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Abstract: The highly precise and trustworthy segmentation of the left ventricle (LV) and
myocardium is critical for diagnosing and treating cardiovascular disorders, which includes
persistent microvascular obstruction (MVO) as well as myocardial infarction (MI) diseases.
This process improves diagnostic accuracy and optimizes the planning and implementation
of therapeutic interventions, ultimately improving the quality of care and patient prognosis.
Limitations of earlier investigations include neglecting the complex image pre-processing
required to accurately delineate areas of the LV and myocardium (Myo) in MRI and the
absence of a substantial, high-quality dataset. Thus, this paper presents a comprehensive
end-to-end framework, which includes contrast-limited adaptive histogram equalization
(CLAHE) and bilateral filtering methods for image pre-processing and the development and
implementation of a proposed deep model for left ventricular and myocardium segmenta-
tion. This study utilizes the EMIDEC database for the training and assessment of the model,
allowing for a detailed comparative analysis with six state-of-the-art (SOTA) segmentation
models. This approach provides a high accuracy and reliability for the segmentation that
is crucial for the diagnosis and treatment of cardiovascular disorders. The achievements
of the proposed model are demonstrated by high average values of segmentation rates,
such as an Intersection over Union (IoU) of 93.73%, Recall of 96.54%, Dice coefficient of
96.70%, Precision of 96.86%, and F1-score of 96.70%. To verify the generalization capability,
we assessed our suggested model on five supplementary databases, which substantiates its
exceptional efficiency and adaptability in a diverse environment. The presented findings
demonstrate that the proposed deep model surpasses current methods, offering more a
precise and resilient segmentation of cardiac structures.

Keywords: MRI; cardiac; left ventricle; myocardium; deep learning; segmentation models

1. Introduction
Cardiovascular illnesses remain the primary cause of mortality globally. Statistics

indicate that cardiac illnesses in the United States in 2022 caused 702,880 fatalities, which
is around one out of every five cases [1]. The segmentation of the left ventricle (LV)
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and myocardium (Myo) is crucial for cardiologists as it enables the estimation of the
myocardial mass, ventricular volumes during systole and diastole, and ejection fraction.
The aforementioned characteristics serve as the foundation for evaluating cardiac function
and predicting outcomes in individuals with heart illnesses, including cardiac failure. This
clinical condition is complicated because it involves the progression of numerous cardiac
abnormalities to severe degrees [2,3].

Deep learning (DL), especially convolutional neural networks (CNNs), has achieved
amazing work with medical image segmentation problems. In the past few years, research
has shown that CNNs are better than traditional image processing methods because they
can learn from plenty of data and pull out complex features [3–5]. However, even though
there have been successes, there are some problems and challenges that come with utilizing
deep learning in medical segmentation. Some of these are the need for huge amounts
of labeled data [6], the need for a lot of computing power, and the difficulty of figuring
out what the network results signify. In the active research, authors seek to enhance the
precision of cardiac MRI segmentation leveraging DL models, which have demonstrated
a major enhancement in the segmentation findings [7–10]. This progress should also be
applicable for the segmentation of the LV and Myo, therefore opening new opportunities for
cardiac diagnostics and the identification of MI and other heart disorders. The significance
of creating and implementing efficient segmentation methods cannot be overstated. They
provide a more precise and faster diagnosis, facilitating the start of timely treatment and
enhancing the quality of life for patients. In addition, automating the segmentation process
minimizes the workload on doctors and the likelihood of human mistakes [3,5,8,11,12].

In today’s medical practice, several issues are associated with diagnosing and treating
cardiovascular disorders. In particular, we have to pay special attention to the identification
of pathologies of the LV and Myo since these structures are vital for the proper functioning
of the heart. The utilization of deep learning-based segmentation in image processing offers
a robust means to automate this procedure and enhance diagnostic effectiveness [4,7,8].
Globally, cardiovascular disorders continue to be one of the leading reasons of mortality [13].
Within this substantial health concern, the requirement for the precise identification and
evaluation of cardiac components, such as the LV and Myo, becomes a crucial component
of preventive and therapeutic approaches. Herein comes the value of image segmentation,
mostly employing DL approaches, i.e., a SOTA automated utility for medical image analysis.
The methods described provide a very high rate of precision in detecting the intended
structures in images and guarantee the reliability of the findings, which is crucial for both
clinical practice and medical research. In the domain of medical imaging analysis, DL
has emerged as a fundamental methodology [14]. The application of neural networks,
namely (CNNs), in the segmentation of cardiac structures has shown substantial progress
over the past decade. The combination of their computing power and data volume, as
well as enhancements in learning algorithms, has resulted in models capable of precisely
and automatically identifying the LV in MRI images with promising outcomes [15]. The
primary benefit of DL in a segmentation task is its capability in extracting high-degree
characteristics from images, enabling models to more effectively adjust to distinctive
conditions and data kinds. This aspect is crucial in medical imaging, where the wide
range of pathologies and anatomical features requires a considerable adaptability and
generalization of the algorithms. The continual development and research of segmentation
models utilizing deep learning is actively ongoing. Current research is primarily concerned
with enhancing models’ precision and stability and their applicability to various kinds of
medical imaging. An additional significant area of research is also focusing on the reduction
in the requirements for the volume of labeled data for training models, therefore enhancing
their accessibility and effectiveness in clinical practice [16].
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The timely identification of pathologies and the precise quantification of parameters of
cardiac structures has the potential to greatly enhance the standard of medical treatment and
reduce patient risks. Therefore, developing and optimizing DL models for left ventricular
and myocardium segmentation in MRI images is a pertinent and encouraging area of
research, since in practical application, the precise segmentation of the LV and Myo in
MRI images can enhance the diagnosis of cardiovascular disorders, optimize surgical
planning, and monitor the effectiveness of the treatment. This direction necessitates a
collaborative endeavor in medicine, machine learning, and computer vision to achieve
optimal outcomes that serve in the treatment of patients with cardiovascular illnesses.
Therefore, employing deep learning techniques to partition cardiac components in MRI
images is a very promising and pertinent method that has substantial potential to enhance
clinical practice in cardiology. Therefore, the objective of this research is to enhance the
precision and reliability of the segmentation models, thereby enhancing the diagnostic and
therapeutic precision of cardiovascular illnesses. The primary scholarly contributions of
this work are as follows:

• A comprehensive end-to-end approach for the segmentation of left ventricular and
myocardium structures is developed and implemented. The present work introduces
a novel approach that incorporates a dual-stage image pre-processing pipeline, com-
bining CLAHE and bilateral filtering. By taking this pre-processing stage, the quality
of the input data is greatly enhanced, thereby leading to increased precision and
reliability in future segmentations.

• Our work introduces ResST-SEUNet++, a DL model for segmenting cardiac and
medical images, which incorporates ResNetSt (split-attention networks) as an encoder
and an SE attention module in the Unet++’s decoder. To our knowledge, no prior
work has employed this combination for cardiac segmentation. ResST-SEUNet++ was
subjected to a thorough performance assessment and comparison to other advanced
models like PAN, ResUnet, ResUnet++, Manet, Linknet, and PSPnet. Our findings
demonstrated that the suggested model had a greatly superior performance when
compared to existing methods in crucial rates like the IoU, Recall, Dice, accuracy, and
F1-score.

• The verification of the proposed model’s exceptional precision and reliability utilizing
experimental data demonstrated that the reported model exhibits an outstanding
performance in cardiac LV and Myo structural segmentation tasks, as proven by the
high metric values obtained from the experimental findings. These findings validate
the theoretical relevance and practical applicability of the proposed methodologies in
real medical situations.

• This study verified the generalization capabilities of the proposed model on five
additional databases, namely the ACDC 2017 [11], Wound Closure Database [17],
Kvasir-SEG [18], CVC-ClinicDB [19], and ISIC 2017 [20]. This affirmed the model’s
adaptability and efficacy in a variety of datasets, illustrating its capacity to maintain a
high segmentation accuracy under varying conditions.

• We incorporated an explainability scheme into the ResST-SEUNet++ model. This
feature creates visual maps to show which parts of the image the model focuses on
for each class. This makes the model easier to understand and interpret, helps spot
mistakes, and makes its decisions more transparent and reliable.

Thereby, the core novelty of this work concisely lies in the strategic integration of a
ResNeSt encoder with a Unet++ decoder augmented by squeeze-and-excitation blocks,
alongside a dual-stage pre-processing pipeline. To the best of our knowledge, this inte-
gration has not been applied in previous cardiac segmentation frameworks. It leads to
substantial gains in segmentation accuracy and robustness across diverse datasets. Further-
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more, the incorporation of an explainability module enhances the model transparency and
interpretability, reinforcing its practical value in clinical applications.

Further sections of the manuscript follow this organization: Section 2 provides an
overview of existing studies on left ventricular and myocardial segmentation and discusses
the relevance of deep learning methods. Section 3 describes the materials and methods,
including a comprehensive explanation of the model, the datasets utilized, and the pre-
processing and optimization methods. Section 4 presents the experimental results, Section 5
discusses the findings and contrasts them with prior research, and Section 6 summarizes
the achieved results.

2. Related Works
2.1. Left Ventricular and Myocardium Segmentation

In this section, we review existing studies on the segmentation of the LV and Myo
in MRI images, a critical task in medical diagnostics requiring high precision and relia-
bility. Recent research has explored various methods to address this challenge, and we
summarize a selection of these methods, highlighting their contributions, approaches, and
shortcomings in this domain. The authors of this study [21] proposed a deep CNN for
myocardial segmentation using MRI images. However, despite its high accuracy, it exhibits
the following disadvantages: limited training data and a significant class imbalance, which
may affect the accuracy of the segmentation of pathological regions. Most segmentation
errors are observed in basal and apical short-axis slices. We should test more efficient net-
work architectures, such as U-Net, Unet++, and ResUNet, and carry out transfer learning
using large datasets to improve this method. Another key limitation of this research is
the lack of consideration for patients’ unique anatomical characteristics. To enhance the
segmentation precision, it would be advantageous to incorporate individual anatomical
features into the analysis. The authors of [22] suggested a model that segmented the left
ventricle by utilizing deep convolutional autoencoders. Nevertheless, it encounters an
issue with the processing of low-resolution images. Morphological operations, among
other post-processing methods, may help resolve this issue. It is also essential to mention
that this model does not account for the evolution of the LV’s morphology over time.
We should employ 3D networks that account for the dynamics of changes to enhance
the accuracy of the segmentation. In [23], the authors suggested a model for myocardial
segmentation that employs generative adversarial networks (GANs). This method permits
the consideration of the variation in the myocardial morphology among patients. It is also
crucial to mention studies that employ multitask learning to enhance the segmentation
of the LV and Myo simultaneously [24]. A 2022 study [25] introduced the MMNet model,
a multi-layer, multi-skip network that facilitates automatic left ventricular segmentation.
This model exhibits a high level of segmentation accuracy without the need for the prior
localization of the LV. However, the study does not address the segmentation of the Myo,
despite its straightforward and effective nature, and there is room for a further enhance-
ment of the results. To enhance the quality of the image and extract more detailed semantic
information from various perceptual fields, it is necessary to implement pre-processing
modules and techniques, such as CLAHE. This should enhance the outcome. In a 2023 pa-
per [26], researchers compared the performance of an automatic LV segmentation network
trained mostly on CT scan images with two whole-heart reconstruction methods. They
concluded that segmenting LV volumes from respiratory motion-resolved images more
closely approximates manual expert tracings of the LV endocardial boundary. This study
highlights the importance of using quality images to improve the segmentation precision
and can act as a foundation for the further development of DL methods in cardiac MRI
segmentation. Another study examined various image pre-processing methods, model
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configurations utilizing a U-Net architecture, post-processing techniques, and volume
estimation approaches [27]. This study provides an end-to-end analytics pipeline for an
automated LV segmentation and volume estimation. However, it does not segment the
Myo, which is necessary for the diagnosis of other cardiac diseases, such as MI, etc.

2.2. Deep Learning Models for Segmentation

Deep learning methods have become integral to modern computer vision, making it
possible to solve complex image analysis problems with a high accuracy and efficiency. In
particular, image segmentation, e.g., identifying and classifying objects in an image at the
pixel level, has become one of the key areas of the research and application of deep models.
In our current study, we plan to use various well-known pre-trained models to solve cardiac
segmentation problems. This section summarizes deep model-based image segmentation
methods and their applications in various fields, including medical diagnostics. We con-
sider several deep learning architectures relevant to medical image segmentation, including
U-Net [28], LinkNet [29], PSPNet [30], PAN [31], Manet [32], ResUNet [33], ResUNet++ [34],
and Unet++ [35]. Among these, six models, specifically LinkNet, PSPNet, PAN, Manet, Re-
sUNet, and ResUNet++, are employed for the quantitative comparison with the proposed
method. U-Net and Unet++ are briefly reviewed to provide essential background, as they
form the foundation of many modern segmentation networks, including those evaluated
in this study. This overview helps contextualize the architectural advancements introduced
in our proposed ResST-SEUNet++ model.

2.2.1. U-Net

Computer vision has seen significant developments in recent years, especially in image
segmentation. One of the fundamental achievements was the U-Net architecture, explicitly
created for biomedical segmentation [28], developed by Olaf Ronneberger, Philipp Fischer,
and Thomas Brox of the University of Freiburg in Germany; it features a unique “U”-
shaped structure with skip connections that allows it to achieve a high accuracy when
trained on a limited quantity of images. In the medical domains, where images might be
distorted and are not sufficient, U-Net successfully employs data augmentation to enhance
the learning from available samples. The U-Net framework has proven to be an optimal
selection for applications that necessitate fast and precise segmentation on account of its
speed and precision. It is a widely regarded model in medical imaging because of its
effective utilization in a variety of biomedical segmentation applications, including neural
structures in electron microscopy imaging and cells in light microscopy.

2.2.2. LinkNet

The LinkNet model is a specialized deep neural network (DNN) that was specifically
created for semantic image segmentation tasks [29]. It is famous for its high degree of
efficiency and rapidity, particularly in the domains of medical image processing and
autonomous driving situations. The LinkNet model is built with an encoder–decoder
architecture, where the encoder is designed to extract descriptive information from the input
image, while the decoder recovers semantic information, enabling precise item selection
in the image. The strength of the LinkNet model is its capacity to acquire knowledge
from a limited quantity of data, which renders it a compelling option for applications with
limited data resources. Additionally, LinkNet owns transmission modules that provide a
fast exchange of information at numerous degrees of abstraction, consequently enhancing
the comprehension of the contextual aspects of an image.
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2.2.3. PSPNet

PSPNet, which is stands for the Pyramid Scene Parsing Network, is a robust DL net-
work specifically structured for visual scene segmentation tasks [30]. This model is widely
recognized for its capacity to effectively evaluate images at various sizes, consequently
offering a more comprehensive analysis of the scene’s context. The potential strength of
PSPNet lies in its utilization of a pyramid module that empowers the model to consolidate
data from several degrees of spatial resolution. This methodology enables us to take into
account both minute features and the general framework of the image; consequently, it
greatly enhances the quality of the segmentation. Moreover, PSPNet is furnished with a
context module engine that enables the model to take into account the whole parts of the
image while making precise decisions about pixel classification. Thus, PSPNet is an exceed-
ingly effective and precise image segmentation model that is extensively utilized in many
domains such as autonomous driving, satellite image analysis, and medical diagnostics.

2.2.4. PAN

A Pyramid Attention Network (PAN) is an enhanced architecture for semantic segmen-
tation that incorporates Feature Pyramid Attention (FPA) and Global Attention Upsample
(GAU) subsystems. The FPA algorithm incorporates contextual information from sev-
eral pyramidal layers to deliver precise attention at the pixel level. To enhance low-level
category localization and produce the final prediction maps, GAU employs global mean
pooling. By leveraging ResNet-101, PAN reaches an exceptional segmentation precision
and effective utilization of the multi-level information and contextual attention [31].

2.2.5. Manet

The Multi-Scale Attention Network (Manet) is a sophisticated model created for
semantic image segmentation with the primary goal of enhancing the accuracy of the
object recognition. The framework employs two primary attention mechanisms, namely
Position-Wise Attention and Multi-Scale Fusion Attention. These methodologies facilitate
the effective analysis of spatial relationships between pixels and the incorporation of both
local and global context dependencies. The Manet model has demonstrated a robust
performance in medical segmentation tasks, including liver and tumor segmentation, with
high average Dice coefficients [32].

2.2.6. ResUNet

ResUNet is a DL model developed for segmenting semantic images. It integrates the
advantages of two architectures, namely the ResNet CNN and the U-Net network. ResNet is
famous for its capacity to acquire knowledge from complex mathematical structures while
circumventing the issue of gradient degradation. ResUNet integrates the fundamental
components of ResNet, which provide the effective extraction of image characteristics
at various degrees of abstraction, along with the U-Net architecture for precise object
segmentation in digital images. In numerous applications that need a high precision of
image segmentation, including medical image processing and object recognition in satellite
images, the ResUNet architecture has proven to be efficient [33].

2.2.7. ResUNet++

In the area of medical image segmentation, ResUNet++ is a sophisticated structural
framework that is derived from an enhanced version of U-Net. This system integrates
ResNet components and an attention mechanism to enhance the computational efficiency
of handling intricate and diverse medical images. The essential characteristics of this
architecture include resident blocks to enhance the gradient flow, attention mechanisms to
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concentrate on prominent areas of the image, multi-scale features to encapsulate the context
at different resolution degrees, and enhanced skip connections to optimize the utilization
of information from preceding layers. Compared to previous models, ResUNet++ has
demonstrated an excellent performance in medical image segmentation tasks, which makes
it a valuable instrument for clinical applications and automated diagnostics [34].

2.2.8. Unet++

Unet++ is an enhanced version of the U-Net architecture that was structured for
semantic image segmentation. Unet++ achieves an enhanced segmentation precision by
utilizing dense pass paths and cross-convolutions, which facilitate information flow across
network levels. The framework has many decoders matched with encoders to enhance
the restoration of intricate features in images. The Unet++ model has proven to have an
exceptional performance in medical imaging and other domains that demand accurate
segmentation, including satellite image processing and biomedical research [35]. Thus,
the application of such DL in LV and Myo segmentation is a very promising and growing
research domain. The latest advancements in techniques and models have shown to be
highly accurate and efficient. However, they also introduce various obstacles, including
the requirement to boost the image quality, to make use of advanced DL models, and to
include medical knowledge. Subsequent investigations should prioritize enhancing these
aspects to provide more precise and efficient segmentation for clinical practice.

3. Materials and Methodology
Our methodological framework, depicted in Figure 1, presents a comprehensive

pipeline for medical image segmentation and interpretability. The process begins with
EMIDEC images and their corresponding ground truth annotations. These images un-
dergo a series of pre-processing steps, including data augmentation, resizing, contrast
enhancement, normalization, and dataset partitioning. The pre-processed data are then
fed into a segmentation network that integrates a ResNeSt-based encoder with a Unet++
decoder enhanced by channel squeeze and excitation (cSE) attention mechanism to train
and perform semantic segmentation of three classes: background (BG), LV, and Myo.
Model performance is quantitatively assessed using standard evaluation metrics such as
mIoU, mDice, mF1–score, mPrecision, and mRecall. To enhance model interpretability,
a Grad-CAM-based explainability framework is employed, enabling the visualization of
class-specific feature activations in the segmented outputs.

3.1. Datasets Description

This section presents an elaborate analysis of the main databases utilized for training,
performance evaluation, and testing of the generalization ability of the proposed model.

3.1.1. EMIDEC 2020

EMIDEC 2020 is a new publicly available DE-MRI database (https://emidec.com/,
accessed on 3 June 2024) including 150 clinical cases, along with relevant clinical informa-
tion [36]. The training set consists of 100 cases with ground truth (GT) masks, including
33 normal and 67 pathological cases. The test set comprises 50 cases, 17 normal and 33
pathological, without GT masks. Since the official test set does not provide ground-truth
annotations, it cannot be used for computing evaluation metrics. To address this, we
re-partitioned the labeled training data into new training, validation, and test subsets to
ensure a fair and measurable assessment of model performance. The original test set,
lacking ground truth, was instead utilized for supplementary visual analysis as part of
an additional qualitative validation study to further demonstrate the model’s practical
applicability. This dataset has been demonstrated to be capable of being utilized to develop

https://emidec.com/
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methodologies to automatically classify various relevant regions (LV—left ventricular,
Myo—myocardium, MI—myocardial infarction, and MVO-persistent microvascular ob-
struction) from a series of short-axis DE-MRIs covering LV and then quantify MI estimates
in absolute value (mm3) or as a percentage of the myocardium [37]. The quantity of im-
ages varies for each patient, from 5 to 10 short slices encompassing the left ventricle (LV)
area. Expertly drawn segmentation labels for these regions were provided for each MRI
slice. Figure 2 illustrates an instance of the original short-axis MRI series alongside their
respective GT annotations for an N065 normal patient.

 

Figure 1. Proposed deep learning-based left ventricular and myocardium segmentation framework.

Image_N065_0 Image_N065_1 Image_N065_2 Image_N065_3 Image_N065_4 
EMIDEC MRI images 

GT_N065_0 GT_N065_1 GT_N065_2 GT_N065_3 GT_N065_4 
Ground truth segmentation labels (masks) 

Figure 2. Short-axis MRI slices of a N065 normal patient alongside their corresponding GT segmenta-
tion labels. The gray label represents the LV, while the white label corresponds to the Myo.
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3.1.2. ACDC 2017

ACDC 2017 database is a specialized medical dataset used to develop and evaluate car-
diac MRI segmentation algorithms [11] (Automated Cardiac Diagnosis Challenge (ACDC),
https://www.creatis.insa-lyon.fr/Challenge/acdc/scientificInterests.html, accessed on
6 June 2024). This specialized medical dataset, collected at the University Hospital of
Dijon, includes information on 150 patients divided into five groups reflecting different
pathological conditions of the heart muscle. It provides data on the normal heart as well as
patients with MI, dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM),
and right ventricular anomaly. Images obtained using a 1.5 Tesla scanner cover the phases
of end-diastole and end-systole, presented as short-axis cine MRI sequences. Experienced
cardiologists manually annotated each image, resulting in segmentation masks for the
LV, right ventricle (RV), and Myo. The ACDC 2017 database contains 1902 training and
1076 testing images and is widely used in developing segmentation algorithms, clinical
research, and comparative analysis of cardiac images. Its use helps address anatomical and
pathological variability and provides high-quality annotations for training robust cardiac
MRI segmentation models.

3.1.3. Wound Closure Database

To evaluate the proposed model’s capacity for generalization, we utilize the wound
closure progress database available at the following link: (https://datadryad.org/stash/
dataset/doi:10.25338/B84W8Q, accessed on 10 June 2024) [17]. This dataset contains 256 im-
ages showing the progress of wound healing in mice over 15 days after wounding. This
dataset provides a valuable resource for medical biology and medical photography re-
searchers, allowing the study and analysis of wound healing processes at the molecular
and tissue level. The images in this database do not contain labels, so we used the Labelme
python package [38] in the Python programming language to annotate them. After anno-
tating the data, we created the corresponding masks correctly, and then we augmented
the data using techniques from the albumentations python package [39], which allowed
us to generate 2000 images. Implementing this methodology enabled us to broaden and
diversify our dataset, consequently augmenting its size and variety. Thus, this action
enhanced the precision of evaluating the generalization capability of our model. Analyzing
the findings from this database allowed us to enhance our study and verify the robustness
of the suggested approach under different circumstances and source data.

3.1.4. Kvasir-SEG

Our evaluation of the suggested model’s applicability was conducted utilizing
the Kvasir-SEG database [18]. The Kvasir-SEG database, which is available at https:
//datasets.simula.no/kvasir-seg/ (accessed on 12 June 2024), is specifically prepared
for polyp segmentation. It comprises 1000 polyp images together with their matching
reference masks. To enhance the training process as well as the stability of the model, we
implemented data augmentation techniques, enabling us to augment the number of input
images to 2000.

3.1.5. CVC-ClinicDB

The Colon Video Capsule Endoscopy Database (CVC-ClinicDB) [19] is a compre-
hensive and proprietary dataset specifically created for research in the realm of polyp
recognition and semantic segmentation tasks. It may be accessed at https://polyp.grand-
challenge.org/CVCClinicDB/ (accessed on 14 June 2024). A valuable resource for devel-
oping and assessing automated medical image analysis systems, especially for detecting
polyps and other colon diseases, this database comprises 612 images accompanied by

https://www.creatis.insa-lyon.fr/Challenge/acdc/scientificInterests.html
https://datadryad.org/stash/dataset/doi:10.25338/B84W8Q
https://datadryad.org/stash/dataset/doi:10.25338/B84W8Q
https://datasets.simula.no/kvasir-seg/
https://datasets.simula.no/kvasir-seg/
https://polyp.grand-challenge.org/CVCClinicDB/
https://polyp.grand-challenge.org/CVCClinicDB/
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appropriate annotations given by specialists. The inclusion of a ground truth for each
image in CVC-ClinicDB guarantees a high degree of accuracy and dependability of the
data. The database’s primary characteristics of diverse cases, annotations, and imaging
conditions render it an essential instrument for the training and evaluation of machine
learning (ML) and computer vision (CV) algorithms in the realm of medical diagnostics.
CVC-ClinicDB is expediting substantial advancements in the development of automated
systems for diagnosing and detecting colon disorders at an early stage. This, in turn, has the
potential to enhance clinical results and decrease mortality rates associated with colorectal
cancer.

3.1.6. ISIC 2017

To thoroughly assess the proposed model’s generalization performance, we also
validated it on the ISIC 2017 (International Skin Imaging Collaboration, https://challenge.
isic-archive.com/data/#2017, accessed on 16 June 2024) dataset [20]. This dataset comprises
2000 images together with their matching masks, enabling an objective assessment of
the precision of skin lesion segmentation. The ISIC 2017 is a widely recognized and
comprehensive database in the realm of dermatological diagnostics, offering high-quality
annotated images for developing and testing segmentation algorithms. Incorporating this
dataset into the validation procedure of our model offers a rigorous assessment of the
model’s capacity to generalize and prove its performance in real-world clinical situations.

3.2. Pre-Processing
3.2.1. Cardiac MRI Enhancement

This work examined the application of various image pre-processing techniques to
enhance the quality of the raw images. The techniques referred to are CLAHE [40] and
the bilateral filter approach [41]. The CLAHE algorithm achieves exact image histogram
equalization by taking into consideration contrast patterns in various regions of the image.
Post-application of CLAHE to enhance contrast, images frequently exhibit heightened noise
as a result of the increased contrast. Taking into account this concern, we have chosen to
implement a bilateral filter, which enables the preservation of distinct borders of objects
in the image, while simultaneously decreasing the amount of noise. The maintenance of
sharp borders is of greatest significance in image segmentation tasks as it enables more
precise identification of items in the image and enhances the quality of subsequent analysis.
Hence, the integration of CLAHE with a bilateral filter achieves a harmonious equilibrium
between enhanced contrast and reduced noise, greatly enhancing the quality of image
pre-processing in the domain of image segmentation.

3.2.2. Cardiac MRI Augmentation

Image augmentation is the process of modifying existing images to generate fresh data
variants for training machine learning or deep learning models. By boosting the diversity
of the training dataset, this approach significantly enhances the model’s generalization
ability [42]. Image augmentation involves the application of several transformations,
including rotations, reflections, scaling, adjusted brightness and contrast, introduction
of noise, and other similar operations. The aforementioned changes enable the creation
of several image versions while maintaining their semantic information. By employing
random rotation or reflection, it is possible to generate fresh iterations of images that
preserve the spatial information of objects featured on them.

Image augmentation is widely used in computer vision to improve models’ perfor-
mance and generalization, especially when there is limited training data. This technique
also helps models learn under different lighting conditions, orientations, and background
noise, making them more robust and reliable in real-world applications. Since the source

https://challenge.isic-archive.com/data/#2017
https://challenge.isic-archive.com/data/#2017
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training data contains only 33 normal cases with 235 original images, we applied data
augmentation techniques [43] to cardiac MRI images to augment the training data and
improve the model training. It is a crucial step that allows us to increase the variety of data
for training the model. To enhance the robustness and generalizability of the model while
maintaining anatomical realism in cardiac MRI data, we adopted a carefully designed data
augmentation strategy. A horizontal flip was applied with a probability of 0.5, introducing
left–right symmetry without violating the anatomical integrity of the images. Mild rotations
up to 5 degrees were allowed with a 30% chance to simulate natural variations in patient
positioning during scanning. In addition, small-scale geometric transformations, including
slight shifts (up to 3%) and zooms (up to 5%) combined with the same modest rotation
limit, were applied with a 50% probability to introduce controlled spatial diversity. To
simulate minor variations in scanner acquisition settings, subtle changes in brightness and
contrast, limited to 5% in either direction, were introduced with a 30% probability. This
augmentation setup prioritizes clinically plausible transformations, ensuring the anatom-
ical consistency of cardiac structures while still promoting sufficient variation to aid in
model generalization. These augmentation methods generate various images, which allows
the model to learn under different conditions and enhances its generalization ability. This
augmentation process results in generating 3000 images in total. Figure 3 shows different
examples of augmented images with their corresponding masks.

    

Figure 3. Random samples of augmented images (top row) alongside their ground truth labels
(bottom row). Gray color denotes the LV, while white signifies the Myo.

3.3. Proposed Model

In our quest to improve architectures for medical image segmentation, we present a
novel model that combines the benefits of UNet++ [35] with the power of the ResNeSt (split-
attention networks) encoder [44] and cSE decoder attention blocks [45]. The effectiveness
of the ResNeSt encoder lies in its ability to divide attention. It uses a channel-splitting
mechanism to improve feature representation and allows the model to pay attention to
different aspects of the image, which is especially significant for accurate segmentation. For
further enhancement of the model performance, we incorporate channel SE attention blocks
into the network’s decoder. In our study, we also evaluate its performance in comparison to
concurrent spatial and channel squeeze and excitation (scSE) decoder attention blocks [46].
These blocks integrate the squeeze and excitation (SE) [45] channel attention with spatial
attention. This integration enables the model to flexibly adjust to various situations and
enhances the precision of segmentation. Thus, we incorporate ResNeSt and SE decoder
attention blocks into the design of UNet++. It enables us to preserve the advantages of
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UNet++ in terms of context and local information, while enhancing them with ResNeSt
and SE mechanisms. The result is an efficient and accurate model for segmenting the left
ventricle and myocardium in MRIs. The architecture of the proposed model is illustrated
in Figure 4. The gray blocks in Figure 4 correspond to the encoding part of the model,
while the green ones correspond to the decoding part. The dashed black arrows represent
standard skip connections, while the dashed blue arrows denote dense skip connections,
and the solid green arrows indicate convolutional blocks on skip pathways. The Xi,j blocks
represent convolutional operations, and the red blocks correspond to the cSE attention
mechanism, which is further visualized in detail in Figure 5.

Figure 4. Proposed ResST-SEUNet++’s model architecture.

Figure 5. The squeeze and excitation channel attention block. The input feature map U, where C
denotes the number of channels, undergoes global average pooling, followed by two 1 × 1 convo-
lutional layers with ReLU and sigmoid activations to produce channel-wise scaling factors. These
factors recalibrate U via an element-wise multiplication, yielding the output feature map ÛcSE with
enhanced channel dependencies. Note: ⋆ denotes a convolution operation.
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3.4. Loss Function

The loss function is crucial in image segmentation problems since it assesses the
difference between predicted and actual segmentation. This section addresses the loss
function utilized to optimize the proposed model, which is a Multiclass Dice Loss as
described in Equations (1)–(3):

Dicec =
2∑i pi,cgi,c + smooth

∑i pi,c+∑i gi,c + smooth + ϵ
(1)

AverageDice =
1
C

C

∑
c=1

Dicec (2)

MulticlassDiceloss = 1 − 1
C

C

∑
c=1

Dicec (3)

where C is the number of classes, pi,c is the predicted probability for the i-th pixel or (voxel)
belonging to class c, gi,c is the ground truth label for the i-the pixel or (voxel) for class c,
smooth is the smoothness constant to improve training stability and is set to 0.0 by default,
and ϵ is a small constant (set to 1× 10−7) added for numerical stability. The implementation
of this loss offers advantages such as promoting precise object localization in images. This
contributes to enhancing the overall performance of the model in image segmentation
tasks.

3.5. Evaluation Metrics

In the overall scheme of semantic segmentation, we evaluated the model’s performance
utilizing the following metrics as outlined in Equations (4)–(11): average Intersection over
Union (IoU) coefficient, average Dice coefficient, F1-measure, precision, and Recall. Each
of these metrics is an essential instrument in evaluating the model’s quality, enabling
us to qualitatively and statistically evaluate its capacity to recognize objects in images
and perform their segmentation with precision. A comprehensive examination of these
measurements enables us to determine the shortcomings and strengths of the model, which
is crucial for subsequent enhancement and optimization.

IOUgr =
ytrue

gr ∩ ypred
gr

ytrue
gr ∪ ypred

gr
=

TPgr

TPgr + FPgr + FNgr
, (4)

IOULV =
ytrue

LV ∩ ypred
LV

ytrue
LV ∪ ypred

LV

=
TPLV

TPLV + FPLV + FNLV
, (5)

IOUMyo =
ytrue

Myo ∩ ypred
Myo

ytrue
Myo ∪ ypred

Myo

=
TPMyo

TPMyo + FPMyo + FNMyo
, (6)

meanIOU =
IOUgr + IOULV + IOUMyo

3
, (7)

meanPrecision =
1
3∑c∈{gr,LV,Myo}

TPc

TPc + FPc
, (8)

meanRecall =
1
3∑c∈{gr,LV,Myo}

TPc

TPc + FNc
, (9)

Dicec = 2 × Precisionc × Recallc

Precisionc + Recallc
= F1-Scorec, (10)
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meanDice =
1
3∑c∈{gr,LV,Myo} Dicec = meanF1-Score. (11)

where ytrue is the ground truth; ypred is the prediction; and IOUgr, IOULV , and IOUMyo

are the IOU metrics of the ground truth, left ventricular, and myocardium, respectively.

4. Experimental Results
In this section, we outline the primary findings obtained during our experiments.

It includes outcomes from the data pre-processing stage, segmentation, and other key
findings.

4.1. Training Environment and Hyperparameters

The training of our model was performed utilizing an NVIDIA A100 80GB PCIe GPU
graphics card, Python 3.12.3, and the Pytorch 2.3.0 environment. These technologies offer
sophisticated functionalities for the development and training of DL models, therefore
enhancing the efficiency and flexibility in our experiments. The essential hyperparameters
that were utilized in our training experiments include the Adam optimizer [47] with an
initial learning rate (lr) of 0.0001, a batch size of eight, and 100 epochs. We selected these
parameters depending on preliminary experiments to optimize the efficacy of the parameter
updating and ensure an adequate number of iterations in the time of the model training.

4.2. Results of Medical MRI Image Enhancement and Analysis for Cardiac Segmentation

In this subsection, we detail image enhancement outcomes that were achieved utilizing
CLAHE and the bilateral filtering techniques. These two methods have demonstrated sig-
nificant utility in cardiac segmentation utilizing DL models. In medical imaging processing,
especially in cardiac image segmentation, image enhancement techniques are essential. The
process of cardiac segmentation is an essential component for the diagnosis and treatment
of cardiovascular disorders. We do apply the above techniques to enhance the images,
because it enables DL models to more precisely identify the boundaries and structures
of the heart and therefore enhances the diagnostic precision and reliability. CLAHE is
an image contrast enhancement method that applies an adaptive histogram equalization
locally to small blocks of an image rather than globally. This approach improves the local
detail while preventing an excessive noise amplification in homogeneous regions through
a contrast-limiting mechanism. The method divides the image into tiles, applies the his-
togram equalization in each tile, and limits the maximum contrast in each block to avoid
the over-amplification of the image. Neighboring blocks are then interpolated to ensure
smooth transitions between regions. CLAHE is particularly useful in medical imaging and
computer vision tasks, improving the visibility of fine details in low-contrast images while
controlling noise amplification.

In Figure 6, we present examples of original images and matched enhanced images.
They highlight how CLAHE and bilateral filtering techniques enhanced the image quality
by making cardiac structures clearer and more contrasting. In Figure 7, the original and
enhanced images, along with their histograms, are presented. The histograms illustrate
how these two techniques redistribute pixel values, therefore increasing the contrast and
enhancing the visibility of crucial details. This redistribution enables the better recognition
and segmentation of cardiac structures, which is critical when applying DL models in
medical imaging. As we can see from Figures 6 and 7, the applied image enhancement
techniques significantly improved the quality of the input data to DL models, which results
in a more accurate heart segmentation and, therefore, better results in the diagnosis and
treatment of cardiovascular illnesses. After the initial pre-processing, we performed a
normalization process on all the images, which gives us the ability to convert every pixel
value from the range of [0, 255] to the range of [0, 1]. This ensures an optimal performance
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of the DNN because normalized values constantly contribute to the stability and efficiency
of the model training. Additionally, we resized all images to 256 × 256 pixels, because
standardizing image sizes are crucial to ensure the consistency of the input data, which in
turn improves the training of our model and simplifies data processing.

Figure 6. A visualized comparison of original images with enhanced images. The left column presents
the original MRI images of the heart, while the right one shows the enhanced images processed
utilizing CLAHE and bilateral filtering methods. Visually, the enhanced images demonstrate an
increased contrast and clarity, which leads to a more accurate heart segmentation. These visible
improvements give DL models the ability to more accurately highlight critical structures and borders
of the heart, which in turn improves the diagnosis quality.

4.3. The Performance of the Proposed Model

In this section, we describe the segmentation findings achieved using the proposed
model. We utilized the MRI image data from the Emidec dataset to evaluate our model’s
performance. Once the pre-processing is complete, the data is fed into the proposed LV and
Myo segmentation model. It demonstrated a high performance and achieved an average
Intersection over Union (MIoU) of 93.73%. Additionally, it reached high average values of
other metrics, including a Recall of 96.54%, a Dice of 96.70%, a precision of 96.86%, and an
F1-score of 96.70%, which are presented in Table 1. We utilized these metrics to evaluate
the model performance comprehensively, because these metrics give us the opportunity
to evaluate both the overall quality of the segmentation and the ability of the model to
distinguish between different structures precisely.

In Table 1, the high rates of the MIoU and other metrics verify the ability of our model
to segment cardiac structures in MRI images precisely. The outcomes obtained demonstrate
that the proposed model is applicable for use in clinical practice to improve diagnostic
accuracy. Additionally, such findings highlight the potential of the DNN in the segmenta-
tion of medical images, where the high precision and robustness of segmentation models
can significantly affect the quality of medical treatments. The successful implementation
of this model could lead to significant enhancements in the early diagnosis and monitor-
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ing of cardiovascular illnesses as well as improve the treatment effectiveness and patient
outcomes.

Figure 7. Original and enhanced images with their corresponding histograms. The top row shows
the original MRI image of the cardiac region, and its histogram shows the distribution of pixel values.
The bottom row shows the enhanced image and its histogram, which shows the redistribution of
pixel values that resulted in an increased contrast and improved visibility of cardiac structures. This
redistribution is necessary for a better recognition and segmentation of cardiac structures, which is
crucial for the application of DL models in the segmentation tasks.

Table 1. Performance rates of the proposed segmentation model.

Model
Mean
IoU

(%) ± SD

Mean
Recall

(%) ± SD

Mean
Dice

(%) ± SD

Mean
Precision
(%) ± SD

Mean
F1-Score
(%) ± SD

Epochs Params
(M) LR/Batch

Proposed 93.73 ± 0.0137 96.54 ± 0.0081 96.70 ± 0.0076 96.86 ± 0.0074 96.70 ± 0.0076 100 53 0.0001/8

We monitor changes in metrics such as the loss, Intersection over Union (IoU), Dice
coefficient, and F1-score during the model training to understand how well our model
learns and how effectively it can generalize to new unseen data. In DL, loss measures
the difference between the predicted labels and the actual labels, and when it decreases,
it refers to an improvement in the model. We also utilized the IoU, the Dice coefficient,
and the F1-score to evaluate the quality of the segmentation outcomes, where high values
of these rates indicate an accurate match between the predicted and actual masks. In
Figure 8, we illustrate the graphs that represent the loss, IoU, Dice, and F1-score curves.
Their changes’ smoothness indicates a stable learning process. The smooth curves without
sharp fluctuations in Figure 8 tell us that our model adapts well to the data and does not
overfit. When analyzing these curves, the decrease in the loss curve reaches ~0.011, and the
simultaneous increase in the IoU reaches ~0.98%, while the Dice coefficient and F1-score
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values reach ~0.99%. All these values verify the progress in the model training and its
ability to perform the segmentation task more precisely.

Figure 8. Graphs of changes in the loss (Loss), Intersection over Union (IoU), Dice coefficient (Dice),
and F1-score during the model training process. Smooth curves show a stable learning process, a
decrease in loss, and an increase in the IoU, Dice, and F1-score values, indicating an improvement in
the model performance.

Figure 9 illustrates various examples from the test dataset with the corresponding
actual masks generated by the experts and the predicted masks produced by our model.
Examples demonstrate the segmentation accuracy of the model. A comparison of the
actual and predicted masks shows that the proposed model successfully identifies the
significant structures of the cardiac region, including the left ventricle and myocardium.
The model demonstrates a high accuracy even in complex cases where the boundaries of
the structures are less clear. These visual results confirm the effectiveness of the developed
pre-processing methods and model architecture in improving the quality of the automatic
segmentation of medical images. Our proposed heart segmentation model based on deep
neural networks and image enhancement demonstrated a high efficiency and accuracy. It
confirms its potential for use in clinical practice and contributes to improving methods for
diagnosing cardiovascular diseases.

4.4. Comparison with Other State-of-the-Art Models

In this work, a comparative evaluation of the performance of the proposed model with
six other SOTA deep segmentation models was carried out to demonstrate its superiority
over its analogs. Figure 10 provides a qualitative comparison of segmentation results
produced by various models against the ground truth. The proposed model demonstrates
the highest visual accuracy, closely aligning with the manual annotations for both the LV
and Myo regions. ResUnet also performs well, showing smooth and spatially coherent
boundaries, although with slightly less precision than the proposed model. In contrast,
models such as PAN, PSPNet, and ResUnet++ tend to over-segment the Myo area, while
others like MAnet and LinkNet display a moderate agreement with the ground truth. These
visual results support the effectiveness of the proposed architecture in capturing detailed
anatomical structures more reliably than existing approaches. Table 2 provides more evalu-
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ation metrics, such as the Recall, Dice, precision, and F1-score, that allow for a thorough
comparison of the performance of different models. The visualization of these metrics is
presented in Figure 11, which enables us to demonstrate their comparison. The analysis of
the results showed that the proposed model not only outperforms other modern models in
most metrics but also demonstrates stable results on various datasets, which indicates its
versatility and reliability. Table 2 shows that our model demonstrates superiority over the
best SOTA segmentation model (MAnet [32]). Specifically, it outperforms MAnet by an IoU
of 2.2%, a Recall of 2.88%, a Dice of 1.24%, and an F1-score of 1.24%. These results confirm
the high efficiency and accuracy of the proposed model, making it superior not only to
MAnet but also to the other six SOTA segmentation models. The very small standard
deviation values indicate that our model performs well across all batches and proves the
stability of the model’s performance. The results in Table 2 demonstrate the effectiveness
of the proposed enhancements, reflecting clear improvements in the segmentation perfor-
mance. The higher rates of Recall and precision indicate that our model can more effectively
identify and classify objects in images and minimize the number of missed objects (false
negatives) and misclassified objects (false positives). These findings indicate the value of
our study and the development of the proposed approach; moreover, these results confirm
the excellence of our model and indicate its potential for applications in various practical
contexts where precise segmentation is critical. Therefore, the proposed model can provide
a foundation for future research and development in image segmentation.

Figure 9. Representative examples from the EMIDEC test set, showing the GT masks and the
corresponding predictions made by our model. The deep violet areas represent the LV, while the
yellow areas correspond to the Myo.
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Figure 10. A visualized comparison of predictions of different deep segmentation models. The LV is
marked in the deep violet color, and the Myo is highlighted in yellow.

Table 2. Performance comparison of different SOTA deep segmentation models.

Model Mean
IoU (%) ± SD

Mean
Recall (%) ±

SD

Mean
Dice

(%) ± SD

Mean
Precision (%) ±

SD

Mean
F1-Score (%) ±

SD
LR/Batch

ResUnet++ [34] 91.20 ± 0.0074 93.79 ± 0.0052 95.28 ± 0.0043 97.00 ± 0.0041 95.28 ± 0.043 0.0001/8
PAN [31] 90.90 ± 0.0095 93.49 ± 0.0066 95.10 ± 0.0055 96.98 ± 0.0054 95.10 ± 0.0055 0.0001/8

ResUnet [33] 91.33 ± 0.0091 93.49 ± 0.0073 95.35 ± 0.0053 97.47 ± 0.0045 95.35 ± 0.0053 0.0001/8
LinkNet [29] 91.29 ± 0.0099 93.75 ± 0.0069 95.33 ± 0.0057 97.12 ± 0.0054 95.33 ± 0.0057 0.0001/8
MAnet [32] 91.53 ± 0.0078 93.66 ± 0.0059 95.46 ± 0.0044 97.52 ± 0.0041 95.46 ± 0.0044 0.0001/8
PSPNet [30] 90.69 ± 0.0103 93.38 ± 0.0074 94.98 ± 0.0060 96.85 ± 0.0058 94.98 ± 0.0060 0.0001/8

Proposed 93.73 ± 0.0137 96.54 ± 0.0081 96.70 ± 0.0076 96.86 ± 0.0074 96.70 ± 0.0076 0.0001/8

The highest values in each column are highlighted in bold.

4.5. Ablation Study

In this study, we conducted a series of ablative experiments to identify the model’s
most effective combination of hyperparameters and architectural components. To achieve
this, we tested six different combinations, each representing a variation in critical com-
ponents of the model. The results in Table 3 showed that our model achieved the best
performance using the optimal combination of parameters. In particular, the highest values
of IoU and F1-score metrics were obtained in this configuration. These metrics confirm the
high accuracy and efficiency of the proposed model compared to alternative options.
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Figure 11. The comparative visualization of the evaluation metrics of the proposed model and six
other SOTA deep segmentation models.

Table 3. Comparative results of ablation experiments.

Model Mean IoU (%) ± SD Mean F1-Score (%) ± SD
Unet++ with Resnet34 (M1) 91.21 ± 0.0082 95.28 ± 0.0047
Unet++ with Resnet34 and
SE decoder attention (M2) 91.15 ± 0.0078 95.25 ± 0.0045

Unet++ with Resnet 34 and
scSE decoder attention

(M3)
90.92 ± 0.0092 95.11 ± 0.0053

Unet++ alone (M4) 88.83 ± 0.0130 93.90 ± 0.0078
Unet++ with resnest50d

and scSE decoder attention
(M5)

91.74 ± 0.0077 95.58 ± 0.0044

Proposed without CLAHE
(M6) 91.34 ± 0.0070 95.36 ± 0.0040

Proposed (Unet++ with
resnest50d and SE decoder

attention)
93.73 ± 0.0137 96.70 ± 0.0076

M1–6 is an abbreviation for the name of the model combination.

The comparative analysis of Table 3 shows that the proposed model shows a significant
improvement over other models in cardiac segmentation. In terms of the average IoU, the
proposed model shows an improvement of 2.52% over M1, 2.58% over M2, 2.81% over
M3, 4.9% over M4, 1.99% over M5, and 2.39% over M6. Regarding the average F1-score,
the proposed model also significantly outperforms the other models: the improvement is
1.42% relative to M1, 1.45% relative to M2, 1.59% relative to M3, 2.8% relative to M4, 1.12%
relative to M5, and 1.34% relative to M6.

These results tell us that the proposed model effectively utilizes the latest architectural
design and training methods; this in turn facilitates the achievement of a higher accuracy
in the object segmentation in images compared to existing standards.

5. Discussion
In this section, we present a comprehensive comparison of the proposed model with

current (SOAT) techniques, analyze data from previous studies, and demonstrate the
model’s ability to generalize across many diverse datasets. The results show that our
model outperforms existing counterparts on several key measures, which in turn proves its
effectiveness and generalizability in diverse settings and data types.
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5.1. Generalization Results
5.1.1. On Wound Images Database

The results of this experiment are presented in Table 4. They demonstrate that the
proposed model achieved high average values for the IoU, Recall, Dice, precision, and
F1-score metrics, which confirms its high efficiency in the segmentation task. Figure 12
shows various examples from the test dataset with the corresponding reference masks and
the mask predictions obtained by the model. These examples illustrate the model’s ability
to accurately predict masks corresponding to real anatomical structures.

Table 4. Performance metrics of the proposed model on the Wound Closure Database.

Model
Mean
IoU

(%) ± SD

Mean
Recall

(%) ± SD

Mean
Dice

(%) ± SD

Mean
Precision
(%) ± SD

Mean
F1-Score
(%) ± SD

Epochs Params
(M) LR/Batch

Proposed 92.95 ± 0.0101 95.45 ± 0.0085 96.27 ± 0.0057 97.14 ± 0.0042 96.27 ± 0.0057 100 53 0.0001/8

Figure 12. An example of images from the wound closure progress database. The visualization
includes raw images, real ground truths, and model-predicted ground truths. The deep violet and
the blue colors indicates the wounded areas, while the yellow and white indicate the areas around
the wound.

The comparison in Figure 12 shows the high accuracy of the model in segmenting the
wounds and the areas around them, confirming its applicability for clinical research and
analysis.

5.1.2. On the Kavsir-SEG Database

The validation results presented in Table 5 confirmed the high IoU and Dice coefficient
achieved by the proposed model. These results indicate the model’s high efficiency and
reliability in the polyp segmentation task. To further illustrate the model’s capabilities, we
randomly chose samples from the test dataset and made predictions on their masks, as
depicted in Figure 13. The visual comparisons of the predicted masks with the reference



Bioengineering 2025, 12, 665 22 of 35

masks confirm the model’s ability to accurately segment polyps, which highlights its
potential for clinical utility and improving diagnostic methods.

Table 5. Primary performance metrics of our proposed model on the Kavsir-SEG database.

Model Mean IoU
(%) ± SD

Mean
Recall (%) ±

SD

Mean
Dice

(%) ± SD
Precision
(%) ± SD

Mean
F1-Score (%) ±

SD
Epochs Params

(M) LR/Batch

Proposed 86.04 ± 0.0737 91.26 ± 0.0625 92.32 ± 0.0451 93.74 ± 0.0493 92.32 ± 0.0451 100 53 0.0001/8

Figure 13. A visual example of random samples from the Kvasir-SEG test dataset with corresponding
reference masks and predicted masks using our proposed model. White and green regions indicate
the areas segmented as polyps. This comparison demonstrates the model’s high segmentation
accuracy.

The predicted masks in Figure 13 illustrate the high IoU values and clearly show
that the proposed model can accurately identify anatomical structures, which confirms its
practical value and applicability in medical segmentation problems.

5.1.3. On the CVC-Clinic Database

In this research study, we also utilize the CVC-ClinicDB database to test the general-
ization capability of our proposed model. The results of this experiment are presented in
Table 6 and illustrated in Figure 14. We analyze these outcomes to evaluate and see how
superior the effectiveness and generalization ability of our model is in identifying polyps
and other colon pathologies.

Table 6. Results of testing the generalization ability of the proposed model on the CVC-Clinic
database.

Model Mean IoU
(%) ± SD

Mean
Recall (%) ±

SD

Mean
Dice

(%) ± SD

Mean
Precision
(%) ± SD

Mean
F1-Score
(%) ± SD

Epochs Params
(M) LR/Batch

Proposed 89.72 ± 0.0345 93.80 ± 0.0339 94.54 ± 0.0195 95.40 ± 0.0206 94.54 ± 0.0195 100 53 0.0001/8
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Figure 14. Diverse examples of random image instances from the CVC-ClinicDB test database
containing the original annotations (GT) and the predicted annotations obtained using the proposed
model. White and green regions correspond to the segmented polyps.

Our model achieved the following average metric values: IoU—89.72%,
Recall—93.80%, Dice coefficient—94.54%, Precision—95.40%, and F1-score—94.54%. These
high scores further validate the model’s ability to generalize to new unseen data from other
datasets.

The predicting ground truth masks in Figure 14 show that the proposed model demon-
strates a high precision and confirms its ability to generalize to new data types and its
effectiveness in identifying polyps and other colon pathologies.

5.1.4. On ISIC 2017 Database

To validate how our model effectively generalizes on the ISIC 2017 database, we
utilized several stages. First, the images and their corresponding masks from ISIC 2017
were divided into training and test sets; then the model was fine-tuned and trained on the
training set; after that, its performance was assessed on the test set. The outcomes showed
that the model maintained a high level of precision on the training data and successfully
generalized its predictions to new, previously unseen images. In Figure 15, we illustrate
randomly selected test instances for a clear visualization. Figure 15 shows that the model
demonstrated an exceptional precision in mask prediction and successfully identified the
boundaries of skin lesions. This result verifies the efficiency and generalization of the
model, which is especially relevant for clinical use and automated diagnostics.

Our experiments on the ISIC 2017 dataset demonstrate that the proposed model
reaches various essential measurements that are described in Table 7. More specifically,
the model achieved high average rates, including a mean IoU of 85.37%, a mean Recall of
91.63%, a mean Dice of 91.91%, a mean precision of 92.65%, and a mean F1-score of 91.91%,
which further proves its ability to accurately and efficiently segment skin lesions in images.
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Figure 15. A visualization of the original image, the corresponding annotated mask, and the mask
predicted using our model. The white and green regions represent the correctly segmented lesion
areas.

Table 7. Detailed performance metrics (%) of the proposed model on the ISIC 2017 database.

Model Mean IoU
(%) ± SD

Mean
Recall (%) ±

SD

Mean
Dice

(%) ± SD

Mean
Precision
(%) ± SD

Mean
F1-Score
(%) ± SD

Epochs Params
(M) LR/Batch

Proposed 85.37 ± 0.0689 91.63 ± 0.0529 91.91 ± 0.0430 92.65 ± 0.0629 91.91 ± 0.0430 100 53 0.0001/8

Thus, the generalization experiment that we conducted on the ISIC 2017 dataset
confirms the high efficiency of our proposed model in segmenting skin lesions, which
makes it potentially useful for clinical utility and facilitates the automation of diagnostics.

5.2. Validation Results on ACDC 2017 Database

Table 8 shows the findings obtained when we validated our model on ACDC 2017
according to several factors, such as the average IoU and other metrics. The model showed
high metrics results that verify its applicability and reliability. The average MIoU reached
an 88.76% value, which indicates a high segmentation accuracy and tells us that the model
effectively identifies and separates cardiac structures in MRI images. For other indicators,
such as the Recall, Dice, Precision, and F1-score, the proposed model also shows high
values, which further confirms its stability and reliability. The high results for all presented
metrics confirm that the developed model is applicable for clinical studies and can be used
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to enhance cardiac MRI segmentation algorithms further. These findings highlight the
model’s effectiveness in resolving segmentation issues and its potential for use in clinical
settings.

In Figure 16, we show random samples from the test set, along with their GT masks and
the predicted masks generated by the model. This visualization illustrates the comparison
between the manual annotation conducted with the help of experienced cardiologists
and the segmentation outcomes acquired using the developed model. The actual labels
represent the true state of the segmented regions and are presented in each image for visual
comparison. Looking at the predictions of the model, they indicate how accurately it can
reproduce the contours and shapes of the left ventricle and myocardium. The comparison
of the images in Figure 16 attests to the high accuracy of the model since the predicted
segmentations almost entirely match the actual labels. It further highlights the model’s
applicability in clinical settings and its ability to conduct the segmentation task on cardiac
MRI images efficiently.

Figure 16. The visual presentation of random samples of images from the test set from the ACDC 2017
database, with the actual and predicted GT by the model. The visualization shows the comparison
between the manual annotation conducted with experienced cardiologists and the segmentation
results obtained using the developed model. The deep violet marks the LV regions, whereas yellow
outlines the Myo. The high degree of agreement between predictions and actual labels authenticates
the precision and reliability of our proposed model in segmenting cardiac MRI images.



Bioengineering 2025, 12, 665 26 of 35

Table 8. The performance metrics of validating the proposed model on the ACDC database.

Model
Mean
IoU

(%) ± SD

Mean
Recall

(%) ± SD
Mean Dice
(%) ± SD

Mean
Precision
(%) ± SD

Mean
F1-Score
(%) ± SD

Epochs Params
(M) LR

Proposed 88.78 ± 0.0175 93.39 ± 0.0138 93.85 ± 0.0106 94.38 ± 0.0101 93.85 ± 0.0106 100 53 0.0001

5.3. A Validation on an Unlabeled EMIDEC 2020 Database

To evaluate the performance of the proposed model in the absence of reference masks,
we carried out an ablation on 358 images from the EMIDEC 2020 [36] database. This test
set does not contain a reference ground truth, so we used it to validate the model and
check the generalization and applicability of the proposed method. We conducted this
test because it is critical in determining how well our model can perform on new unseen
data that does not have ground truth masks. This approach allowed us to test whether the
model could maintain its optimal efficiency without relying on pre-labeled data. Figure 17
shows the results of mask predictions for randomly chosen images from this test set. These
results demonstrate that the proposed model can generate precise masks corresponding
to anatomical structures without reference labels. The model showed impressive results,
indicating its high level of generalization and adaptability. This ability of the model to
effectively deal with new and unseen data proves its potential practical value in actual
clinical settings, where the availability of labeled data is not always guaranteed. These
results strengthen our confidence that the proposed model can be applied to a wide range
of medical segmentation tasks and provide an optimal efficiency and robustness even when
working with unlabeled data.

 

Figure 17. Two diverse instances of predicted masks for randomly selected images from the EMIDEC
test set database without reference labels. This figure shows the original images and predicted masks
obtained utilizing the proposed model. Deep violet signifies the LV, and yellow denotes the Myo
region.
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Overall, this conducted experiment emphasizes the relevance and efficacy of the
proposed segmentation model in demonstrating its generalizability and applicability across
various settings. It makes it a valuable utility for medical research and practical applications
and is capable of enhancing the quality and precision of medical image analyses.

5.4. Cross-Dataset Generalization: A Comparative Analysis

To rigorously assess the generalization capability of the proposed ResST-SEUNet++,
we conducted a comparative evaluation across one cardiac and four non-cardiac medical im-
age segmentation datasets. Building on our initial benchmarking comparative experiment
on the EMIDEC dataset (Table 2), we identified the top three performing models—MAnet,
ResUnet, and LinkNet—based on their performance across the utilized standard metrics.
These models were subsequently selected as strong baselines for external comparison.
As presented in Table 9, ResST-SEUNet++ consistently achieved a superior segmentation
performance relative to these three high-performing models across all five external datasets.
This consistent outperformance underscores the model’s robust generalization capacity
and its adaptability to domain shifts beyond cardiac imaging. By restricting the comparison
to top-tier models, we ensured both computational efficiency and a targeted evaluation
framework, allowing for clearer insights into the effectiveness of the proposed architecture.
This comparative analysis affirms the generalization strength of the proposed approach
and further substantiates its potential for a broader clinical deployment across varied
segmentation tasks.

Table 9. Generalization performance comparison of ResST-SEUNet++ and top baseline models across
five segmentation datasets.

Database Model
Mean
IoU
(%)

Mean
Recall

(%)

Mean
Dice
(%)

Mean
Precision

(%)

Mean
F1-Score

(%)

Wound Closure

MAnet 92.20 ± 0.0180 94.77 ± 0.0178 95.83 ± 0.0232 97.01 ± 0.0010 95.83 ± 0.0232
ResUnet 92.06 ± 0.0213 94.69 ± 0.0185 95.75 ± 0.0133 96.92 ± 0.0067 95.75 ± 0.0133
LinkNET 92.26 ± 0.0134 94.87 ± 0.0118 95.88 ± 0.0077 96.98 ± 0.0046 95.88 ± 0.0077
Proposed 92.95 ± 0.0101 95.45 ± 0.0085 96.27 ± 0.0057 97.14 ± 0.0042 96.27 ± 0.0057

Kavsir-SEG

MAnet 80.32 ± 0.0812 89.99 ± 0.0832 88.85 ± 0.0516 88.60 ± 0.0705 88.85 ± 0.0516
ResUnet 83.25 ± 0.0669 89.64 ± 0.0627 90.71 ± 0.0413 92.18 ± 0.0495 90.71 ± 0.0413
LinkNET 83.30 ± 0.0823 89.63 ± 0.0757 90.65 ± 0.0520 92.27 ± 0.0594 90.65 ± 0.0520
Proposed 86.04 ± 0.0737 91.26 ± 0.0625 92.32 ± 0.0451 93.74 ± 0.0493 92.32 ± 0.0451

CVC-Clinic

MAnet 88.81 ± 0.0454 92.78 ± 0.0437 94.01 ± 0.0262 95.41 ± 0.0215 94.01 ± 0.0262
ResUnet 88.24 ± 0.0503 92.04 ± 0.0523 93.67 ± 0.0295 95.54 ± 0.0155 93.67 ± 0.0295
LinkNET 88.79 ± 0.0527 93.42 ± 0.0367 93.97 ± 0.0327 94.63 ± 0.0401 93.97 ± 0.0327
Proposed 89.72 ± 0.0345 93.80 ± 0.0339 94.54 ± 0.0195 95.40 ± 0.0206 94.54 ± 0.0195

ISIC 2017

MAnet 83.39 ± 0.0702 90.04 ± 0.0695 90.78 ± 0.0433 91.92 ± 0.0432 90.78 ± 0.0433
ResUnet 83.13 ± 0.0747 87.73 ± 0.0743 90.59 ± 0.0478 94.08 ± 0.0410 90.59 ± 0.0478
LinkNET 83.30 ± 0.0801 87.97 ± 0.0907 90.67 ± 0.0518 94.21 ± 0.0296 90.67 ± 0.0518
Proposed 85.37 ± 0.0689 91.63 ± 0.0529 91.91 ± 0.0430 92.65 ± 0.0629 91.91 ± 0.0430

ACDC 2017

MAnet 87.87 ± 0.0150 92.15 ± 0.0147 93.22 ± 0.0171 94.56 ± 0.046 93.22 ± 0.0171
ResUnet 87.56 ± 0.0682 91.95 ± 0.0713 92.73 ± 0.0704 93.65 ± 0.0711 92.73 ± 0.0704
LinkNET 87.22 ± 0.0676 91.28 ± 0.0706 92.52 ± 0.0701 93.98 ± 0.0717 92.52 ± 0.0701
Proposed 88.78 ± 0.0175 93.39 ± 0.0138 93.85 ± 0.0106 94.38 ± 0.0101 93.85 ± 0.0106

The highest values are shown in bold.

5.5. Comparison with Previous Studies

The present study proposes a DL architecture for cardiac segmentation in short-axis
MR images that demonstrated an exceptional performance compared to previous studies,
which are elaborated in Table 10. Previously, Cui et al. [48] presented the Multi-Scale
Attention-Guided U-Net technique, which achieved an IoU value of 75%. A study by Tan
et al. [49] proposed a regression convolutional neural network that achieved an IoU of 77%.
Similarly, Tran [50] developed a fully convolutional neural network for heart segmentation
that achieved a mean IoU of 74% and a mean Recall of 83%. Khened et al. [51] applied
multi-layer DenseNets and achieved an IoU of 74% and a Dice of 84%. The study by Wang
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et al. [52] used a dynamic pixel weighting technique that demonstrated IoU values of 70%
and a Dice of 80%.

Table 10. Comparison of performance rates of different cardiac segmentation methods on short-axis
MR images.

Method Dataset Methods Mean
IoU (%)

Mean
Dice (%)

Mean
Recall (%)

Mean
F1-Score (%)

Cui et al. [48] LVSC

An Attention U-Net with
image pyramids and Focal

Tversky Loss for cardiac MRI
segmentation.

75 – – –

Tan et al. [49] LVSC

Dual-network model for LV
segmentation via center

localization and polar border
regression.

77 – – –

Tran et al. [50] LVSC

A fully convolutional network
(FCN) for end-to-end,

pixel-level segmentation of
cardiac MRI images.

74 – 83 –

Khened et al. [51] LV-2011

DenseNet-based FCN using
Inception modules and dual

loss for efficient cardiac
segmentation.

74 84 – –

Wang et al. [52]
LV

DETERMINE
dataset

Dynamic pixel-wise weighted
FCN with scale-invariant

features for automatic LV MRI
segmentation.

70 80 – –

Chen et al. [53] ACDC-2017

PH-Mamba boosts
segmentation by preheating

state space models with
contextual cues and

compensation.

83.89 91.04 – –

Silva et al. [54] ACDC-2017

A U-Net identifies regions of
interest, a custom FCN

segments cardiac structures,
followed by refinement via a

reconstruction module.

80.89 86.88 87.48 87.43

Al-antari et al. [55] EMIDEC 2020
Multi-class cardiac

segmentation using enhanced
MRI and an adapted ResUNet.

84.23 – 85.24 85.35

Proposed EMIDEC 2020

CLAHE-enhanced MRI and
ResST-SEUNet++, a deep

learning model integrating a
ResNetSt encoder with

SE-attention mechanisms in
the UNet++ decoder, for
improved cardiac image

segmentation.

93.73 96.70 96.54 96.70

Values in bold represent the highest scores.

In more recent studies, such as Chen et al. [53], a high performance was achieved,
characterized by mean IoU and mean Dice values of 83.89% and 91.04%, respectively.
Da Silva et al. [54] developed a cascade approach for automatically segmenting cardiac
structures, achieving a mean IoU, Dice, Recall, and F1-score of 80.89%, 86.88%, 87.48%, and
87.43%, respectively. In a new study, Al-antari et al. [55] achieved a mean IoU of 84.23%, a
mean Recall of 85.24%, and a mean F1-score of 85.35% using the ResUNet model for cardiac
segmentation. Compared to these related studies, the model proposed in this study shows
significantly improved results, achieving an average IoU of 93.73%, an average Recall of
96.54%, an average Dice of 96.70%, an average precision of 96.86%, and an average F1-score
of 96.70%. These results confirm the proposed architecture’s effectiveness and superiority
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over previous techniques, which opens up new opportunities for improving automatic
cardiac segmentation in short-axis MRI images.

5.6. Explaining Model Decisions

To trust the findings and predictions attained by the model, we utilized a Grad-CAM
technique, introduced in [56], to explain the reasoning behind the results and visualize
the area of the input data that most contributed to the model’s decisions. Grad-CAM is a
method that helps us understand how a neural network makes decisions. It shows us the
regions of an image that the model considers crucial for its prediction and shows how and
why a model makes specific predictions. Grad-CAM uses information from the model’s
internal layers to highlight these regions. This is especially useful in medical problems
where it is important to not only obtain a result, but also to understand how it was obtained.
The visualized framework of the explainable model is illustrated in Figure 18.

Figure 18. Explainable GRAD-CAM workflow from raw MRI input image to heatmap visualization.

The process inside the framework is simply and straightforwardly detailed as follows:
the input MRI raw image goes into the trained model, which predicts the outcome, then
Grad-CAM pinpoints which parts (areas) of the image most influenced the predictions, and
the heatmap highlights the crucial ones in the MRI image. In Figure 19, we visualize two
distinct samples in three columns. The original image (left), which is an MRI slice of the
heart region, serves as input to the model. The true markup (ground truth) (center) is a
reference created by experts that shows where the LV (Red) and Myo (light blue) are. Grad-
CAM overlays (right) show which areas the model paid attention to when analyzing the
image. In this column, red areas are associated with the LV, while green areas are associated
with the Myo. Grad-CAM shows that the model correctly identifies areas corresponding to
the LV and Myo. They almost completely coincide with the true markings. From analyzing
Figure 19, we see two crucial facts:

• The increased intensity of overlays, to see crucial areas, confirms that the model
confidently works with key structures.

• The model clearly distinguishes the boundaries between the LV and Myo, even if they
are located close to each other.

These results show that the model works accurately and reliably. It not only correctly
recognizes crucial structures, but also makes it understandable for a person. This is
especially important in medicine, where the health and lives of patients depend on such
decisions. Thus, utilizing Grad-CAM in this research not only helps validate the model
but also shows where it can be improved. For example, refining the activation boundaries
can make the segmentation even more accurate, especially in complex cases. Consequently,
the model demonstrates an excellent performance in segmenting cardiac structures, and
the use of Grad-CAM enhances the interpretability, increasing the confidence in the results.
This makes the model valuable for both clinical applications and further research.
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Figure 19. The visualization of Grad-CAM results. The left panel shows the input MRI images. The
center panel highlights the ground truths, with red indicating the LV and light blue representing the
Myo. The right panel illustrates Grad-CAM activations, visualizing the areas for the LV (Red) and
Myo (Green) that the model focuses on during segmentation.

5.7. Limitations

Despite the good results achieved, this study has some limitations that must be
considered when interpreting the data obtained and planning further research. Firstly, the
size and diversity of the dataset may limit the model’s overall applicability. Our study
utilized data collected from a limited number of sources and under certain conditions. It
may not entirely reflect all the variability in anatomical and pathological characteristics that
may be experienced in clinical practice. Thus, including more diverse and representative
datasets in the future may further enhance the generalization capability of the model.

Secondly, the selected architecture of the model and the hyperparameters have not
been optimized for all types of data and segmentation tasks. However, even with meticu-
lous adjustments, alternative designs or combinations of hyperparameters may exhibit a
superior performance. Thus, additional testing with different structures and optimization
strategies can enhance the selection of the most efficient ways. Also, the model was trained
and tested in a controlled setting, which might not be exactly like a real clinical setting,
where the image quality and other outside factors can change a lot; therefore, moving from
the lab to real-life clinical practice needs more study and the validation of the data collected
in various medical settings and institutions.

Lastly, creating and utilizing DL models in clinical practice needs to take ethics and
legal issues into consideration, for instance, to keep patients’ data safe and ensuring these
algorithms are explicit. Thus, it is relevant to conduct more investigations and discourse on
these issues.

Therefore, even though this study has good results and potential, some issues need to
be considered. These problems need to be fixed in future studies so that DL models can
better accurately and reliably split heart parts for usage in actual life.
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5.8. Future Work

The present work employed deep learning models to segment the LV and Myo.
Notwithstanding the obtained results, there exist certain domains in which more investiga-
tion can greatly enhance the quality and precision of the segmentation.

Moving forward, there are intentions to broaden the scope of segmentation to include
additional structural components of the heart, particularly the right ventricle [57], myocar-
dial infarction [58], and atria. This will facilitate the development of more extensive models
capable of precisely analyzing the integrated anatomy and function of the heart. Having an
enhanced precision in modeling different diseased states of the heart, such as the formation
of scar tissue after a myocardial infarction, will provide a more comprehensive diagnosis
and treatment planning.

Furthermore, the utilization of advanced deep learning models, such as neural net-
work ensembles, Vision Transformer (ViT), and multi-modal techniques, has the potential to
enhance the overall precision and resilience of the model. The integration of transfer learn-
ing and continuous learning approaches enables models to dynamically adjust to new data
and enhance their predictions as new information is acquired. The integration of data from
many sources, including magnetic resonance imaging (MRI) and computed tomography
(CT), might enhance the segmentation quality by providing further information.

Therefore, future efforts should focus on enhancing the capabilities of the models,
enhancing their precision and dependability, and incorporating them into feasible medical
operations. These research areas will contribute to the development of more precise and
dependable instruments for the diagnosis and treatment of cardiovascular illnesses, thus
resulting in an enhanced quality of care and patient well-being.

6. Conclusions
This study presented a comprehensive LV and Myo segmentation method based on

DL models. Our method involves image pre-processing utilizing CLAHE and bilateral
filtering to enhance the quality of the input data. This pre-processing helps enhance the
contrast and eliminate noise, hence improving the subsequent segmentation quality.

The model we offer demonstrates a far superior performance compared to established
designs, including PAN, ResUnet, ResUnet++, MAnet, Linknet, and PSPnet. Our anal-
ysis demonstrated that the suggested method yields a superior accuracy and reliability
in segmentation, as indicated by the achieved average values of the IoU (93.73%), Recall
(96.54%), Dice (96.70%), precision (96.86%), and F1-score (96.70%). The superior perfor-
mance on these criteria demonstrates the model’s exceptional capacity to differentiate and
precisely segment cardiac anatomical components. We have shown that our suggested
model exhibits excellent average IoU values on five other databases, therefore confirming
its adaptability and efficacy in many application domains. The average IoU values were
88.78% on the ACDC 2017 database, 92.95% on the Wound Closure Database, 86.04% on
the Kvasir-SEG database, 89.72% on the CVC-ClinicDB database, and 85.37% on the ISIC
2017 database. These results demonstrate the model’s ability to adapt and maintain a
high segmentation precision in a variety of medical and other applications, which proves
its potential applicability to a wide range of image analysis tasks. Our work highlights
the significance of utilizing advanced image pre-processing techniques and optimized DL
architectures to achieve a superior performance in medical segmentation tasks.



Bioengineering 2025, 12, 665 32 of 35

We can say that our suggested method works better than other methods and creates
new ways to use DL in medical detection and heart image analysis. The results keep the
hope alive for more study in this area, such as making models that are more complex and
adaptive so they can handle a wider range of clinical situations. By making it easier to
diagnose and treat cardiovascular illnesses, putting these types of models to use in clinical
practice can greatly enhance the level of treatment.
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