14] developed an end-to-end deep learning model focused on pre-
dicting the total UPDRS scores. Utilizing the Parkinson Speech Dataset with Multiple
Types of Sound Recordings from the UCI Repository, their model achieved an RMSE of 0.10
and R? of 0.9987, demonstrating the capability of DL architectures in voice-based severity
estimation. Despite its high accuracy, this approach lacks integration with classification
objectives and does not incorporate ensemble learning or hybrid model designs.

2.3. Dual-Task and Attention-Based Models

Lei et al. [15] proposed a multitask joint learning framework to simultaneously classify
PD and predict multiple clinical scores (depression, sleep, olfaction, cognition) using
multimodal neuroimaging data. They employed the Parkinson’s Progression Markers
Initiative (PPMI) dataset, integrating feature, subject, and response-level relationships
through a unified multitask feature selection framework. Their model achieved high
classification accuracies, up to 93.89% (F-score 95.45%, AUC 96.37%), for distinguishing
PD from controls and demonstrated strong regression performance across all four clinical
variables. While the model offered interpretability and robust performance, it did not
utilize deep learning or attention-based architectures.

Pahuja and Prasad [16] developed two deep learning-based frameworks, feature-level
and modal-level, for PD classification using multi-source neuroimaging and CSF biomarker
data (MRI, SPECT, and CSF). Their models processed multimodal inputs from a cohort of
73 PD and 59 healthy control subjects, achieving up to 93.33% accuracy in the feature-level
CNN framework. Although the architecture successfully leveraged cross-modal data, it
remained a single-task classifier focused on binary classification and did not extend to
severity regression or joint learning of clinical scores.

These studies collectively reflect substantial advancements in PD detection through
voice-based ML/DL models. Key trends include feature selection pipelines, ensemble
classifiers, attention modules, and temporal sequence modeling. However, most prior
works are single-task systems, handling either classification or regression independently.
None of the reviewed papers present a multitask model capable of jointly detecting PD
and predicting its motor severity. Furthermore, limited exploration of ensemble stacking
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with meta-modeling and interpretability-driven architectures presents an opportunity for
further innovation.

A comparative summary of these key studies is presented in Table 1, outlining the
diversity in datasets, modalities, task types, and reported performances.

Table 1. Summary of recent studies on PD detection and severity assessment.

Study

Dataset (s) Modality Task Type Best Reported Performance

Lamba et al. [9]

UCI Parkinson’s
Telemonitoring Voice Voice Classification

Accuracy: 93.88%, Precision:

Dataset 94.06%, AUC: 0.978

UCI Parkinson’s Dataset

Accuracy: 97.13%, Recall:

Alietal. [10] + Sarkar et al. [11] Dataset Voice Classification 97.40%, Fl-score: 97.10%
Saleh et al. [12] ch gii)lzirﬁ?n’s Voice Classification Accuracy: 97.35%, AUC: 0.99
Groveretal. (9] pyjomonitoring Datsset Voice Claeafiation Framad)  UPDRS), 6273% (otal UPDRS)
Mahmood etal. [14] V¢! I;fi‘;gzogst;\g;lﬁple Voice Regression RMSE: 0.10, R2: 0.9987
. o v pn Mtk Clsifeaion Acuney 38 o
Pahuja & Prasad [16] MRI, SPECT, CSF Neuroimaging + CSF Classification Accuracy: 93.33%

Biomarkers

3. Materials and Methods
3.1. Methodology

This study proposes a hybrid ensemble learning framework designed to jointly address
binary classification and regression tasks for PD assessment using voice-based features. As
illustrated in Figure 1, the pipeline integrates five main stages: (1) data preprocessing and
feature engineering, (2) classification model development, (3) multi-modal fusion modeling,
(4) ensemble stacking, and (5) evaluation using robust performance metrics.

3.2. Datasets

This study utilizes two publicly available datasets extensively used in PD research,
both centered around biomedical voice measurements.

3.2.1. Regression Dataset

The first dataset, known as the Oxford PD Telemonitoring Dataset [17], was devel-
oped through a collaboration between the University of Oxford, Intel Corporation, and
10 U.S. medical centers. It consists of 5875 voice recordings collected longitudinally over
six months from 42 individuals diagnosed with early-stage PD. Each instance includes
subject identifiers, demographic data, motor and total UPDRS scores (used as regression
targets), and 16 biomedical voice features, such as jitter, shimmer, HNR, RPDE, DFA, and
PPE. These recordings were acquired in participants” homes using a remote telemonitoring
device, enabling continuous non-invasive tracking of disease severity. This dataset is
primarily used for regression tasks focused on predicting UPDRS scores.

Table 2 presents descriptive statistics including sample count, mean, standard devi-
ation (SD), minimum, first quartile, median, third quartile, and maximum values. These
metrics illustrate the variability of symptom severity and inform the interpretation of
downstream model results.
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Table 2. Summary statistics for motor and total UPDRS scores.
Count Mean std Min 25% 50% 75% Max
motor_UPDRS 5875 21.29623 8.129282 5.0377 15 20.871 27.5965 39.511
total UPDRS 5875 29.01894 10.70028 7 21.371 27.576 36.399 54.992

Generalized Multi-Model Ensemble Learning Pipeline

Classification and Regression with Neural Networks and Ensemble Learning

Step 1: Data Preprocessing and Feature Engineering

Dataset 1 : Regression
- Continuous motor_UPDRS measurements
- Voice and movement features (n=5,875)

Dataset 2 : Classification
- Binary PD diagnosis labels
- Clinical and biomarker features (n=756)

Outlier Handling
- Isolation Forest for anomaly detection
- Identify and remove outliers in datasets

Feature Scaling & Engineering
- Robust and MinMax Scaling

Class Imbalance Handling
Borderline-SMOTE

i+ - Polynomial and Interaction Features

Step 2: Classification Model Development

Model Design

Residual blocks with skip connections Advanced L.oss Functions

Focal Loss + Huber Loss and Log-Cosh Loss

Training Strategy
K-fold cross-validation with

- BatchNorm and Dropout regularization stratification
Step 3: Multi-Modal Fusion Architecture
Specialized Feature Extractors ; Fusion Strategy
- Attention blocks for feature interactions - Concatenation and adapter layers
- Transfer learning from classification model - Joint optimization for both tasks
- Multi-head self-attention mechanisms ; - Shared latent representation
Step 4: Ensemble Options
Stacking [ Voting Ensemble
- Ridge Regression Meta-Model & - Weighted Averaging
- Deep Neural Network (DNN) Meta-Model
- XGBoost Meta-Learner
Step 5: Evaluation and Performance Metrics
Classification Metrics Regression Metrics
Accuracy, Precision, Recall, F1-score - MSE, RMSE and MAE (original scale)
(macro and weighted) and AUC-ROC - NRMSE, MAPE and R? metrics

Figure 1. Overview of the proposed multi-model ensemble learning system for PD detection and

severity prediction.

3.2.2. Classification Dataset

The second dataset, known as the Oxford PD Detection Dataset [18], includes
195 sustained vowel phonation recordings from 31 subjects, of whom 23 have PD. It pro-
vides 22 voice features per recording, including MDVP-based jitter and shimmer measures,

nonlinear dynamic features (RPDE, DFA), and the binary status label indicating healthy or

PD. This dataset is employed for binary classification tasks, aiming to distinguish individu-

als with PD from healthy controls.

Table 3 lists all voice-based features extracted from the two datasets, showing their

origin and a brief explanation. Regression-specific variables include demographic and UP-

DRS clinical scores from the Telemonitoring dataset, while classification-specific variables

comprise MDVP-derived features used solely in the Detection dataset. The remaining fea-

tures are shared across both datasets, enabling joint representation through our multimodal

fusion model.
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Table 3. Voice-based features used in this study, by dataset, with brief descriptions.
Dataset Feature Description
subject# Unique subject identifier
Oxford PD age Subject age in years
. sex Gender (0 = male, 1 = female)
Telemonitoring ) . . .
(Regression) [17] test_time .D'ays since baseline recruitment
motor_UPDRS Clinician-rated motor symptom score
total_UPDRS Clinician-rated total symptom score
MDVP:Fo Average fundamental frequency (Hz)
MDVP:Fhi Maximum fundamental frequency (Hz)
Oxford PD Detection MDVP:Flo Min.imum fpndamental f'requency (Hz)
I MDVP:PPQ Pitch period perturbation quotient
(Classification) [18] . . ) .
spreadl First nonlinear pitch variation measure
spread2 Second nonlinear pitch variation measure
D2 Correlation dimension (complexity of vocal signal)
MDVP:Jitter (%) Relative pitch variation per cycle
MDVP:]Jitter (Abs) Absolute pitch variation (seconds)
MDVP:RAP Relative average pitch perturbation
Jitter:DDP Cycle-to-cycle pitch variation indicator
MDVP:Shimmer Relative amplitude variability
Shimmer (dB) Amplitude variation measured in decibels
Shimmer:APQ3 3-point amplitude perturbation quotient
Shimmer:APQ5 5-point amplitude perturbation quotient
Both MDVP:APQ Average amplitude perturbation quotient
Shimmer:APQ11 11-point amplitude perturbation quotient
Shimmer:DDA Difference of differences amplitude variation
NHR Noise-to-harmonics ratio
HNR Harmonics-to-noise ratio
RPDE Recurrence period density entropy (signal complexity)
DFA Detrended fluctuation analysis (long-range correlation)
PPE Pitch period entropy (irregularity measure)

Both datasets contain no missing values, eliminating the need for imputation. They
were processed through the same rigorous pipeline described in Section 3.3. Shared features
were aligned for unified modeling, while dataset-specific variables were routed through
separate input branches. Consistent scaling was applied across all features to ensure
compatibility across both tasks.

These two datasets offer complementary perspectives, classification of PD presence
and regression of symptom severity, thus supporting the development and evaluation of a
multitask learning framework.

All experiments were conducted on a personal computing system equipped with an
11th Generation Intel® Core™ i7-1165G7 processor and 16 GB of RAM and running a 64-bit
version of Windows 11 Pro. The software environment comprised Python 3.9, utilizing
TensorFlow for deep learning implementations and Scikit-learn for machine learning tasks.
Jupyter Notebook version 7.0.4 (Project Jupyter, 2023) served as the interactive development
environment, facilitating iterative model development and evaluation.

3.3. Dataset-Specific Preprocessing and Feature Alignment

Rigorous preprocessing was applied to ensure data quality and consistency across
both datasets. Initially, missing values were handled via feature-wise median imputation, a
robust strategy that minimizes the influence of skewed distributions without introducing
synthetic variance [19]. To manage anomalous data, the Isolation Forest algorithm was
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used to detect outliers based on the principle of recursive partitioning [20,21]; outliers were
removed if they comprised less than 10% of the total data.

Feature scaling was conducted in two steps to address the variability in biomedical
voice measurements [22]. The first stage employed RobustScaler, which scales features
using the median and interquartile range (IQR) [23]:

X — median(X)

Xscaled = IQR—(X) (1)

This step effectively reduces the influence of extreme values. The output was sub-
sequently passed through a MinMaxScaler to normalize the data into a fixed interval

[0,1] [24]:
X — Xmin

X = o fmin
Xmux - Xmin

(2)

To expand the learning capacity of the model, feature engineering was conducted
using multiple strategies. First, features were ranked using a Random Forest importance
metric, prioritizing those with high discriminative power [25]. Top-ranked features were
further expanded using second-degree polynomial transformations to introduce nonlinear-
ity. Interaction terms were also generated to capture cross-feature dependencies, resulting
in a richer input representation:

Xinteraction = Xi " Xj fOri # j @3)

In the classification dataset, class imbalance was addressed using Borderline-SMOTE,
which synthesizes new samples from the minority class by interpolating near the class
boundary, improving decision margin learning [26,27].

Both datasets were randomly shuffled and split into training and testing subsets using
an 80:20 ratio. Stratified sampling was applied to the classification dataset to preserve the
original class distribution in both subsets [28].

While a unified preprocessing philosophy was maintained across both datasets to
ensure consistency, several steps were uniquely adapted based on each task’s nature
(regression versus classification).

For the regression dataset [17], preprocessing began with median imputation for
missing values, followed by Isolation Forest-based outlier detection, which removed
294 anomalous entries (approximately 5% of the dataset). The remaining data (n = 5581)
underwent two-stage scaling: first using RobustScaler to reduce the influence of outliers by
centering on the median and scaling according to the interquartile range (IQR), followed by
MinMaxScaler to normalize features to the [0,1] range. Notably, the target variable (motor
UPDRS) was separately min-max scaled to [0,1] during training and later rescaled back to
its original scale during inference. As this is a continuous regression task, class balancing
was not applicable. In terms of feature engineering, polynomial and interaction features
were created for the top-ranked predictors, expanding the feature space to 64 dimensions.

In contrast, the classification dataset [18] started with 195 samples and 22 features.
After applying the same median imputation and Isolation Forest algorithm for outlier
detection, no entries were removed due to the dataset’s smaller size. To address class
imbalance (23 PD vs. 8 healthy controls), Borderline-SMOTE was applied, increasing
the sample size to 294 by synthetically generating minority class instances near decision
boundaries. This step ensured a more balanced and learnable class distribution. Scaling
was also applied using RobustScaler and MinMaxScaler, ensuring feature range consistency
with the regression dataset. However, no target scaling was needed due to the binary
nature of the output variable. Importantly, only nine features common to both datasets
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were retained and aligned for use in the shared fusion module. Remaining features specific
to each dataset were handled via dedicated expert branches in the fusion network.

This dual-path preprocessing strategy ensures both task relevance and methodological
reproducibility, aligning with best practices in multimodal learning where heterogeneous data
sources are harmonized through selective normalization, balancing, and feature alignment.

3.4. Fusion Architecture and Loss Design

The backbone of the proposed system is a deep multimodal fusion model designed
to jointly perform binary classification of PD status and regression-based severity pre-
diction using UPDRS scores. This dual-task model incorporates four specialized input
branches, X1_unique_input, X2_unique_input, common_input, and metadata_input, each
corresponding to distinct feature subsets from two harmonized datasets. These inputs
are processed through separate dense expert encoders that learn task-relevant feature
embeddings before merging via a concatenation layer.

Once concatenated, the fused feature representation is processed through a shared
latent space, which integrates a multi-head self-attention mechanism [29]. This mechanism
helps the model learn important relationships between different feature types, improving
its ability to generalize across multimodal inputs. From this shared space, the network
branches into two separate outputs, one for regression and one for classification. The
regression branch predicts continuous UPDRS scores and is trained using a combined loss
function that balances accuracy and robustness [30]:

Lyeg = & X MSE + B X Huber + y X LogCosh 4)

where & =0.7, 3 = 0.2, and y = 0.1 are tuned to stabilize learning and minimize the effect of
outliers. Mean Squared Error (MSE) penalizes larger deviations and is useful for precise
fitting, but it is sensitive to outliers [31]. Huber Loss mitigates this by combining the
strengths of MSE and Mean Absolute Error (MAE) [30]; it behaves quadratically for small
errors and linearly for larger ones, providing robustness in the presence of noise. Log-
Cosh Loss further smooths optimization by approximating MSE for small errors while
exhibiting logarithmic growth for large ones and is differentiable everywhere, making
it advantageous for gradient-based training [32]. By combining these losses, the model
benefits from precision, robustness, and training stability, particularly in the noisy clinical
data environment.

The classification head is optimized using a focal loss function designed to address
class imbalance and improve detection of hard-to-classify cases [33]:

Les = —ag x (1= pi)” x log(pr) (5)

where v =2, a; = 0.25, and p; is the predicted probability for the true class. This focal loss
formulation places greater emphasis on misclassified or difficult samples, thus improving
the model’s discriminatory performance on imbalanced datasets.

To enhance generalization, the architecture integrates dropout (rate = 0.4), batch
normalization, and L1/L2 weight regularization across layers. Training is performed using
the Adam optimizer, with a decaying learning rate schedule and early stopping based on
validation loss plateaus.

To further boost predictive capacity, a Base Models Layer is introduced, incorporating
multiple tree-based regressors and an independent neural classifier. The regression ensem-
ble includes XGBoost (objective = ‘reg:squarederror’), Random Forest (n_estimators = 10),
and Gradient Boosting (n_estimators = 10), each contributing unique capabilities in model-
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ing complex nonlinear patterns. For classification, an independent deep neural network
(DNN) incorporating multi-head attention and focal loss is used.

Finally, the system consolidates the output from all base learners and the fu-
sion model using an XGBoost-based meta-model stacking strategy. The meta-learner
(n_estimators = 50) combines individual model predictions into a unified, refined output,
effectively leveraging the strengths of heterogeneous learners.

Figure 2 illustrates this integrated architecture, showcasing the interaction between
input streams, the core fusion mechanism, the base learners, and the meta-model stacking
layer. The stacking mechanism is led by an XGBoost meta-learner (n_estimators = 50),
which synthesizes predictions from all individual models to generate refined and highly
accurate outputs for both classification and regression tasks.

Multi-Modal Fusion Architecture with our Best Meta-Model

Base Models Layer Multi-Modal Fusion Architecture

For Regression

For Classification

. X1_unique_input . X2_unique_input | . common_input . metadata_input |
XGBoost ’ Pl Pk e I S— ]
obj="reg:squarederror’ N // - e
Optimized for squared error \ e _ ,,// _ ”/,~’
\\\ L /’::,/’///,,
T— NG "
Random Forest s
n_estimators = 10 Concatenate Layer Regularization)
To capture non-linear & "
relationships ; o |

Gradient Boosting
n_estimators = 10
Sequential

improvement |

Dense Layer (64 neurons, ReLU, L1L2

S ) ) 4
Regression Output . Classification Output

Classification DNN
Binary Classification Focal
Loss (y=2, a=0.25)
H Multi-head Attention

XGBoost Meta-Model Stacking (n_estimators=50)
Combines outputs from all base models + fusion model

Figure 2. Architecture of the proposed multimodal fusion framework integrated with our best-
performing ensemble strategy, the SE-XGB model.

3.5. Ensemble Learning Strategies

To further strengthen generalizability and predictive accuracy, four ensemble learning
strategies were developed to integrate outputs from both the deep fusion model and a set
of complementary base regressors and classifiers.

The first and most effective configuration is the Stacking Ensemble with XGBoost
(SE-XGB). In this design, predictions from the fusion model, Random Forest, Gradient
Boosting, and XGBoost were collected and concatenated to serve as input features to a sec-
ondary XGBoost meta-learner. Configured with n_estimators = 50, this meta-model benefits
from XGBoost’s regularization capabilities, including shrinkage and column subsampling,
allowing it to capture higher-order feature interactions while minimizing overfitting.

The second strategy, Stacking Ensemble with Ridge Regression (SE-RR), employed
Ridge Regression as the meta-learner. Known for its L2 regularization and low model
complexity, Ridge provides a linear aggregation mechanism, serving as a robust and
interpretable baseline for ensemble integration. Its primary strength lies in delivering stable
performance without the risk of overfitting associated with more complex models.
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The third ensemble variant, Stacking Ensemble with Deep Neural Network (SE-DNN),
integrated DNN as the meta-learner. DNN architecture was designed as a compact, fully
connected network, capable of learning nonlinear transformations of the base predictions.
This flexibility enabled the model to uncover higher-order dependencies among the outputs
of the fusion model and tree-based learners. While computationally more demanding,
the DNN-based meta-learner was better suited for scenarios where intricate relationships
needed to be captured for refined regression and classification outputs.

The final ensemble configuration was a Voting Ensemble with Unweighted Averaging
(VE-UA), where the outputs of the fusion model, Random Forest, Gradient Boosting, and
XGBoost were combined through simple unweighted averaging. This method required
no training of a meta-learner and was designed for maximum simplicity and efficiency.
Although less adaptable than learned meta-models, it offered robustness through averag-
ing and low computational overhead, making it particularly suitable for deployment in
resource-constrained settings.

3.6. Evaluation Metrics

Model evaluation incorporated a comprehensive array of classification and regression
metrics to ensure a rigorous assessment. For classification tasks, metrics included accuracy,
precision, recall (sensitivity), and F1-score [34,35]. Accuracy, representing overall correct
predictions, is given by

TP+TN
TP+TN+FP+FN

Accuracy =

(6)

where:

- True Positives (TP) denotes the number of actual positive instances that the model
correctly identifies.

- False Negatives (FN) denotes the number of actual positive instances that the model
incorrectly labels as negative.

- False Positives (FP) denotes the number of actual negative instances that the model
incorrectly labels as positive.

- True Negatives (TN) denotes the number of actual negative instances that the model
correctly identifies.

Precision, measuring the proportion of positive predictions that are correct, is defined as

TP

P .. __
recision TP + FP

)

Recall (Sensitivity), indicating the proportion of actual positives correctly identified, is

computed by
TP
Recall = 75PN ®

The F1-score, providing a balanced measure between precision and recall, is given by

Precision x Recall
F1 =2
score % Precision + Recall ©)

For regression tasks, evaluation metrics were selected to thoroughly assess prediction
accuracy and robustness. These included MSE, RMSE, MAE, Normalized Root Mean
Squared Error (NRMSE), Mean Absolute Percentage Error (MAPE), and the coefficient of
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determination (R?) [36]. Specifically, MSE quantifies average squared deviations between

predicted and true values:
1 .
MSE = - Yo (yi— ;) (10)

RMSE, derived directly from MSE, provides error metrics on the original scale:
RMSE = vV MSE (11)

MAE assesses average absolute deviations, offering robustness against outliers:

j — R
MAE = — Y o lvi — il (12)

NRMSE normalizes RMSE by the range of observed values, facilitating meaningful
comparisons across different datasets:

NRMSE — — "MSE (13)

Ymax — Ymin
MAPE calculates relative errors expressed as percentages, further enhancing comparability:

MAPE — 190 n (Vi Yi (14)
n i=1

Yi

Finally, R? quantifies the proportion of variance explained by the regression model,
indicative of model effectiveness in capturing underlying data patterns:

i (i — )
R?=1- 2=l o (15)
i1 (Vi —7)

In these equations, y; denotes the true value, j; the predicted value, i the mean of true
values, and n the number of observations. Models were validated using independent test
datasets to ensure a robust and unbiased evaluation of generalization performance. Addi-
tionally, 95% confidence intervals were calculated via bootstrapping to provide statistical
validation of reported results and enhance the reliability of conclusions drawn from the
evaluation process.

4. Results
4.1. Regression Performance

The regression evaluation metrics across the ensemble strategies are summarized in
Table 4. Among the different ensemble configurations, the SE-XGB model demonstrated
the most outstanding performance, achieving the lowest MSE of 0.1446 and the highest R?
score of 99.78%.

Table 4. Regression performance comparison.

Model MSE MAE RMSE NRMSE  MAPE (%) R? (%)
SE-XGB 0.1446 0.2166 0.3802 0.0116 1.11 99.78

SE-RR 0.4848 0.3313 0.6963 0.0212 1.84 99.27
SE-DNN 0.4762 0.3314 0.6901 0.0210 1.82 99.29
VE-UA 11.9125 2.9186 3.4514 0.1052 17.52 82.13

This indicates a near-perfect explanation of variance in the UPDRS severity scores by
the models. In comparison, the SE-RR and SE-DNN models yielded higher MSEs of 0.4848
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and 0.4762, respectively, with slightly lower R? scores (99.27% and 99.29%). The VE-UA
model, however, underperformed markedly, recording an MSE of 11.9125 and an R? of
only 82.13%, reflecting its relatively poor generalization capacity. These results emphasize
the advantage of utilizing a strong meta-learner like XGBoost for complex biomedical
regression tasks.

To visually validate the regression performance of the best-performing model, ad-
ditional evaluation was conducted using prediction scatter plots and cross-validation
diagnostics. Figure 3 shows the relationship between true and predicted motor UPDRS
scores for the SE-XGB model. The distribution closely aligns with the identity line (y = x),
indicating high prediction fidelity and minimal systematic deviation. This further supports
the superior R? score of 99.78% and low RMSE observed in our quantitative metrics.

Predictions vs Actual (XGB Ensemble)

N
)

N
o

© XGB Ensemble

MSE across Folds

10 15 20 25 30 35
Actual motor_UPDRS

Figure 3. Predicted vs. actual motor UPDRS scores for the SE-XGB model.

Figure 4 illustrates the fold-wise regression performance of the proposed fusion model
based on 10-fold cross-validation, providing a detailed view of its generalization behavior
across independent data splits. The model demonstrated an average MSE of 2.8422, MAE
of 0.7918, and R? of 0.9576, as indicated by the red dashed reference lines in each respective
plot. These metrics reflect consistent performance with limited variance across folds,
affirming the model’s ability to maintain stability and generalize effectively under varying
data partitions, an essential consideration in biomedical contexts where data heterogeneity
and sample imbalance are prevalent.

10-Fold Cross-Validation Metrics for Fusion Model

R? across Folds MAE across Folds

1.0 ]
--- Avg:2.8422 | fe——eo = --- Avg:0.7918

o8- N o o RN |
0.8

0.6 4
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0.4
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--- Avg: 0.9576

0.0

Figure 4. Fold-wise R? scores for the SE-XGB model obtained through 10-fold cross-validation.
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When compared to the final evaluation results of the complete SE-XGB—MSE = 0.1446,
MAE = 0.2166, and R? = 0.9978—the performance gap is noteworthy. This improvement
can be attributed to the added representational capacity and optimization provided by the
ensemble meta-model, which integrates outputs from base learners and the fusion model.
The ensemble’s markedly reduced error rates and near-perfect R? suggest its enhanced
robustness in capturing nonlinear dependencies and complex feature interactions.

4.2. Classification Performance

The classification results, presented in Table 5, reveal a similar trend. The SE-XGB
model achieved the highest test accuracy, 99.37%, along with precision, recall, and F1-scores
all reaching 99%. Both the SE-RR and the SE-DNN models followed closely, achieving test
accuracies of 98.93% and 99.02%, respectively, with similarly high precision and recall. In
contrast, the VE-UA model trailed significantly with a test accuracy of 93.64%, highlighting
that simple averaging of base model predictions may not adequately capture complex
decision boundaries in PD classification.

Table 5. Classification performance comparison.

Model Test Accuracy (%)  Precision (%) Recall (%) F1-Score (%)
SE-XGB 99.37 99 99 99

SE-RR 98.93 99 99 99
SE-DNN 99.02 99 99 99
VE-UA 93.64 94 94 94

4.3. Benchmarking Against State-of-the-Art Method

To benchmark the effectiveness of our ensemble learning framework, we compared its
performance against a recent state-of-the-art method by Mahmood et al. [14], who proposed
an end-to-end deep learning model for predicting motor UPDRS scores. The comparison
focused on the coefficient of determination (R?) and Root Mean Squared Error (RMSE),
which are standard metrics in clinical regression tasks.

As presented in Table 6, our SE-XGB model achieved a markedly higher R? value of
99.78%, compared to 86% reported by Mahmood et al. [14], suggesting superior ability to
capture the variance inherent in motor symptom severity. This improvement indicates that
our hybrid architecture more effectively learns the underlying functional mapping between
vocal features and clinician-rated UPDRS outcomes.

Table 6. Comparative performance between our study and Mahmood et al. [14].

Study R? (%) RMSE
Mahmood et al. [14] 86% 0.10
Our SE-XGB model 99.78% 0.3802

It is important to note, however, that Mahmood et al. [14] did not specify whether their
UPDRS targets were normalized or scaled, which introduces ambiguity in interpreting the
RMSE value they reported. In our study, the UPDRS scores were min-max normalized to
the range [0,1] during model training and subsequently rescaled back to the original range
(0-50) for evaluation. This ensures that our reported RMSE (0.3802) reflects real-world
clinical interpretation.

Since RMSE is sensitive to the scale of the target variable, direct numerical comparison
with studies using different preprocessing pipelines may lead to unfair conclusions. Accord-
ingly, we underscore R? as the more appropriate and scale-invariant metric for cross-study
benchmarking. In future investigations, we recommend that researchers explicitly report
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target normalization procedures and adopt standardized evaluation protocols to enhance
transparency, reproducibility, and fairness in comparative clinical Al research.

4.4. Model Interpretability with SHAP Analysis

To enhance the transparency and interpretability of the proposed SE-XGB framework,
we applied SHapley Additive exPlanations (SHAP) to analyze how features and individual
base models contributed to the final regression outputs [37,38]. Figure 5 illustrates SHAP-

based visualizations for the ensemble meta-model and selected base regressors.
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Figure 5. SHAP-based feature importance visualization for the SE-XGB model. (a) SHAP summary
plot for the ensemble meta-model (XGBoost stacker). (b) SHAP summary plot for the Gradient
Boosting Regressor. (¢) SHAP summary plot for the Random Forest Regressor.

At the ensemble level, the fusion deep model was identified as the dominant con-
tributor to the meta-model’s predictions, followed by the XGBoost and Random Forest
regressors. This validates the hierarchical structure of the SE-XGB design, where deep
multimodal representations are effectively integrated with tree-based learners for final
decision-making.

At the feature level, SHAP summary plots from the Gradient Boosting and Ran-
dom Forest regressors revealed that key predictors included voice biomarkers such as
DFA, HNR_Jitter (Abs), RPDE, and demographic/time-based features such as age and
days_since_first. These results support the physiological relevance of the extracted features
and provide intuitive, human-understandable explanations that are crucial for clinical
adoption of Al models.

Key features such as DFA, HNR_]Jitter (Abs), age, and test_time_log demonstrated
consistent influence across models, providing valuable insights into model decision-making
and clinical relevance.

5. Discussion and Limitations

This study presents a unified framework that effectively combines deep multimodal
fusion networks with ensemble meta-learning strategies to enhance the detection and motor
severity prediction of PD using non-invasive voice-based features. The proposed multitask
architecture simultaneously addresses binary classification of PD status and continuous
regression of clinician-rated motor UPDRS scores. Experimental results demonstrate that
the SE-XGB model consistently delivers superior performance across both tasks, achieving
an R? of 99.78% for severity estimation and a classification accuracy of 99.37%.
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A key innovation of this work lies in its dual-task learning formulation, which contrasts
with most prior studies that address classification and regression separately. By integrating
two aligned voice-based datasets and establishing a unified representational space, our
model captures latent interdependencies between disease status and motor symptom
severity. This joint learning approach not only improves task performance but also enhances
data efficiency, an essential advantage in biomedical applications where annotated datasets
are often limited in scale and diversity.

Equally important is the composite loss design adopted for the regression output,
which incorporates MSE, Huber Loss, and Log-Cosh Loss. This formulation strikes a
balance between precision and robustness to outliers, offering resilience to noise and
fluctuations commonly found in clinical voice data. For the classification task, focal loss
was used to address class imbalance, thereby improving the model’s sensitivity to minority-
class predictions, especially the accurate detection of healthy individuals, which is vital for
screening applications.

The comparison of ensemble strategies underscores the importance of architectural
diversity. Among the four ensemble designs evaluated, the SE-XGB configuration outper-
formed the others due to XGBoost’s strong regularization and ability to model high-order
feature interactions. In contrast, the SE-Ridge and SE-DNN models, while competitive,
showed slightly lower regression performance. The VE-UA model yielded the least fa-
vorable outcomes, highlighting the limitations of naive averaging approaches in complex,
high-dimensional biomedical tasks.

Benchmarking against a recent state-of-the-art model by Mahmood et al. [14] further
validates our contribution. While their deep learning approach achieved a respectable R?
of 86% for motor UPDRS prediction, it lacked multitask capability. Our model not only
improves variance explanation but also enables integrated diagnosis and severity assess-
ment within a single cohesive pipeline, addressing both the diagnostic and longitudinal
monitoring needs of PD management.

Additionally, the model’s stability under cross-validation, reflected by consistent
fold-wise R? and low variance in regression errors, reinforces its generalization strength.
Such reliability is particularly important in medical artificial intelligence, where robustness
across subpopulations and unseen clinical conditions is essential for safe deployment.

Beyond performance metrics, interpretability plays a critical role in fostering clinical
trust and ensuring the transparency of Al-driven medical tools. In this study, we integrated
SHAP to elucidate both model-level and feature-level contributions to motor UPDRS
score prediction. The SHAP results revealed that the deep fusion model was the most
influential component in the ensemble stack, validating its role in capturing complex,
high-order interactions among features. Furthermore, voice-based biomarkers such as
DFA, HNR_Jitter (Abs), and RPDE, alongside demographic and temporal variables like
age and days_since_first, consistently emerged as key predictors across models. These
insights not only align with known physiological underpinnings of PD but also provide
intuitive, model-agnostic explanations that can be understood by clinical practitioners. The
integration of SHAP interpretability thus enhances the model’s reliability, auditability, and
potential for translational use in decision support settings.

Furthermore, it is important to consider how dataset homogeneity might influence
model generalizability. Both datasets used in this study are English-speaking and relatively
limited in demographic diversity, particularly in terms of age, ethnicity, and linguistic
variation. Given that vocal biomarkers can be affected by accent, dialect, and socio-cultural
factors, the current model’s performance may not directly translate to populations with dif-
ferent speech characteristics or clinical backgrounds. This potential limitation underscores
the need for future validation across larger, more heterogeneous datasets. Incorporat-
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ing multilingual corpora and cross-institutional data will be critical for ensuring robust
generalization and fairness in real-world clinical deployments.

Although the SE-XGB framework demonstrates robust predictive performance, its
architectural complexity, which includes a deep fusion model, multiple base regressors, and
an XGBoost meta-learner, introduces a moderate computational load. Real-time inference
remains feasible in standard desktop environments, such as systems equipped with an Intel
i7 CPU and 16 GB of RAM. However, deploying the model in resource-constrained settings,
including mobile or point-of-care platforms, would require further optimization. Potential
strategies involve reducing the depth or width of the neural network branches, limiting
the number of estimators in the tree-based components, and applying model compression
techniques such as pruning or quantization. Utilizing lightweight frameworks such as
TensorFlow Lite or ONNX Runtime may further support efficient deployment. These
directions will be important to explore in future work to ensure the practical applicability
of the proposed system in real-world clinical settings.

Another promising direction involves expanding the current voice-based framework to
incorporate additional sensor modalities. While vocal biomarkers provide valuable insights
into motor and phonatory impairments, PD also manifests through gait abnormalities,
handwriting disturbances, and neurophysiological changes detectable via imaging. Future
work may integrate structured gait signals, digitized pen trajectories, or neuroimaging-
derived features to construct a more comprehensive multimodal representation of PD.
Such extensions, if aligned through a harmonized fusion pipeline, could improve model
sensitivity and robustness across diverse patient profiles and stages of disease progression.

In conclusion, the proposed hybrid ensemble architecture offers a robust and compre-
hensive approach to PD assessment, effectively unifying classification and regression tasks
within a single framework. By integrating multimodal data processing, attention-based
deep learning, and diverse ensemble strategies, this work advances the development of
intelligent systems for non-invasive, voice-based PD monitoring. The flexibility and scala-
bility of the design make it well-suited for integration into future clinical decision support
platforms, particularly those aimed at early diagnosis and personalized disease tracking in
real-world healthcare environments.

6. Conclusions

This study presents a unified deep learning and ensemble-based framework for PD
detection and motor severity prediction using biomedical voice signals. By employing a
dual-dataset approach, the proposed system effectively addresses both binary classification of
disease presence and continuous estimation of motor symptom severity via UPDRS scores.
The core architecture integrates multiple expert pathways, a shared attention-enhanced latent
space, and task-specific output branches, optimized through carefully selected loss functions
to ensure robust performance across imbalanced and noisy clinical data.

To enhance generalizability and stability, the study further incorporates ensemble
stacking techniques, with the SE-XGB model demonstrating superior performance across
all evaluation metrics. The model achieved a test classification accuracy of 99.37% and a
regression R? score of 99.78%, outperforming several established benchmarks. These results
highlight the potential of combining attention-driven multimodal fusion with meta-learning
to address the complex nature of biomedical prediction tasks.

Moreover, the consistency of performance observed during cross-validation and bench-
marking against recent state-of-the-art methods validates the robustness of the proposed
framework. While the results are promising, future work should focus on extending eval-
uation to larger, more diverse, and multilingual datasets and exploring deployment in
real-time or resource-constrained environments such as mobile health platforms.
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Ultimately, this work contributes a scalable and accurate solution for non-invasive PD
monitoring and lays the foundation for next-generation clinical decision support systems
capable of integrating voice biomarkers for early detection and longitudinal tracking of
neurodegenerative disorders.
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Abbreviations

The following abbreviations are used in this manuscript:

D2 Correlation Dimension (nonlinear dynamical complexity measure)

DFA Detrended Fluctuation Analysis

HNR Harmonics-to-Noise Ratio

MDVP:APQ Multi-Dimensional Voice Program—average amplitude perturbation quotient
MDVP:Fhi Multi-Dimensional Voice Program—maximum fundamental frequency (Hz)
MDVP:Flo Multi-Dimensional Voice Program—minimum fundamental frequency (Hz)
MDVP:Fo Multi-Dimensional Voice Program—average fundamental frequency (Hz)

MDVP:Jitter (Abs) Multi-Dimensional Voice Program—absolute pitch variation

MDVPJitter (%) Multi-Dimensional Voice Program—relative pitch variation (%)

MDVP:PPQ Multi-Dimensional Voice Program—pitch period perturbation quotient
MDVP:RAP Multi-Dimensional Voice Program—relative average perturbation of pitch
MDVP:Shimmer Multi-Dimensional Voice Program—relative amplitude variation

NHR Noise-to-Harmonics Ratio

PPE Pitch Period Entropy

RPDE Recurrence Period Density Entropy

Shimmer (dB) Amplitude perturbation measured in decibels

Shimmer:APQ3 3-point amplitude perturbation quotient

Shimmer:APQ5 5-point amplitude perturbation quotient

Shimmer:APQ11 11-point amplitude perturbation quotient

Shimmer:DDA Difference of differences of amplitude variation

spreadl First nonlinear measure of pitch variation

spread2 Second nonlinear measure of pitch variation

Jitter:DDP Difference of differences of pitch perturbation
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