
Academic Editor: Kwang Woo Ahn

Received: 23 May 2025

Revised: 20 June 2025

Accepted: 20 June 2025

Published: 24 June 2025

Citation: Pingua, B.; Sahoo, A.;

Kandpal, M.; Murmu, D.; Rautaray, J.;

Barik, R.K.; Saikia, M.J. Medical LLMs:

Fine-Tuning vs. Retrieval-Augmented

Generation. Bioengineering 2025, 12,

687. https://doi.org/10.3390/

bioengineering12070687

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Medical LLMs: Fine-Tuning vs. Retrieval-Augmented Generation
Bhagyajit Pingua 1,2 , Adyakanta Sahoo 1,3 , Meenakshi Kandpal 2 , Deepak Murmu 2 ,
Jyotirmayee Rautaray 2 , Rabindra Kumar Barik 4 and Manob Jyoti Saikia 1,5,*

1 Biomedical Sensors & Systems Lab, University of Memphis, Memphis, TN 38152, USA
2 Department of Computer Science and Engineering, Odisha University of Technology and Research,

Bhubaneswar 751003, India
3 Department of Information Technology, Veer Surendra Sai University of Technology, Sambalpur 768018, India
4 School of Computer Applications, KIIT Deemed to be University, Bhubaneswar 751003, India
5 Electrical and Computer Engineering Department, University of Memphis, Memphis, TN 38152, USA
* Correspondence: msaikia@memphis.edu

Abstract

Large language models (LLMs) are trained on huge datasets, which allow them to answer
questions from various domains. However, their expertise is confined to the data that they
were trained on. In order to specialize LLMs in niche domains like healthcare, various
training methods can be employed. Two of these commonly known approaches are retrieval-
augmented Generation and model fine-tuning. Five models—Llama-3.1-8B, Gemma-2-9B,
Mistral-7B-Instruct, Qwen2.5-7B, and Phi-3.5-Mini-Instruct—were fine-tuned on healthcare
data. These models were trained using three distinct approaches: retrieval-augmented
generation (RAG) alone, fine-tuning (FT) alone, and a combination of both (FT+RAG) on
the MedQuAD dataset, which covers a wide range of medical topics including disease
symptoms, treatments, medications, and more. Our findings revealed that RAG and
FT+RAG consistently outperformed FT alone across most models, particularly LLAMA
and PHI. LLAMA and PHI excelled across multiple metrics, with LLAMA showing superior
overall performance and PHI demonstrating strong RAG/FT+RAG capabilities. QWEN
lagged behind in most metrics, while GEMMA and MISTRAL showed mixed results.

Keywords: large language models; healthcare; medical; retrieval-augmented generation;
fine-tuning

1. Introduction
The sudden acceleration of LLMs has greatly influenced natural language processing

(NLP) and has allowed their deployment across numerous sectors [1], even healthcare.
LLMs could revolutionize the practice of medicine by increasing the availability of data,
helping to make diagnoses, and aiding in clinical decision-making. Such models are
used increasingly to evaluate symptoms, detect disease, and return potential diagnoses,
depending on the question posed. But the specialized nature of medical information
requires ensuring that their answers are accurate, reliable, and contextually relevant. To
address these issues, LLMs have to be fine-tuned with domain-specific information to
respond efficiently to medical questions, especially on symptoms, disorders, and diseases.

This study aims to tailor a large language model (LLM) for medical use, with the
objective of improving its capability to respond to questions about disease symptoms and
medical disorders. Five pre-trained language models—Llama-3.1-8B [2], Gemma-2-9B [3],
Mistral-7B-Instruct [4], Qwen2.5-7B [5], and Phi-3.5-Mini-Instruct [6]—were fine-tuned
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on domain-specific healthcare data to improve their performance in medical question
answering tasks. The efficiency of the model was gauged from its ability to accurately
interpret and answer medical questions, providing safe information on conditions and pos-
sible treatment. To adapt LLMs for the medical domain, we explored three key techniques:
(1) standard fine-tuning [7,8], which updates the model’s internal parameters using domain-
specific data; (2) retrieval-augmented generation (RAG) [9], which improves performance
by leveraging external knowledge at inference time without modifying model weights; and
(3) a hybrid FT+RAG approach, which applies RAG on top of a fine-tuned model.

Retrieval-augmented generation (RAG) is a technique that combines retrieval-based
systems with generative functionalities, offering better capacity for the model to deliver
accurate and context-specific responses. Through the incorporation of external knowledge
retrieval systems, RAG allows LLMs to gain access to current medical information from
trusted sources and incorporate it into their generation. This provides more accurate and
informed responses to medical questions. Conversely, standard fine-tuning encompasses
training the model on a selected domain-specific data set directly and fine-tuning its
internal representation to enhance its understanding of medical concepts such as symptoms
and diseases.

The focus of this work is to assess the efficacy of RAG and standard fine-tuning on
medical query answering. This study assessed how each method improved the accuracy,
relevance, and completeness of model answers and decided which technique is more
appropriate for certain categories of medical questions. It also considered the trade-offs
between these methods in terms of computation, data needs, and being able to utilize
contemporary medical knowledge.

Through this comparative study, our research aims to offer useful insights into the cre-
ation of AI-based healthcare tools that can assist medical professionals and improve patient
care. For large language models (LLMs), the paper [10] outlines the trade-offs between
RAG and fine-tuning, pointing out the cost-effectiveness and contextual relevance of RAG
and the higher accuracy of fine-tuning with large datasets. RAG has been demonstrated
to provide a more stable and dependable method of incorporating external knowledge,
even though fine-tuning is still effective in a variety of applications [11]. With the growing
adoption of AI-powered healthcare solutions, it is crucial that language models employed
in healthcare applications are both extremely accurate and contextually sensitive. This work
will help to advance fine-tuning and adaptation techniques for LLMs in healthcare settings,
enabling the creation of more effective, efficient, and trustworthy AI systems for healthcare.

1.1. Objective

This research aims to fine-tune five different LLMs for medical applications, with
a focus on enhancing their ability to accurately respond to queries related to symptoms
and disorders. Three methods—RAG, conventional fine-tuning, and a mix of both—are
compared in this work to evaluate their efficacy in producing accurate, relevant, and context-
aware responses. By assessing the performance of these approaches, our study aims to
identify the most effective way to maximize LLMs in the healthcare sector, thus helping to
produce more trustworthy artificial intelligence-driven tools for medical query answering.

1.2. Contributions

The researchers in this work trained and tested five 4-bit quantized large language
models—Meta-Llama-3.1-8B, Phi-3.5-mini-instruct, Gemma-2-9B, Mistral-7B-instruct, and
Qwen2.5-7B—on the Unsloth framework to support efficient fine-tuning. The main contri-
butions of this work are as follows:
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• It measures the impact on several models of three adaptation strategies: fine-tuning
(FT), retrieval-augmented generation (RAG), and a hybrid FT+RAG approach.

• It addresses four central research questions: (1) Which model demonstrates the
best overall performance? (2) Which adaptation method—fine-tuning, RAG, or
FT+RAG—is the most effective overall? (3) Which model performs optimally with
each specific adaptation method? (4) Which adaptation method yields the best results
for each model?

• It applies a comprehensive evaluation framework employing both lexical and semantic
metrics. The metrics used include BLEU, GLEU, ROUGE, METEOR, Precision, Recall,
F1, BERTScore, SBERT cosine similarity, and Negation-Aware Semantic Similarity.

• Finally, it offers an overall perspective of model performance across many adapta-
tion approaches.

1.3. Organizations

The organization of this study is structured as follows: Section 2 summarizes current
studies on retrieval-augmented generation and fine-tuning for LLMs. Section 3 outlines
our approach to evaluating five quantized LLMs across three adaptation methods—FT,
RAG, and FT+RAG. The major components—datasets, LLMs, ChromaDB, and system con-
figuration—are briefly discussed in Section 4. The preprocessing of the dataset, fine-tuning
and RAG implementation strategies, and the evaluation plan are covered in Section 5. We
present and analyze in Section 6 results including model training outcomes, perplexity com-
parisons, performance on lexical and semantic measures, key findings, and a performance
comparison with other models. Section 7 lists current constraints as well as possible areas
for development. Finally, Section 8 summarizes our main results and acquired knowledge
on model–method performance alignment for tasks particular to a domain.

2. Related Work
This section discusses the related works we considered before performing our research,

giving an overview of prior research on fine-tuning, retrieval-augmented generation, and
their applications in domain-specific task optimization of LLMs.

Ref. [11] compared RAG and FT for injecting known and new knowledge into LLMs.
They found that RAG outranks FT by a wide margin consistently, especially when models
need to learn novel information outside of their training data.

Ref. [12] investigated the effect of RAG and fine-tuning for low-frequency domain
knowledge in LLMs. They observed that although FT considerably improves performance
for both frequent and infrequent entities, eventually, RAG delivers better accuracy, particu-
larly when augmented using strong retrieval and augmentation practices.

Ref. [13] explored DSL code generation with fine-tuned Codex and optimized RAG.
FT produced higher code similarity, but RAG was more flexible to unseen APIs and had a
higher compilation rate, which indicates its value in fast-changing environments.

Ref. [14] utilized FT and RAG on medical chatbots with models such as LLaMA and
Flan-T5. The research showed that the use of FT along with RAG enhanced QA accuracy
under computational limits, especially for medical datasets.
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Ref. [15] explored LLM adaptation for Portuguese QA. Their results showed that
while both FT and RAG each contribute, a hybrid combination of FT+RAG provided the
best domain adaptation and answer quality.

Ref. [16] benchmarked RAG against FT with GPT-J and LLaMA models for knowledge-
based systems. RAG performed better than FT on metrics such as ROUGE and BLEU, al-
though FT produced marginally higher creativity, implying use case priority-based trade-offs.

Ref. [17] compared the system-level trade-offs of RAG, commenting on its capability
to skip retraining with the expense of added latency and memory requirements. They
presented a taxonomy to balance performance and efficiency in deploying RAG pipelines.

Ref. [18] set up performance baselines with GPT-3.5 using FT, RAG, and soft-
prompting. RAG had the highest accuracy on questions of post-2021 knowledge, with soft
prompting adding to all setups.

Ref. [19] developed a preoperative medicine QA system with LLM-RAG pipelines.
GPT-4 with RAG had 91.4% accuracy—higher than human physicians—showing the scala-
bility, low hallucination rate, and good adherence to clinical guidelines of RAG.

Ref. [20] provided a survey that classified the types and challenges of RAG tasks.
They proposed frameworks that combined external data through context, small models,
or fine-tuning, with a focus on the necessity of hybrid approaches in real-world, complex
LLM applications.

Table 1 is a compilation of all the literature on fine-tuning vs. RAG of LLMs that we
reviewed. These studies were important to understand the earlier work on fine-tuning
and RAG in LLMs as well as what kind of datasets are used generally. They offered useful
insights that informed the design and direction of our work.

Table 1. Related research on Fine Tuning vs. RAG.

Author(s) Title Method(s) Key Takeaways

[11]
Fine-Tuning or Retrieval?
Comparing Knowledge
Injection in LLMs

FT, RAG
RAG was more effective at
injecting both novel and
known knowledge.

[12]
Fine Tuning vs. Retrieval
Augmented Generation for
Less Popular Knowledge

FT, RAG

RAG outperformed FT for
rare knowledge; FT
improved with data
augmentation.

[13]

A Comparative Study of DSL
Code Generation:
Fine-Tuning vs. Optimized
Retrieval Augmentation

FT, RAG
RAG performed better for
unseen APIs; FT had
higher code similarity.

[14]

Systematic Analysis of
Retrieval-Augmented
Generation-Based Medical
Chatbots

FT, RAG,
FT+RAG

FT+RAG achieved best
results for medical QA
under resource
constraints.

[15]

Adapting LLMs to New
Domains: A Comparative
Study of Fine-Tuning and
RAG Strategies for
Portuguese QA Tasks

FT, RAG,
FT+RAG

Hybrid FT+RAG
approach provided best
domain adaptation for
Portuguese QA.
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Table 1. Cont.

Author(s) Title Method(s) Key Takeaways

[16]

Investigating the
Performance of Retrieval-
Augmented Generation and
Fine-Tuning for the
Development of AI-Driven
Knowledge-Based Systems

FT, RAG

RAG showed higher
BLEU and ROUGE; FT
had slightly better
creativity.

[17]

Towards Understanding
Systems Trade-offs in
Retrieval-Augmented
Generation Model Inference

RAG
RAG offers no retraining
needs but incurs latency
and memory costs.

[18]

Establishing Performance
Baselines in Fine-Tuning,
Retrieval-Augmented
Generation and
Soft-Prompting for
Non-Specialist LLM Users

FT, RAG,
Soft
Prompting

RAG had best accuracy
for post-2021 queries; soft
prompting improved
outcomes.

[19]

Development and Testing of
Retrieval Augmented
Generation in Large
Language Models

RAG, FT

GPT-4 with RAG achieved
91.4% accuracy,
surpassing human
experts.

[20]

Retrieval Augmented
Generation (RAG) and
Beyond: A Comprehensive
Survey on How to Make your
LLMs use External Data More
Wisely

FT, RAG,
Hybrid

Survey emphasizes hybrid
strategies to meet complex
real-world LLM tasks.

3. Proposed Framework
Three methodological approaches—fine-tuning, retrieval-augmented generation

(RAG), and their hybrid combination—were implemented to enhance the models’ medical
QA capabilities. Training the models on healthcare-specific datasets helps to create special-
ized versions fit for medical searches by means of fine-tuning. RAG improved response
quality instead by including external knowledge retrieval systems. Combining the advan-
tages of fine-tuning with RAG was the hybrid approach meant to maximize performance.

Standard healthcare-related searches were used to evaluate every model—fine-tuned,
RAG applied to a standard LLM, and RAG applied to a fine-tuned model. Using evaluation
criteria including BLEU, GLEU, ROUGE-1, ROUGE-2, ROUGE-L, METEOR, Precision,
Recall, F1, BERTScore Precision, BERTScore Recall, BERTScore F1, SBERT Cosine Similarity,
and Negation-Aware Semantic Similarity, the responses were evaluated in relation to
reference answers. By means of a comparative analysis of these evaluation findings,
the strengths and shortcomings of every method were exposed, thus guiding the most
successful strategy for tasks connected to healthcare and choosing which model best fits
the situation. The combined results provide insightful analysis concerning how well these
approaches produce exact and contextually suitable responses in the healthcare field. The
suggested framework of our model is shown in Figure 1.
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Figure 1. Proposed framework.

4. System Design Architecture
The main components—the medical QA dataset, the selected LLMs, ChromaDB (which

acts as the vector database for RAG and hybrid fine-tuning with RAG), and the system
configuration—are described in this section.

4.1. Dataset

We used MedQuAD (Medical Question Answering Dataset) [21] as the baseline dataset
for assessing our system for this work. MedQuAD is a large and well-organized dataset of
47,457 question–answer pairs taken from reputable medical sources, the National Institutes
of Health (NIH), Genetics Home Reference, and ClinicalTrials.gov. The dataset contains a
broad array of medical issues, including disease symptoms, differential diagnoses, treat-
ment, medications, and genetic conditions, and hence is a highly trustworthy source to
train and evaluate AI-based healthcare applications.

The MedQuAD dataset is spread across 5126 distinct medical focus areas, including
a wide variety of conditions like Glaucoma, Diabetes, Shingles, Leukemia, and several
others. The focus areas cut across different domains of medicine like neurology, cardi-
ology, endocrinology, oncology, and infectious diseases, and cover clinically important
topics in detail. In order to study the distribution of medical topic areas, we show a pie
chart of the ratio of topics with more than 20 questions. Figure 2 displays the pie chart
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of different proportions of topics. MedQuAD’s formalized format and expert-checked
answers make it especially well-suited for medical question-answering, enabling the cre-
ation and benchmarking of LLMs and retrieval-augmented generation systems. Using this
dataset, we guarantee that our model is tested on clinically applicable queries, enabling
an objective comparison of its accuracy, contextuality, and reasoning ability within the
healthcare domain.

Figure 2. Pie chart of focus areas by health condition.

4.2. Large Language Models

We used the following LLMs in our research—Meta-Llama-3.1-8B, Phi-3.5-mini-
instruct, Gemma-2-9B, Mistral-7B-Instruct, and Qwen2.5-7B—all of which were 4-bit quan-
tized using the Unsloth [22] library to minimize memory usage when fine-tuning.

Meta-Llama-3.1-8B, created by Meta, is particularly renowned for its robust perfor-
mance on instruction-following and reasoning tasks. Phi-3.5-mini-instruct, published by
Microsoft, is a small but efficient model suited for cost-effective deployment, especially ef-
fective in instruction-tuned environments. Gemma-2-9B, designed by Google, is optimized
for helpfulness and safety and hence can be applied to general-purpose conversational
work. Mistral-7B-Instruct is optimized for speedy inference and good multitask perfor-
mance and provides competitive speed and accuracy. Finally, Qwen2.5-7B, created by
Alibaba, is designed for multilingual and domain-oriented tasks and specifically excels in
dealing with long instructions and dialog-based interactions. All the models utilized in
this work were accessed through the Unsloth library, which offered optimized versions to
enable effective loading, quantization, and fine-tuning of LLMs. Unsloth is an open-source
library for optimizing large language model fine-tuning. It improves training efficiency
by offering two to five times faster performance and dramatically reduces memory us-
age—up to 80%. These optimizations make it a viable option for environments with sparse
computational resources.
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4.3. ChromaDB

We utilized ChromaDB as the vector database to enable the retrieval-augmented gen-
eration and fine-tuning + RAG (FT+RAG) methods. ChromaDB stores and indexes dense
vector embeddings derived from the medical knowledge base efficiently, allowing for quick
and accurate retrieval of relevant documents during inference. Its integration guarantees
low-latency retrieval, which is essential for real-time response generation. ChromaDB was
employed by [23], which showed how effective ChromaDB could be in semantic similarity
estimation and information retrieval. Through the integration of ChromaDB and language
models, the system was able to incorporate dynamic external information.

4.4. System Configuration

The models were fine-tuned on two different hardware configurations. GEMMA and
PHI were trained on a system with a single Tesla V100-PCIE-32GB GPU, backed by eight
physical CPU cores (eight logical cores) and 32GB of VRAM. Conversely, MISTRAL, QWEN,
and LLAMA were fine-tuned with a more powerful system consisting of two NVIDIA
GeForce RTX 4090 GPUs, 16 physical CPU cores (24 logical cores), and 24 GB of VRAM
for each GPU. The wide difference in hardware resources had a direct impact on training
efficiency and played a part in shorter fine-tuning times for models that had been trained
on the RTX 4090 system.

5. Methodology
This section presents the comprehensive procedures in fine-tuning, retrieval-augmented

generation, and their blend (FT+RAG) and how the evaluation framework for comparing
the performance of these methods across language models is utilized. This comprises
dataset preparation, model setup, training workflows, the incorporation of external knowl-
edge through retrieval, and the metrics and protocols applied to gauge each method’s
performance in the medical question-answering task.

5.1. Preprocessing of Dataset

Every record in the dataset was converted to the form suitable for training of the
models, which are capable of learning from question–answer pair data. Subsequently, the
dataset was restructured as well. For the case of doctor–patient interactions, the question
was set as the patient’s inquiry and the response was assigned as the respective answer.
The data was framed in the format of a prompt template containing instructions, inputs,
and outputs based on the Alpaca dataset format. In order to receive correct text generation
at inference, an End of Sequence (EOS) token was added to all examples.

For fine-tuning PHI, we adopted the Phi-3 format for conversational data, utilizing
Open Assistant conversations in the ShareGPT style. Phi-3 structures multi-turn conversa-
tions as shown in Figure 3.

Figure 3. Phi-3 format used for conversation-style fine-tuning.
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For MISTRAL, we employed the ChatML format for conversation-style fine-tuning,
also leveraging Open Assistant conversations in the ShareGPT style. ChatML structures
multi-turn interactions as shown in Figure 4.

Figure 4. ChatML format used for conversation-style fine-tuning.

In contrast, for LLAMA, GEMMA, and QWEN, we employed the Alpaca prompt
format, as illustrated in Figure 5.

Figure 5. Alpaca Prompt format for conversation style fine-tuning.

5.2. Fine-Tuning and RAG Implementation

Following pre-processing of the datasets, we carried out three different methods
for improving the LLM’s performance: fine-tuning, RAG, and fine tuning + retrieval-
augmented generation (FT+RAG).

5.2.1. Fine-Tuning

The models were fine-tuned on an expanded, domain-specific dataset, MedQuAD
(Medical Question Answering Dataset), which comprises 47,457 well-structured QA pairs
obtained from reliable medical websites. It was used to refine the models. Every entry was
restructured for training: MISTRAL followed ChatML; LLAMA, GEMMA, and QWEN
adopted the Alpaca prompt style; and PHI used the Phi-3 conversational format. This
second training stage consisted of tuning the model weights and biases to refine its capacity
for generating precise, contextually correct answers to clinical questions. To speed up
computations, the model was quantized at 4-bit precision using the BitsAndBytes Python
library. Training was over a single epoch, with every entry in each dataset converted to a
predefined template optimized for training an LLM. The template used here had two major
elements: the medical question was included in the first part, and the second included the
respective answer. This formatted process allowed the model to learn properly from the
dataset so that it could produce high-quality medical replies.

Large language model fine-tuning in this research was maximized using various
libraries to achieve efficiency and lower computing expenses. Unsloth was used to speed
up the fine-tuning process while keeping memory usage low. Transformers, a library
offered by Hugging Face, allowed for using pre-trained models and tokenizers. Datasets,



Bioengineering 2025, 12, 687 10 of 29

a library also offered by Hugging Face, was utilized for seamless dataset loading and
preprocessing. To make better use of memory, BitsAndBytes was used to support 4-bit
quantization, which lowered computational overhead during training. Xformers was also
used to implement efficient attention, enhancing training speed.

For parameter-efficient fine-tuning, Parameter-Efficient Fine-Tuning (PEFT) [24] was
used, with techniques like Low-Rank Adaptation (LoRA) [7]. TRL (Transformer Reinforce-
ment Learning), another library of Hugging Face, was used for supervised fine-tuning (SFT)
and reinforcement learning with transformers. SentencePiece was used for tokenization
and text processing. Hugging Face Hub was used at last for interacting with Hugging Face’s
model repository, with the ability to store and share models easily. QLoRA (Quantized
Low-Rank Adaptation) [8] is a memory-efficient way of fine-tuning LLMs with low-rank
adaptation on quantized weights, which saves a lot of memory while maintaining perfor-
mance. It allows running and training big models on consumer-grade GPUs by mixing
4-bit quantization with parameter-efficient tuning.

Fine-tuning settings: The model was fine-tuned with LoRA, a parameter-efficient
fine-tuning method that modifies only a proportionate (1–10%) small subset of the model
parameters through the addition of low-rank matrices to certain layers. The LoRA setup
had the following:

• Rank (r): 16, which controlled the number of parameters in the low-rank matrices.
• Target Modules: Used on query, key, value, and output projection layers.
• Gradient Checkpointing: Used to limit the use of memory when training.

Fine-tuning was achieved with Hugging Face’s SFTTrainer from the Transformer
Reinforcement Learning (TRL) library. The arguments for training were specified as follows:

• Batch size: 2 (per device).
• Gradient accumulation steps: 4.
• Learning rate: 2 × 10−4.
• Optimizer: AdamW with 8-bit precision.
• Mixed precision training: FP16.

The model was adapted through LoRA through FastLanguageModel.get_peft_model()
with a rank of 16 and LoRA alpha at 16, used on key projection layers (q_proj, k_proj,
v_proj, o_proj, gate_proj, up_proj, down_proj). Dropout and bias were disabled for optimal
performance in the configuration. Gradient checkpointing (“unsloth”) was enabled, saving
VRAM by 30%.

Stabilized LoRA was supported, and LoftQ quantization was excluded. A random
seed was set to provide reproducibility. Moreover, the “unsloth” backend was utilized
to accelerate efficiency, specifically for long-context operations. The Alpaca-style prompt
template organized inputs into instruction, context, and expected output fields. A format
function operated on examples by joining these fields together with the template, adding
EOS tokens to denote sequence boundaries, and returning batches of formatted text. The
data was obtained from MedQuAD. Prompt formatting was performed during prepro-
cessing, with batch processing turned on for optimization. Special treatment involved
imposing EOS tokens to avoid generating text infinitely and preserving structured output
to guarantee dialogue coherence.

The SFTTrainer was set up for supervised fine-tuning on the preprocessed MedQuAD
dataset. Training hyperparameters were a batch size of two per device, four gradient
accumulation steps, five warmup steps, and a single epoch with a learning rate of 2 × 10−4.
Optimization was achieved using 8-bit AdamW with linear learning rate scheduling and
a weight decay of 0.01. Mixed-precision training was activated through fp16 or bf16,
depending on hardware support. Logging was carried out at every step, and results were
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monitored using Weights & Biases (wandb). The selected hyperparameters were adopted
from prior studies [25–27], as they employed the same Unsloth library. These configurations
facilitated rapid and resource-efficient model training.

The model and the tokenizer were saved on the local system in a merged 16-bit format,
finding a balance between precision and storage. The trained model was then pushed to
the Hugging Face Hub in the same 16-bit merged format to maximize deployment. During
fine-tuning, the model was trained with 4-bit precision via QLoRA, which effectively cut
the GPU memory footprint by about half while maintaining performance. Nonetheless,
to enable inference and deployment, the model was also back-translated to 16-bit for
improving numerical stability and output quality over 4-bit. Further, 16-bit precision is
widely available across GPUs and TPUs without special-purpose kernels, providing a better
balance between accuracy and memory efficiency during inference.

5.2.2. Retrieval-Augmented Generation (RAG)

In this method, the models are provided with an external retrieval system. At the
time of response generation, the model fetches information from a curated knowledge base
to enhance its pre-trained and fine-tuned knowledge. The information retrieved is then
combined with the internal knowledge of the model, enhancing its capacity to generate
rich and current responses.

The pipeline starts with transforming the training dataset into a structured pandas
DataFrame and saving it as a CSV file for normalized processing. Document chunks
are produced through a recursive text splitter with a 500-token window that optimizes
retrieval granularity. To enable efficient inference, we preload the LLMs in 4-bit in con-
junction with all-MiniLM-L6-v2 sentence embeddings, which encode document chunks
for semantic retrieval. The text-generation pipeline uses top-k sampling (k = 30) with
temperature 0.5 to trade response diversity and coherence, limiting outputs to 256 to-
kens. For RAG, optimal performance was achieved with a top-k below 30 [28], as higher
values reduced efficiency. Temperature settings were tuned to balance randomness and
precision—lower values (e.g., 0.5) prioritized high-probability tokens, while higher values
introduced greater variability [29,30]. An efficient similarity search over the embedded
chunks is supported by a Chroma vector database, and a memory-free Conversational-
RetrievalChain queries the database (fetching the most relevant chunk per question) and
produces responses through the LLMs. This stateless RAG architecture guarantees isolated,
context-independent answers. The blend of 4-bit inference and optimized retrieval pro-
vides computational efficiency without any loss of output quality, thus making the pipeline
appropriate for large-scale deployment in medical question-answering applications.

5.2.3. Retrieval-Augmented Generation on Fine-Tuned Models (FT+RAG)

In the third approach, RAG was used on the fine-tuned models, taking the best from
both methods to maximize performance. The hybrid FT+RAG approach reused the same
fine-tuned models from the FT setup, with RAG applied using identical settings. In fine-
tuning, the models were again trained on a larger, specialized dataset of medical situations.
This fine-tuning tuned the model’s weights and biases to enhance its contextual, accurate,
and specialized responses to medical questions. In the RAG method, the fine-tuned models
were combined with a retriever system that allowed them to retrieve information from an
external, pre-curated knowledge database during response generation. The retrieved data
was added to the model’s fine-tuned and pre-trained knowledge, allowing it to generate
more extensive, contextually appropriate, and current responses.
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5.3. Evaluation Using a Query Set

To comparatively evaluate the effectiveness of fine-tuning and retrieval-augmented
generation and FT+RAG objectively, an evaluation protocol was developed based on
75 standardized medical questions. These questions were meticulously selected to mimic
real-world medical questions about disease symptoms, differential diagnoses, and possible
treatment. This evaluation protocol acted as a thorough benchmark for measuring the
strengths and weaknesses of fine-tuning and RAG in delivering reliable and contextually
relevant information to assist medical professionals and patients.

Evaluation Metrics

To assess the models’ performance, a wide range of metrics was used, reflecting both
surface and semantic similarities between generated and reference text. BLEU (Bilingual
Evaluation Understudy) was used as a precision-based metric to assess n-gram overlap be-
tween the generated and reference outputs with a penalty for responses too short. Although
it was extensively used in machine translation activities, it did not completely capture
semantic adequacy. To overcome this drawback, GLEU (Google-BLEU) was also applied,
which included both recall and precision, providing a balanced assessment. Token-level
classification metrics were used as well. Precision measured the percentage of relevant
tokens that were brought back by the model, whereas Recall estimated the percentage of
actual relevant tokens that were tagged correctly. Their harmonic mean, the F1 measure,
captured the trade-off between them.

Our research also utilized the ROUGE family of measures. ROUGE-1 and ROUGE-2
calculated unigram and bigram overlap, respectively, indicating lexical similarity. ROUGE-
L computed the longest common subsequence between texts, indicating sentence-level
structural similarity. METEOR was also used to match generated and reference texts on
exact matches, stemming, synonyms, and paraphrasing. METEOR traded precision and
recall, thus offering more semantically aware assessment.

For semantic similarity evaluation at a more profound level, context embedding-
based measures were utilized. BERTScore, which was based on BERT embeddings to
compare token representations, was calculated in terms of precision (BERTscore Precision),
recall (BERTscore Recall), and F1 (BERTscore F1) to capture different aspects of similar-
ity. BERTScore Precision assesses how semantically similar the predicted tokens are to
the reference tokens using contextual embeddings. BERTScore Recall assesses how well
the predicted tokens capture the meaning of the reference tokens. The harmonic mean
of BERTScore Precision and Recall is BERTScore F1. This gave a balanced measure of
how well the two words fit together semantically. SBERT Cosine Similarity was applied
to evaluate the cosine similarity of sentence embeddings generated by SBERT, provid-
ing a strong evaluation of semantic matching at the sentence level. We computed the
Negation-Aware Semantic Similarity (NASS) score as the cosine similarity between sen-
tence embeddings generated using a model fine-tuned to capture semantic shifts caused by
negation, specifically the all-mpnet-base-v2-negation model (fine-tuned model within the
context of [31]). The evaluation metrics employed in this study were chosen due to the fact
that they are among the most widely used criteria for evaluating LLMs’ [32] performance
in the medical field.

6. Results and Discussion
This section showcases the results of our work, which encompass training performance

of several LLMs, comparative evaluation of their perplexity scores, and lexical and semantic
evaluations based on various metrics. It also examines the advantages and limitations
of every model and adaptation approach (fine-tuning, RAG, and FT+RAG) leading to
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concluding with key findings summarizing the most optimal strategies for medical question-
answering tasks. Lastly, we extensively discuss a comprehensive comparison between our
model and other models out there, pointing out important differences and similarities.

6.1. Model Training Outcomes

This section explores the model training results, such as training time, training loss,
GPU energy consumption, and GPU performance.

6.1.1. Training Duration

The total fine-tuning durations recorded for each model were as follows: GEMMA
took 3 h, 4 min; PHI required 3 h, 13 min; MISTRAL completed in 1 h, 20 min; QWEN
in 1 h, 15 min; and LLAMA in 1 h, 19 min. GEMMA and PHI models were trained on
an eight physical and eight logical CPU cores, a single Tesla V100-PCIE-32GB GPU, and
32 GB of VRAM setup. In comparison, MISTRAL, QWEN, and LLAMA were trained
on a more robust configuration with 16 physical and 24 logical CPU cores, dual NVIDIA
GeForce RTX 4090 GPUs, and 24 GB of VRAM, which accounted for their relatively shorter
training times.

6.1.2. Train/Loss

Figure 6 shows training loss curves for five language models—GEMMA, PHI, MIS-
TRAL, LLAMA, and QWEN—plotted as a function of training steps. All models have
an early sharp loss reduction, indicating fast initial learning. But the level of stability
and convergence is different across them. GEMMA (Figure 6a) and PHI (Figure 6b), both
trained on a single Tesla V100 GPU, show significant fluctuations during training. Their
high-frequency fluctuations indicate instability in the learning process despite a general
declining trend. This can be attributed to hardware constraints affecting batch size, memory,
and training throughput, resulting in noisy optimization.

Conversely, MISTRAL (Figure 6c), LLAMA (Figure 6d), and QWEN (Figure 6e) were
optimized with two RTX 4090 GPUs, enabling more parallelism and bigger batch sizes
during training. These models exhibit more regular and stable training dynamics. MIS-
TRAL demonstrates a smoother loss curve with smaller variance and consistent dropping,
reflecting successful optimization. QWEN has the most stable loss curve among all models,
with very little oscillation after the initial decline, indicating highly efficient convergence.
LLAMA shows a balanced trend, with a steady downward slope and moderate noise. In
general, whereas all models overlap successfully, running more powerful equipment in
MISTRAL, LLAMA, and QWEN generates more stable and efficient training that clearly
separates these from the more erratic patterns characteristic of GEMMA and PHI.

6.1.3. GPU Power Consumption

Figure 7 demonstrates GPU power usage patterns for five language models—GEMMA,
PHI, MISTRAL, LLAMA, and QWEN—emphasizing variations in computational behavior
throughout model runtimes. GEMMA (Figure 7a) and PHI (Figure 7b) have very dynamic
power consumption, with high fluctuations between around 150–250 W. These fluctuations
point to less regular GPU usage, possibly caused by sporadic workloads or architectural
features that cause variable processing needs. Although PHI is slightly more stable than
GEMMA, both indicate phases of operation with idle or underused GPU states. These
models were trained on an NVIDIA Tesla V100 GPU, which might also affect the power
consumption patterns because of differences in architecture, thermal limits, and memory
bandwidth from newer consumer-grade GPUs.
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Figure 6. Train/loss over time graph for (a) GEMMA, (b) PHI, (c) MISTRAL, (d) LLAMA, and
(e) QWEN.
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Figure 7. GPU power consumption over time showing variations in efficiency and workload behavior
for (a) GEMMA, (b) PHI, (c) MISTRAL, (d) LLAMA, and (e) QWEN.



Bioengineering 2025, 12, 687 16 of 29

In contrast, MISTRAL (Figure 7c), LLAMA (Figure 7d), and QWEN (Figure 7e) exhibit
a dramatically different power profile. These models show a long, high-power usage
plateau at around 400 W throughout their active periods with periodic brief drops during
initialization and termination. This steadiness indicates effective GPU saturation and
optimized workloads with negligible idle periods. The training of MISTRAL, LLAMA, and
QWEN was performed on two NVIDIA RTX 4090 GPUs. The larger memory capacity and
higher computational performance of the RTX 4090s contribute to the measured power
stability and high utilization, supporting efficient parallelization and maximal use of
hardware resources. Generally, the comparison highlights a compromise between variable
vs. stable GPU utilization, the latter pointing towards better efficiency and optimization in
model training and deployment environments.

6.1.4. GPU Performance

The GPU usage patterns of five LLMs, namely, GEMMA, PHI, MISTRAL, LLAMA,
and QWEN, exhibit unique computational patterns when in use.

Figure 8 illustrates the GPU usage patterns during the training process, demonstrating
the computational workload allocation for every LLM. GEMMA (Figure 8a) and PHI
(Figure 8b), both trained on one NVIDIA Tesla V100 GPU, have different profiles. GEMMA
displays extremely irregular usage, with numerous and abrupt dips to 0% and spikes to
100%, which indicates processing or data handling inefficiencies creating uneven workloads.
In contrast, PHI shows the most stable and consistent GPU usage, holding itself at near
100% for the entire duration of its execution with very few dips, demonstrating optimal
resource management and prolonged processing.

MISTRAL (Figure 8c), LLAMA (Figure 8d), and QWEN (Figure 8e) were executed
on machines with dual NVIDIA RTX 4090 GPUs, providing much higher throughput and
memory bandwidth. All three models exhibit comparable patterns, with long stretches of
high GPU usage with occasional rapid spikes downwards—presumably from data loading,
synchronization, or checkpointing—and a significant drop in activity towards the end,
indicative of a shift from heavy computation to post-processing or less demanding activity.
Whereas all three tend to be productive in their operational core phases, their end phase
behavior indicates planned execution with distinguishable workload phases. In total,
PHI emerges as the stable performer in efficiency on the Tesla V100, whereas MISTRAL,
LLAMA, and QWEN exploit the high-end dual RTX 4090 configuration well, with GEMMA
pointing out likely optimization areas.

6.2. Perplexity as a Benchmark for LLMs

Among the evaluated models, PHI produced the least perplexity (PPL) value of 33.64
when fine-tuned, displaying exceptional robustness under 4-bit quantization for medical
applications. QWEN and LLAMA presented relatively modest PPL values of ~40–50, in
which LLAMA showed appreciable improvement post-fine-tuning. A few models suffered
quite badly with 4-bit quantization. MISTRAL, for example, produced a very high PPL of
186.43 prior to fine-tuning, which did not reduce at all by way of post-fine-tuning down to
merely 86.79, indicating rather extreme deterioration in performance. This indicates that
MISTRAL has difficulty with medical terminology under aggressive quantization. Likewise,
MISTRAL’s PPL rose following fine-tuning by 8.11, which may be a sign of overfitting or
poor hyperparameter tuning. The effect of fine-tuning was different across models.
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Figure 8. GPU utilization over time showing variations in efficiency and workload behavior for
(a) GEMMA, (b) PHI, (c) MISTRAL, (d) LLAMA, and (e) QWEN.
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Fine-tuning effectiveness is highly dependent on the model’s pretraining quality and
its ability to adapt to domain-specific data. MISTRAL’s performance points to the dangers
of forceful quantization, specifically for domain-specific tasks, where careful adjustment is
needed. In medical QA applications, 4-bit PHI provides, according to perplexity scores, the
optimal balance between performance and efficiency. Table 2 presents the perplexity scores
pre- and post-fine-tuning with the MedQuAD dataset, illustrating the effect of domain
adaptation on language modeling performance.

Table 2. Perplexity scores before and after MedQuAD fine-tuning across the five models. ↓ indicate
increasing order.

Model Original (Unsloth)
PPL (↓)

Fine Tuned
(MedQuAD) PPL (↓) △ PPL

PHI 34.79 ± 0.8 33.64 ± 0.7 −1.15

QWEN 38.15 ± 1.2 41.15 ± 1.5 +3.00

LLAMA 51.52 ± 2.1 48.48 ± 1.9 −3.04

MISTRAL 39.73 ± 1.4 47.84 ± 2.0 +8.11

GEMMA 186.43 ± 5.7 86.79 ± 3.2 −99.64

6.3. Lexical and Semantic Evaluation (Quantitative Results)

The test compared five LLMs—GEMMA, PHI, QWEN, LLAMA, and MISTRAL—over
three fine-tuning techniques: fine-tuning (FT), retrieval-augmented generation (RAG), and
an aggregated fine-tuning + RAG (FT+RAG) method. Performance was tested over various
assessment metrics, from the classical NLP metrics (BLEU, GLEU, ROUGE, METEOR) to
precision–recall statistics and newer semantic similarity scores (BERTScore, SBERT cosine
similarity, Negation-Aware Semantic Similarity). Table 3 presents an array of evaluation
metrics—such as ROUGE, BLEU, METEOR, BERTScore, and more—which have been
employed to evaluate model responses under FT, RAG, and FT+RAG configurations.

Table 3. Evaluation metrics for all models across the FT, RAG, and FT+RAG methods.

Model Method BLEU GLEU R-1 R-2 R-L METEOR Precision Recall F1 BS_P BS_R BS_F1 SB_CS NASS

GEMMA
FT 0.048 0.129 0.313 0.118 0.296 0.196 0.569 0.336 0.392 0.888 0.848 0.867 0.802 0.857
RAG 0.123 0.190 0.354 0.212 0.342 0.235 0.585 0.357 0.391 0.881 0.849 0.864 0.760 0.819
FT+RAG 0.104 0.181 0.351 0.193 0.338 0.240 0.586 0.367 0.405 0.890 0.854 0.871 0.791 0.841

PHI
FT 0.036 0.122 0.267 0.076 0.247 0.200 0.433 0.387 0.390 0.855 0.846 0.850 0.781 0.824
RAG 0.111 0.190 0.366 0.212 0.354 0.243 0.602 0.367 0.417 0.891 0.846 0.868 0.810 0.875
FT+RAG 0.136 0.217 0.391 0.250 0.380 0.258 0.651 0.366 0.435 0.903 0.852 0.876 0.815 0.881

QWEN
FT 0.038 0.109 0.276 0.106 0.263 0.162 0.610 0.265 0.334 0.892 0.838 0.864 0.788 0.856
RAG 0.048 0.128 0.306 0.168 0.294 0.161 0.720 0.215 0.304 0.908 0.835 0.869 0.773 0.837
FT+RAG 0.042 0.130 0.302 0.166 0.290 0.160 0.716 0.232 0.316 0.911 0.838 0.872 0.787 0.859

LLAMA
FT 0.025 0.089 0.262 0.080 0.245 0.146 0.571 0.248 0.315 0.881 0.834 0.857 0.766 0.816
RAG 0.163 0.237 0.418 0.280 0.407 0.279 0.711 0.369 0.436 0.916 0.862 0.888 0.822 0.898
FT+RAG 0.153 0.236 0.423 0.299 0.413 0.268 0.756 0.342 0.419 0.925 0.860 0.891 0.819 0.908

MISTRAL
FT 0.055 0.136 0.315 0.116 0.297 0.206 0.527 0.355 0.401 0.879 0.851 0.864 0.803 0.845
RAG 0.093 0.186 0.386 0.235 0.368 0.220 0.762 0.290 0.389 0.918 0.850 0.883 0.821 0.878
FT+RAG 0.089 0.172 0.346 0.205 0.331 0.207 0.694 0.291 0.370 0.907 0.846 0.875 0.796 0.857

GEMMA proved competitive on several assessment criteria. Using the RAG approach,
the model outperformed its fine-tuned (FT) counterpart, which scored 0.048 and 0.129,
respectively, with a BLEU score of 0.123 and a GLEU score of 0.190. With a BLEU score of
0.104 and a GLEU score of 0.181, the hybrid FT+RAG approach produced intermediate
results. With ROUGE-1 scores of 0.354 (RAG) against 0.313 (FT), RAG regularly exceeded
FT in terms of ROUGE measures. Indicating better alignment with reference texts, the
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METEOR score likewise increased from 0.196 (FT) to 0.235 (RAG). These findings imply
that RAG improves GEMMA’s text generating capacity, although the hybrid approach did
not always outperform standalone RAG.

PHI showed especially better results using RAG and hybrid techniques. Among
all configurations, the FT+RAG method attained the highest BLEU (0.136) and GLEU
(0.217) scores, exceeding both FT (0.036, 0.122) and standalone RAG (0.111, 0.190). With
FT+RAG scoring ROUGE-1 of 0.391, much higher than FT (0.267) and RAG (0.366), ROUGE
measures followed a similar trend. For FT+RAG, the METEOR score likewise peaked
at 0.258, suggesting better semantic alignment. These results show PHI’s capacity to
efficiently combine fine-tuning with retrieval-augmented generation, thus producing the
best overall performance.

Under several evaluation configurations, QWEN produced conflicting results. While
RAG and FT+RAG produced only slight improvements (0.048 and 0.042, respectively), the
FT approach scored a BLEU of 0.038. GLEU scores showed a similar trend; RAG (0.128)
somewhat exceeded FT (0.109). Though the increases were little, ROUGE-1 scores for
RAG (0.306) and FT+RAG (0.302) were higher than FT (0.276). Over all configurations, the
METEOR score stayed rather low; it peaked at 0.161 for RAG, implying little change in
semantic coherence. Generally, RAG or hybrid techniques did not help QWEN perform as
much as other models. Figure 9 illustrates the BLEU scores achieved by our models across
different methods. Figure 10 highlights the BERTScore F1 scores, integrating both precision
and recall.

Figure 9. Model-wise BLEU score analysis: fine-tuning, RAG, and FT+RAG approaches.

Strong performance was given by LLAMA, especially with RAG and FT+RAG meth-
ods. Among all configurations, the RAG approach obtained the best BLEU score (0.163);
FT+RAG followed rather closely (0.153). With RAG (0.237) and FT+RAG (0.236) outper-
forming FT (0.089), GLEU scores were likewise rather competitive. ROUGE measurements
underlined this benefit even more; RAG and FT+RAG obtained ROUGE-1 scores of 0.418
and 0.423, respectively, compared to 0.262 for FT. Additionally indicating excellent se-
mantic alignment, the METEOR score peaked at 0.279 for RAG. When combined with
retrieval-based techniques, these results place LLAMA among the best models.
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Figure 10. Model-wise BERTScore F1 evaluation: fine-tuning, RAG, and FT+RAG methods.

Different performance was shown by MISTRAL based on the evaluation configuration.
While RAG (0.093) and FT+RAG (0.089) showed only modest gains, the FT approach
obtained a BLEU score of 0.055. GLEU scores showed a similar pattern; RAG (0.186)
outperformed FT (0.136). Though FT+RAG (0.346) did not match this performance, RAG
(0.386) received highest ROUGE-1 ratings. With RAG, the METEOR score peaked at
0.220, implying better semantic coherence than with FT (0.206). Although RAG improved
MISTRAL’s performance, the hybrid FT+RAG approach did not routinely outperform
standalone RAG, suggesting possible trade-offs in method integration.

Semantic evaluation based on BERTScore and SBERT cosine similarity exposes subtle
information on the performance of the models. Across all models, BERTScore precision
was consistently high; LLAMA obtained the highest score (0.925 for FT+RAG), indicating
strong token level alignment with reference texts. Though values stayed strong, especially
for LLAMA (0.862 for RAG) and PHI (0.852 for FT+RAG), BERTScore recall showed more
variability, suggesting good capture of important semantic content. With LLAMA (0.891 for
FT+RAG) and PHI (0.876 for FT+RAG) leading, highlighting their balanced precision–recall
performance, the harmonic mean confirmed these trends further. Complementing these
findings with SBERT cosine similarity, which gauges contextual embedding alignment,
LLAMA (0.822 for RAG) and PHI (0.815 for FT+RAG) once more showed exceptional
semantic coherence at the sentence level.

QWEN and MISTRAL showed less improvement even if most models gained from
RAG or hybrid approaches in BERTScore measures. Though its SBERT similarity (0.787)
lagged behind, implying less contextual alignment, QWEN’s BERTScore F1 peaked at
0.872 (FT+RAG). Despite a high BERTScore Precision (0.918 for RAG), MISTRAL showed a
decrease in SBERT similarity for FT+RAG (0.796), suggesting possible trade-offs between
token-level precision and sentence-level coherence. These results highlight how, although
retrieval augmentation usually improves semantic fidelity, the degree of improvement
varies depending on the model; LLAMA and PHI show the most consistent gains across
both token- and sentence-level measurements. Figure 11 shows radar plots for every
model, which allow for a visual understanding of their relative strengths under different
adaptation approaches.
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Figure 11. Radar plots comparing model performance across FT, RAG, and FT+RAG methods.

The Negation-Aware Semantic Similarity values across models exhibited significant
patterns. Fine-tuning achieved the best NASS score of 0.857 for GEMMA, beating both RAG
(0.819) and FT+RAG (0.841). On the other hand, PHI did the best with the hybrid FT+RAG
method (0.881), followed closely by RAG (0.875) and FT (0.824). There were only small
differences in QWEN, with FT+RAG coming in first at 0.859, FT coming in second at 0.856,
and RAG coming in third at 0.837. LLAMA showed a clear benefit from augmentation, as
FT+RAG (0.908) and RAG (0.898) did better than FT (0.816). Finally, MISTRAL did very
well on RAG (0.878), then FT+RAG (0.857), and finally FT (0.845). This shows that RAG is
better at capturing semantic similarity with negation.

6.4. Statistical Analysis

Bootstrapping with resampling to find 95% confidence intervals for score uncertainty
was used. Bootstrap samples were generated with replacement to estimate the mean score
distribution for each metric and method. Table 4 shows the 95% confidence intervals for
evaluation metrics across all models and methods (FT, RAG, FT+RAG), restricted to only
those cases where at least one pairwise comparison between methods was statistically sig-
nificant (p < 0.05), as reported in Table 5. Metrics without significant differences are marked
with “—” to avoid misleading interpretation. These intervals, based on a bootstrapped
sample meant over the test questions, provided a statistical range within which the true
metric values were likely to fall. In most cases, RAG and FT+RAG had higher upper and
lower bounds than FT, especially in important metrics like BLEU, ROUGE, and BERTScore.
In some cases, such as LLAMA and PHI, the intervals for RAG and FT+RAG are entirely
above those of FT, reinforcing their statistical superiority.

Table 4. The table shows 95% confidence intervals for evaluation metrics (shown only where p < 0.05
in Table 5). Non-significant metrics are marked as “—”.

Model Method BLEU GLEU R-1 R-2 R-L METEOR Precision Recall F1 BS_P BS_R BS_F1 SB_CS NASS

GEMMA
FT (0.039, 0.058) (0.118, 0.140) — (0.107, 0.130) — — — — — — — — (0.784, 0.820) —
RAG (0.088, 0.165) (0.155, 0.226) — (0.166, 0.258) — — — — — — — — (0.730, 0.789) —
FT+RAG — (0.151, 0.214) — — — — — — — — — — (0.766, 0.816) —

PHI
FT (0.028, 0.045) (0.113, 0.131) (0.253, 0.280) (0.067, 0.085) (0.234, 0.262) — (0.408, 0.458) — (0.374, 0.405) (0.851, 0.859) — (0.845, 0.855) (0.760, 0.801) (0.803, 0.842)
RAG (0.084, 0.142) (0.164, 0.219) (0.332, 0.399) (0.176, 0.253) (0.320, 0.389) — (0.560, 0.644) — — (0.884, 0.899) (0.839, 0.853) (0.862, 0.874) — (0.844, 0.900)
FT+RAG (0.103, 0.172) (0.186, 0.252) (0.350, 0.433) (0.201, 0.295) (0.338, 0.422) — (0.606, 0.696) — (0.402, 0.469) (0.893, 0.911) (0.844, 0.860) (0.869, 0.885) (0.794, 0.835) (0.854, 0.911)

QWEN
FT — — — (0.093, 0.117) — — (0.580, 0.641) (0.234, 0.296) — (0.887, 0.897) — (0.859, 0.869) — —
RAG — — — (0.129, 0.204) — — (0.676, 0.767) (0.186, 0.248) — (0.900, 0.917) — — — —
FT+RAG — — — (0.135, 0.199) — — (0.669, 0.762) — — (0.902, 0.921) — (0.867, 0.880) — —

LLAMA
FT (0.019, 0.033) (0.080, 0.100) (0.246, 0.277) (0.071, 0.091) (0.231, 0.260) (0.129, 0.163) (0.542, 0.600) (0.220, 0.274) (0.293, 0.336) (0.875, 0.886) (0.828, 0.841) (0.852, 0.862) (0.747, 0.787) (0.794, 0.835)
RAG (0.120, 0.204) (0.197, 0.279) (0.372, 0.463) (0.233, 0.329) (0.363, 0.448) (0.236, 0.323) (0.669, 0.751) (0.319, 0.418) (0.392, 0.479) (0.907, 0.926) (0.852, 0.873) (0.878, 0.896) (0.797, 0.843) (0.873, 0.922)
FT+RAG (0.113, 0.194) (0.196, 0.278) (0.381, 0.465) (0.249, 0.347) (0.370, 0.457) (0.226, 0.309) (0.708, 0.803) (0.297, 0.390) (0.379, 0.463) (0.915, 0.936) (0.850, 0.870) (0.882, 0.899) (0.795, 0.840) (0.884, 0.932)

MISTRAL
FT — — (0.298, 0.332) (0.105, 0.128) (0.282, 0.313) — (0.496, 0.557) (0.329, 0.381) — (0.873, 0.885) — (0.859, 0.869) (0.787, 0.818) (0.829, 0.861)
RAG — — (0.350, 0.424) (0.194, 0.271) (0.332, 0.408) — (0.720, 0.802) (0.254, 0.329) — (0.910, 0.928) — (0.875, 0.891) (0.805, 0.839) (0.852, 0.901)
FT+RAG — — — (0.169, 0.245) — — (0.649, 0.739) (0.253, 0.328) — (0.898, 0.917) — (0.868, 0.883) — —

Note: CIs are shown for methods where at least one pairwise comparison (FT vs. RAG, FT vs. FT+RAG, or RAG
vs. FT+RAG) had p < 0.05 in Table 5.
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We applied the Wilcoxon signed-rank test on per-question metric scores to see if the
differences in performance between the methods (FT, RAG, FT+RAG) were statistically
significant. This non-parametric test is ideal for paired data that do not follow a normal
distribution. For each model and metric, we conducted three pairwise comparisons: FT
vs. RAG, FT vs. FT+RAG, and RAG vs. FT+RAG, using a significance threshold of
p < 0.05. Table 5 shows the statistical significance (p-values) for comparing the FT, RAG,
and FT+RAG methods.

Table 5. Statistical significance (p-values) for comparisons between FT, RAG, and FT+RAG methods.

Model Comparison BLEU GLEU R-1 R-2 R-L METEOR Precision Recall F1 BS_P BS_R BS_F1 SB_CS NASS

GEMMA
FT vs. RAG 0.042 0.037 0.229 0.006 0.176 0.419 0.883 0.644 0.519 0.289 0.688 0.513 0.007 0.229
FT vs. FT+RAG 0.235 0.034 0.345 0.190 0.316 0.089 0.891 0.210 0.601 0.916 0.235 0.669 0.194 0.945
RAG vs. FT+RAG 0.941 0.677 0.665 0.720 0.724 0.438 0.958 0.496 0.329 0.163 0.170 0.078 0.022 0.245

PHI
FT vs. RAG 3.4× 10−5 3.6 × 10−5 2.3 × 10−6 1.6 × 10−8 8.6 × 10−7 0.028 1.3 × 10−10 0.150 0.154 3.9 × 10−10 0.296 3.2 × 10−5 0.050 2.6 × 10−4

FT vs. FT+RAG 1.4 × 10−7 6.3 × 10−6 1.0 × 10−6 2.0 × 10−9 2.6 × 10−7 0.004 1.4 × 10−11 0.133 0.039 2.3 × 10−11 0.217 9.9 × 10−8 0.014 3.0 × 10−5

RAG vs. FT+RAG 0.289 0.043 0.170 0.054 0.139 0.284 0.088 0.985 0.203 0.009 0.005 0.002 0.598 0.122

QWEN
FT vs. RAG 0.891 0.477 0.233 0.044 0.345 0.751 1.3 × 10−4 0.026 0.207 0.005 0.306 0.296 0.135 0.983
FT vs. FT+RAG 0.523 0.170 0.196 0.003 0.231 0.404 4.2 × 10−4 0.072 0.205 9.5 × 10−4 0.572 0.035 0.688 0.434
RAG vs. FT+RAG 0.672 0.414 0.893 0.832 0.924 0.559 0.966 0.280 0.347 0.452 0.268 0.275 0.220 0.186

LLAMA
FT vs. RAG 1.2 × 10−7 2.2 × 10−8 8.6 × 10−9 4.2 × 10−9 8.4 × 10−9 2.0 × 10−6 2.0 × 10−7 9.5 × 10−5 7.5 × 10−6 2.2 × 10−8 5.2 × 10−6 3.5 × 10−8 1.8 × 10−5 2.0 × 10−5

FT vs. FT+RAG 2.9 × 10−6 2.2 × 10−7 7.2 × 10−8 1.0 × 10−9 6.6 × 10−8 2.1 × 10−5 5.6 × 10−9 3.4 × 10−3 3.2 × 10−4 1.6 × 10−10 3.8 × 10−5 5.9 × 10−9 1.0 × 10−4 6.7 × 10−7

RAG vs. FT+RAG 0.512 0.748 0.657 0.117 0.591 0.141 0.069 0.117 0.336 0.052 0.482 0.097 0.846 0.167

MISTRAL
FT vs. RAG 0.513 0.053 0.004 9.2 × 10−6 0.004 0.788 1.2 × 10−11 3.7 × 10−4 0.387 2.9 × 10−9 0.587 6.8 × 10−5 0.037 1.7 × 10−3

FT vs. FT+RAG 0.513 0.537 0.256 0.004 0.245 0.384 3.9 × 10−8 0.001 0.051 5.1 × 10−6 0.099 0.026 0.825 0.321
RAG vs. FT+RAG 0.963 0.686 0.181 0.252 0.195 0.867 0.001 0.781 0.650 0.005 0.765 0.049 0.268 0.091

In GEMMA, RAG did much better than fine-tuning on 4 out of 14 metrics (BLEU,
GLEU, ROUGE-2, and SBERT Cosine Similarity), which means that there were some
improvements but not many. FT+RAG was only significant in one metric (GLEU), and
RAG vs. FT+RAG was only significant in one metric (SBERT Cosine Similarity). In general,
RAG had only small advantages over FT, and the hybrid method did not add much value.

For PHI, RAG did much better than FT in 11 out of 14 metrics (BLEU, GLEU, ROUGE-
1, ROUGE-2, ROUGE-L, METEOR, Precision, BERTScore Precision, BERTScore Recall,
BERTScore F1, NASS). For the PHI model, FT+RAG did better than FT in 12 metrics (BLEU,
GLEU, ROUGE-1, ROUGE-2, ROUGE-L, METEOR, Precision, F1, BERTScore Precision,
BERTScore F1, SBERT Cosine Similarity, NASS). FT+RAG was better than RAG in four
metrics (GLEU, BERTScore P, BERTScore R, BERTScore F1), which suggests that the hybrid
approach made small but steady improvements in meaning.

In QWEN, RAG did much better than fine-tuning on 4 out of 14 metrics (ROUGE-2,
Precision, Recall, BERTScore Precision). In contrast, FT+RAG did better than FT on four
metrics (ROUGE-2, Precision, BERTScore Precision, BERTScore F1). But none of the metrics
showed that RAG and FT+RAG were statistically different from each other. These results
indicate that both RAG and FT+RAG provide only slight enhancements over FT, with their
benefits being limited and largely equivalent, showing no distinct superiority between
the two.

When using LLAMA, both RAG and FT+RAG did much better than FT on all 14 eval-
uation metrics: BLEU, GLEU, ROUGE-1, ROUGE-2, ROUGE-L, METEOR, Precision, Recall,
F1, BERTScore Precision, BERTScore Recall, BERTScore F1, SBERT Cosine Similarity, and
NASS. This shows that the gains were strong and consistent. Nonetheless, no metrics
demonstrated significance between RAG and FT+RAG, indicating that RAG alone is ade-
quate for optimal performance.

RAG did much better than FT in 9 out of 14 metrics (ROUGE-1, ROUGE-2, ROUGE-L,
Precision, Recall, BERTScore Precision, BERTScore F1, SBERT Cosine Similarity, NASS)
for MISTRAL. FT+RAG, on the other hand, did better than FT in five metrics (ROUGE-2,
Precision, Recall, BERTScore Precision, BERTScore F1). There were only three metrics that
were significant when comparing RAG to FT+RAG: Precision, BERTScore Precision, and
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BERTScore F1. This means that FT+RAG only offers small improvements, and RAG alone
is a strong baseline.

6.5. Key Findings

Our study answered four main questions: (1) Which model is best overall? (2) Which
approach is best overall? (3) Which model is best for each approach? (4) Which approach is
best for each model?

The comprehensive evaluation reveals that LLAMA comes out as the best performing
model on most criteria. Along with great performance in conventional metrics like BLEU
(0.163 for RAG) and ROUGE-1 (0.423 for FT+RAG), it achieves the best marks in critical
semantic measures including BERTScore F1 (0.891 for FT+RAG) and SBERT cosine similarity
(0.822 for RAG). PHI also shows good results, especially with hybrid approaches; but
LLAMA’s consistency in both retrieval-augmented and fine-tuned configurations confirms
its general resilience.

Applied over models, RAG proved to be the most successful approach. Improvements
in BLEU (e.g., LLAMA’s 0.163 vs. 0.025 for FT) and semantic metrics (e.g., BERTScore F1
for PHI: 0.868 for RAG vs. 0.850 for FT) consistently show it improving performance over
standalone fine-tuning (FT). Sometimes the hybrid FT+RAG method beats RAG (e.g., PHI’s
BLEU: 0.136), but RAG’s standalone efficacy and computational simplicity make it the
recommended choice for balancing performance and practicality.

Though their gains are small relative to retrieval-augmented setups, GEMMA and
MISTRAL provide competitive results for FT (e.g., GEMMA’s BLEU: 0.048; METEOR: 0.206).
With LLAMA, RAG excels, scoring highest in BLEU (0.163) and ROUGE-L (0.407). For
PHI, the FT+RAG hybrid is most successful since it achieves the highest BLEU (0.136)
and BERTScore F1 (0.876), implying synergistic advantages from combining fine-tuning
with retrieval.

LLAMA improves semantic coherence (SBERT Cosine Similarity: 0.822) and conven-
tional measurements without adding hybrid complexity; thus it is best matched with RAG.
PHI gains most from FT+RAG since it uses fine-tuning to increase retrieval gains—that is,
BERTScore F1: 0.876. Although GEMMA and MISTRAL perform sufficiently with RAG
(e.g., ROUGE-1: 0.386), their improvements over FT are less clear; hence RAG is a reason-
able but modest choice. But QWEN shows little progress in the context of any approach,
suggesting architectural changes or other approaches are needed.

6.6. Performance Comparison with Other Models

Throughout the studies reviewed, retrieval-augmented generation (RAG), fine-tuning
(FT), and their hybrid approach (RAG+FT) exhibit different strengths based on the model
architecture and task. The FT+RAG combination seems to produce the most dramatic
performance improvements in various settings, particularly domain-specific applications
like agriculture and Portuguese QA, where [10,15] saw additive accuracy gains. Fine-
tuning alone also proves highly effective in structured settings like chatbot development,
with [33] showing that it outperforms RAG and prompt engineering with the openassistant-
guanaco model. By contrast, independent RAG was found to excel in situations of rapid
adaptation to novel information or multisource data, particularly where high resource cost
or catastrophic forgetting can hamper fine-tuning.

Yet, all such combinations are not effective in every case. Ref. [34] advises that
fine-tuning can hinder RAG performance in real-world, multi-domain environments and
advocates that integration methods need to be well-defined. In contrast, both [11] and
an envisioned comparative study using LLAMA, GEMMA, MISTRAL, and QWEN mod-
els validates the flexibility and resilience of RAG as being the most efficient approach
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in tasks involving a great deal of knowledge. Table 6 shows the performance of fine-
tuned models compared to other models, highlighting the gains brought about by adapta-
tion. Generally, although FT is still useful for domain adaptation, RAG—and particularly
RAG+FT—methods become general-purpose and effective methods for expanding LLM
capabilities, especially in dynamic or low-resource settings.

Table 6. Most effective method comparison of proposed models with other models.

Paper Models Used Most Effective
Method Notes

[10] Llama2-13B, GPT-3.5,
GPT-4 FT+RAG

Fine-tuning improved
accuracy by 6 percentage
points and RAG added 5
more percentage points

[11] Not explicitly named,
generic LLMs RAG

RAG consistently
outperformed fine-tuning
for both new and existing
knowledge

[15] Not specified FT+RAG
Combined approach
yielded best results in
Portuguese QA tasks

[33] openassistant-guanaco FT

Achieved highest accuracy
(87.8%) and BLEU (0.81);
RAG and prompt
engineering were
competitive

[34] Not specified RAG
Fine-tuning degraded RAG
performance across
domains

Proposed

Llama-3.1-8B,
Gemma-2-9B,
Mistral-7B-Instruct,
Qwen2.5-7B,
Phi-3.5-Mini-Instruct

RAG

retrieval-augmented
generation (RAG) emerged
as most effective adaptation
strategy.

6.7. Comparative Evaluation with Published Baselines

Our work was compared with the KnowTuning study [35], which utilized the same
MedQuAD dataset and achieved a BERTScore of 0.842 and a METEOR score of 0.247
through model fine-tuning. In contrast, our best BERTScore was 0.891 using the FT ap-
proach on GEMMA, and our highest METEOR score was 0.206 using FT on MISTRAL.
Although the METEOR score is slightly lower, it remains comparable. No prior work was
found that applied RAG to the MedQuAD dataset.

One study [36] investigated FT, RAG, and FT+RAG methodologies on the Stanford
QA dataset. They found a BLEU of 0.06 and METEOR of 0.44 for FT, BLEU of 0.06 and
METEOR of 0.27 for RAG, and BLEU of 0.04 and METEOR of 0.16 for FT+RAG. Our best FT
results were, in contrast, 0.05 BLEU and 0.20 METEOR on MISTRAL, 0.16 BLEU and 0.27
METEOR on RAG on LLAMA, and 0.15 BLEU and 0.26 METEOR on FT+RAG on LLAMA.
Our models outperformed the RAG and FT+RAG approaches, but our fine-tuning results
were slightly lower.
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6.8. Carbon Emission

In the fine-tuning of five LLMs, the overall energy consumption and related carbon
emissions were estimated. The overall energy usage for the total of five models was
2.688 kWh. For CO2 emissions, this activity emitted an estimated 1.162 kg of CO2. GEMMA
used 0.589 kWh to produce 0.280 kg of CO2, whereas LLAMA needed 0.485 kWh, producing
0.194 kg of CO2. MISTRAL’s fine-tuning process took 0.51 kWh, emitting 0.242 kg of CO2,
while PHI took 0.64 kWh, and its emissions resulted in 0.26 kg of CO2. Finally, QWEN’s
fine-tuning process took 0.464 kWh, resulting in 0.186 kg of CO2 emissions. These results
emphasize the energy and environmental effect of fine-tuning LLMs.

7. Limitations and Future Work
This section discusses the limitations of our current implementation, as well as prob-

lems with dataset coverage, evaluation size, and automated metric limitations. It also
outlines potential avenues for future research.

7.1. Limitations

Several limitations should be noted, even though this study provides insightful infor-
mation about tailoring large language models (LLMs) for answering medical questions.
First, there is a chance of train-test leakage because some models might have been ex-
posed to parts of MedQuAD during pre-training, even though it is considered an out-of-
distribution dataset. Contamination checks should be incorporated into future work to
guarantee dataset novelty. While the present study demonstrates the effectiveness of our
approach on the MedQuAD medical QA dataset, the exclusive use of this single dataset
necessarily limits the scope of our conclusions. Second, the models might not have fully
optimized their learning because the fine-tuning was only carried out for one epoch, which
could limit performance gains. Third, the assessment makes extensive use of automatic
metrics like BERTScore and BLEU, which may not precisely represent clinical correctness
because they deviate from expert opinions. Finally, metric variance may rise as a result
of the comparatively small evaluation set. Larger and more varied clinical benchmarks
are necessary for drawing solid conclusions, even though bootstrapping was used to
address this.

7.2. Future Work

Although fine-tuning, RAG, and their combination (FT+RAG) across several quantized
LLMs show encouraging results, several paths remain open for future research. First,
experimenting with larger batch sizes and extending the training length beyond one epoch
could help to improve convergence and model generalization. Particularly for models
like GEMMA and MISTRAL, which showed inconsistent gains with RAG, investigating
alternative prompt structures and fine-tuning templates may help to improve performance.

As seen with GEMMA and QWEN during SBERT-based evaluation, another difficulty
is the possibility of semantic drift brought about by retrieval in some architectures. Fu-
ture research could look at hybrid re-ranking methods or more strong retrieval filters to
reduce noise and improve the relevance of obtained papers. Furthermore, although 4-bit
quantization provided significant memory savings, it occasionally resulted in performance
degradation—particularly for models less-suited to low-precision computation. More
precise quantization-aware training and post-training optimization techniques might assist
to solve this problem.

Firstly, for domain-specific tasks like clinical decision support, scalability of the present
architecture in real-time applications remains an open challenge as well. Secondly, future
investigations employing alternative question-answering datasets would help establish the
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robustness and domain-transfer capabilities of the methodology. Integrating structured
medical knowledge graphs, enhancing long-context support, and optimizing the vector
database (Chromadb) indexing technique could help to improve retrieval relevance and
model responsiveness even more. Finally, including real-world clinical benchmarks and
human expert validation into evaluation procedures will help to give a more complete
assessment of the dependability and safety of the model [37].

8. Conclusions
This research conducted a thorough comparison of five quantized large language

models—Meta-Llama-3.1-8B, Phi-3.5-mini-instruct, Gemma-2-9B, Mistral-7B-Instruct, and
Qwen2.5-7B—on three adaptation strategies: fine-tuning (FT), retrieval-augmented gen-
eration (RAG), and their combination (FT+RAG). Each model was fine-tuned on a cu-
rated medical QA dataset using 4-bit quantization for memory savings. Evaluation was
conducted using a rich variety of metrics, such as perplexity, BLEU, GLEU, ROUGE-1,
ROUGE-2, ROUGE-L, METEOR, Precision, Recall, F1, BERTScore Precision, BERTScore
Recall, BERTScore F1, SBERT Cosine Similarity, and Negation-Aware Semantic Similarity.

The comparison of perplexity scores before and after fine-tuning shows essential
information regarding model performance and flexibility. Some architectures showed
tremendous gains in perplexity, pointing to high compatibility with the domain-specific
fine-tuning method. However, other models showed rising perplexity scores, implying
some level of deficiency in their flexibility to adjust to the target data distribution. These
results coincide with larger evaluation metrics from the study, whereby models that are
best at reducing perplexity also performed well across semantic coherence and task-specific
measurements such as BERTScore and ROUGE.

The results show that LLAMA shows consistency in both conventional and semantic
evaluation measures, proving its resilience in text generating tasks. Especially the RAG
approach proved to be the most efficient method generally, greatly improving model
performance by using outside knowledge retrieval. For some models, such as PHI, the
hybrid FT+RAG approach proved especially helpful, implying that in particular situations
combining fine-tuning with retrieval can have synergistic effects. The p-values and intervals
demonstrated that RAG and FT+RAG performed significantly better than fine-tuning
alone in few of the models, with PHI benefiting more from the hybrid approach and
LLAMA demonstrating improvements in all metrics. These results show the need for
choosing the appropriate model and technique depending on computational restrictions
and job requirements.

Moreover, the analysis emphasizes how feasible 4-bit quantized models are in balanc-
ing efficiency and performance, which makes them sensible for actual uses with limited
means. Although most models gained from retrieval augmentation, the degree of improve-
ment differed; QWEN showed little changes, suggesting possible architectural constraints
or the necessity of other optimization techniques. Higher-precision quantization or dy-
namic retrieval methods could be investigated in future work to improve these models even
more. All things considered, this study provides insightful analysis for practitioners hoping
to use effective, high-performance language models in settings with limited resources.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering12070687/s1, Supplementary Material Figure S1:
Model-wise GLEU score comparison: fine-tuning, RAG, and FT+RAG strategies. Supplementary
Material Figure S2: Model-wise METEOR score comparison: fine-tuning, RAG, and FT+RAG strate-
gies. Supplementary Material Figure S3: Model-wise ROUGE-1 score comparison: fine-tuning, RAG,
and FT+RAG strategies. Supplementary Material Figure S4: Model-wise ROUGE-2 score compar-
ison: fine-tuning, RAG, and FT+RAG strategies. Supplementary Material Figure S5: Model-wise
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ROUGE-L score comparison: fine-tuning, RAG, and FT+RAG strategies. Supplementary Material
Figure S6: Model-wise precision comparison: fine-tuning, RAG, and FT+RAG strategies. Sup-
plementary Material Figure S7: Model-wise recall comparison: fine-tuning, RAG, and FT+RAG
strategies. Supplementary Material Figure S8: Model-wise F1 score comparison: fine-tuning, RAG,
and FT+RAG strategies. Supplementary Material Figure S9: Model-wise BERTScore Precision com-
parison: fine-tuning, RAG, and FT+RAG strategies. Supplementary Material Figure S10: Model-wise
BERTScore Recall comparison: Fine-Tuning, RAG, and FT+RAG strategies. Supplementary Mate-
rial Figure S11: Model-wise SBERT Cosine Similarity comparison: fine-tuning, RAG, and FT+RAG
strategies. Supplementary Material Figure S12: Model-wise Negation-Aware Semantic Similarity
comparison: fine-tuning, RAG, and FT+RAG strategies.
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LLM Large Language Model
GEMMA Gemma-2-9B
LLAMA Llama-3.1-8B
QWEN Qwen2.5-7B
MISTRAL Mistral-7B-Instruct
PHI Phi-3.5-mini-instruct
FT Fine-Tuning
RAG Retrieval-Augmented Generation
FT+RAG Fine-Tuning & Retrieval-Augmented Generation
LoRA Low-Rank Adaptation
QLoRA Quantized Low-Rank Adaptation
PPL Perplexity
ROUGE Recall-Oriented Understudy for Gisting Evaluation
BLEU Bilingual Evaluation Understudy
GLEU Google-Bilingual Evaluation Understudy
R-1 ROUGE-1
R-2 ROUGE-2
R-L ROUGE-L
BERT Bidirectional Encoder Representations from Transformers
SBERT Sentence-BERT
BS_P BERTScore Precision
BS_R BERTScore Recall
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