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Abstract: Hematoxylin and Eosin (HE) staining is the gold standard in histopathological
examination of cancer tissue, representing the first step towards cancer diagnosis. The sec-
ond step is a series of immunohistochemical stainings, including cell proliferation markers
called the Ki67 index. Deep learning models offer promising solutions for improving medi-
cal diagnostics, while generative models provide additional explainability of predictive
models that is essential for their adoption in clinical practice. Our previous work introduced
a novel approach that utilises a conditional StyleGAN model for generating HE-stained
images conditioned on the Ki67 index. This study proposes to employ this model for gen-
erating sequences of HE-stained images reflecting varying Ki67 index values. Sequences
enable exploration of hidden relationships between HE and Ki67 staining and can enhance
the explainability of predictive models, e.g., by generating counterfactual examples. While
our previous research focused on assessing the quality of generated HE images, this study
extends that work by evaluating the model’s ability to capture Ki67-related variations in
HE-stained images. Additionally, expert pathologists evaluated generated sequences and
proposed criteria for assessing their relevance. Our findings demonstrate the potential of
the conditional StyleGAN model as part of an explainable framework for analysing and
predicting immunohistochemical information from HE-stained images. Results highlight
the relevance of generative models in histopathology and their potential applications in
cancer progression analysis.

Keywords: hematoxylin and eosin; Ki67; conditional GAN; StyleGAN; digital pathology

1. Introduction

Histopathology involves the examination of tissue sections stained by different meth-
ods using light microscopy to identify signs of disease [1]. Histopathological analysis
represents a condition sine qua non in cancer diagnosis, tumour exact classification, and
subsequent treatment recommendations. Tissue staining is a technique that applies one
or more dyes to tissue sections in order to enhance contrast and help pathologists identify
different diagnostically relevant morphological features of the examined cells. Hematoxylin
and Eosin (HE) staining is a gold standard in tissue cancer diagnosis which highlights
different microscopically evaluable pathological changes of cancer cells different from those
of normal cells in a stained tissue section. Immunohistochemical (IHC) stainings are used to
specify the type of cancer by employing antibodies to detect lineage and/or differentiation
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and prognostic-specific antigens (markers) within cancer tissue sections. In addition, the
Ki67 antigen serves as a marker of cell proliferation for assessing Ki67-positive cells that are
abnormally growing and dividing, thereby possibly indicating the rate of tumour growth.
The Ki67 index quantifies the expression of Ki67-positive cells by calculating the percent-
age of positive cancer cells in a tissue section. Evaluation of the Ki67 index represents a
mandatory step in the cancer diagnostic algorithm; however, IHC Ki67 staining has high
demands in terms of resources and time, and its evaluation is more time-consuming than
that of HE staining.

Deep learning models show promise for improving medical diagnostics. They can
provide fast, consistent, and cost-effective decision-making. However, errors in medical
contexts can lead to serious consequences. Therefore, these models must be made explain-
able prior to implementation in clinical practice in order to prevent potential failures and
reveal biases. Model explainability provides transparency, fairness, accuracy, generality,
and comprehensibility of the results [2]. Furthermore, the General Data Protection Regula-
tion (GDPR) [3] issued by the European Union requires algorithms to be transparent before
being used in patient care.

Integrating a generative model into a deep learning framework can improve explain-
ability by providing additional information to support model predictions. For instance,
generative models can produce counterfactual examples derived from minimal modifi-
cations to the original data. These result in a change in the model’s prediction, such as a
label shift from healthy to unhealthy in the context of medical image analysis. According
to [4], pathologists consider counterfactual examples as offering adequate insight into the
algorithm’s decision-making criteria. Furthermore, generative models can improve deep
learning model performance by augmenting training data [5].

In our previous works [6,7], we proposed a conditional StyleGAN model for generat-
ing synthetic HE-stained images conditioned on the Ki67 index, demonstrating promising
results in producing realistic synthetic image patches. However, these works primarily
focused on the quality of the generated HE images without addressing the Ki67 informa-
tion obtained from them. In this paper, we extend our analysis by evaluating the Ki67
information within synthetic HE images, aiming to use our model to modify HE images
to reflect varying Ki67 index values. Furthermore, we generate sequences of HE-stained
images with progressively changing Ki67 index values in order to analyse the relationship
between HE and Ki67 staining.

Our research aims to develop an explainable framework for predicting the Ki67 index
from HE-stained histological images, with explainability achieved through the use of gener-
ative models. The conditional generative model from this paper can be further employed in
this explainable framework to explain the Ki67 index predictions from HE-stained images
by generating counterfactual examples and simulating cancer progression. Additionally, it
can provide deeper insights into the relationship between HE and Ki67 stainings.

The rest of this paper is organised as follows: in Section 2, we discuss generative
models and related works; Section 3, describes the dataset, conditional generative model,
and evaluation metrics; Section 4 evaluates the model and its latent space, then analyses
Ki67 information in HE-stained images; finally, Section 5 presents conclusions and outlines
potential directions for future research.

2. Background
2.1. Generative Adversarial Networks

Generative Adversarial Networks (GANSs) were introduced by Goodfellow et al. [8]
based on the principle of a min—-max optimisation game involving two competing models:
a generator G and discriminator D. The generator aims to learn the distribution of real
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data and subsequently generate new synthetic samples from this learned distribution
that closely resemble the real data. In contrast, the discriminator is trained to distinguish
between real data from the real dataset and synthetic data produced by the generator. Both
models are trained concurrently and improve simultaneously; as the generator produces
more realistic samples, the discriminator improves its ability to accurately differentiate
between real and generated data.

The training dataset represents a high-dimensional probability distribution of real
data that the generator learns to approximate without explicit specification; thus, it learns
this distribution directly from the data samples. As specified by Goodfellow et al. [8], the
generator is trained to map G(z), a random latent vector z drawn from a prior distribution
pz (typically Gaussian or uniform), into a complex distribution pg,;, approximating real
data. The generator is typically implemented as a neural network or convolutional neural
network for image data, taking a latent vector as input and outputting a synthetic data
sample. In contrast, the discriminator is typically designed as a classification neural network
or convolutional neural network that assesses the credibility of input samples, providing a
probability score indicating the likelihood that a given sample is real.

GAN models are capable of generating a large number of realistic data samples
that closely resemble the training data. However, they are often associated with several
problems, including issues with convergence or vanishing gradients. Another common
issue is mode collapse, in which the generator produces only a limited subset of the data
distribution, manifesting as a lack of diversity in the generated output [9].

Several variations of the original GAN model have been proposed. Conditional GAN
models incorporate additional information into both the generator and the discriminator.
This enables the model to generate data conditioned on a specific class label, providing
more control over the generation process. The conditional GAN concept was introduced in
the original GAN paper by Goodfellow et al. [8]. However, it was explored in more detail
in the subsequent paper by Mirza et al. [10].

StyleGAN is another improved version of the GAN model, first introduced by
Karras et al. [11]. It improves image quality and the structure of latent space to automat-
ically disentangle high-level features, resulting in a more interpretable latent space and
providing higher control over the image generation process. StyleGAN involves enhanced
generator and discriminator architectures. The generator comprises two networks, a map-
ping network and a synthesis network. First, the nonlinear mapping network maps latent
vectors from the input latent space Z to the intermediate space W. This intermediate
space is disentangled and is not shape-limited [11], allowing the model to capture more
meaningful feature representations. Second, the progressively growing synthesis network
generates high-resolution images with reduced training time.

2.2. Related Work

Several studies have employed generative models in the histopathology domain.
Daroach et al. [12] utilised StyleGAN to generate high-resolution 1024 x 1024 synthetic
HE-stained images of prostatic tissue. Leveraging StyleGAN'’s progressive growth, this
model effectively captures histopathological features across various magnifications. The
generated images were deemed to be nearly indistinguishable from real samples by expert
pathologists. In their style mixing experiments, Daroach et al. observed that StyleGAN’s
hierarchical architecture allows for specific control over image features; coarse layers deter-
mine large structures (gland and lumen locations), middle layers define epithelium and
stroma textures, and fine layers adjust colour and nuclear density. Furthermore, they ex-
plored StyleGAN'’s latent space through several experiments, determining representatives
for eight histopathological classes by averaging the latent vectors of sample generated
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images assigned to the same class. These representatives were proven to successfully mimic
real histopathological features. Further experimentation as conducted using interpolation
between images with different labels. Although the shortest path in latent space yielded
realistic images, this did not align with natural biochemical tissue changes. Neverthe-
less, Daroach et al. demonstrated that the StyleGAN model can generate high-resolution
histological images.

In related work, Daroach et al. [13] demonstrated that the latent space of a StyleGAN
model trained on a prostate histology dataset of 256 x 256 patches can capture patho-
logically significant semantics without data annotation. In that study, they generated a
sample of synthetic images with known latent vectors which were subsequently annotated
by pathologists. Using these annotations, they identified distinct Gleason pattern-related
regions within the latent space by applying principal component analysis. This allowed for
the generation of new synthetic images from these regions while preserving the diagnostic
features of each region. Pathologists classified images generated from these regions, with
77% of images aligning with the Gleason grade of their region and 98% matching either the
same or adjacent diagnostic region. The results indicated that StyleGAN can successfully
disentangle prostate cancer features consistently with Gleason grading even without an-
notated training data. However, the authors emphasised that a balanced training dataset
significantly improves the latent space quality.

Quiros et al. [14] introduced PathologyGAN, a model capable of generating
224 x 224 patches of HE-stained histological images validated by expert pathologists.
PathologyGAN is built on the BigGAN architecture [15] with a few modifications. It
incorporates a relativistic average discriminator [16] and several StyleGAN [11] features,
including intermediate latent space, style mixing regularisation, and adaptive instance
normalisation. PathologyGAN was trained on colorectal and breast cancer datasets. The
authors verified its construction of an interpretable latent space that captures relevant tissue
characteristics and allows for transformation of semantic tissue features through linear
vector operations. Additionally, linear interpolation between benign and malignant tissues
showed a realistic growing number of cancer cells rather than fading. In [17], Quiros et al.
extended their previous work by incorporating an encoder to map real images into latent
space, allowinf for analysis of feature representations in a subsequent paper [18].

Schutte et al. [19] proposed the interpretability method to explain black-box model
predictions by generating sequences of synthetic images, illustrating the progression of
pathology. Their method consists of three parts: StyleGAN to generate synthetic images,
an encoder to retrieve a latent representation of generated images, and a logistic regression
classifier to approximate the original model’s predictions for generated images. A sequence
is generated by traversing the shortest path in StyleGAN latent space, which results in a
different model prediction. This approach allows for observation of the changes that impact
original model predictions, potentially uncovering new biomarkers [19]. When tested on
knee X-rays, their method produced realistic X-ray sequences following osteoarthritis pro-
gression. Considering a dataset of breast cancer HE-stained patches, the model generated
realistic tumour progression; however, the encoder could not perfectly reconstruct the
original histological images.

The studies described above have focused primarily on HE staining, without consider-
ing IHC. One promising approach is virtual staining, which transforms HE-stained images
into IHC-stained images, enabling IHC analysis without the need for physically stained
tissue sections. In this context, Chen et al. [20] introduced the Pathological Semantics-
Preserving Learning method for Virtual Staining (PSPStain), specifically designed to pre-
serve essential pathological semantics during the transformation process. Experimental
results indicated that PSPStain outperforms existing HE-to-IHC virtual staining methods.
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Our previous research [6,7] focused on generating HE-stained tissue images condi-
tioned on the Ki67 index using the conditional StyleGAN model. In [7], we evaluated the
training progress and synthetic image quality of several models, analysing the effects of
two critical factors: the quality of the training dataset, and the training duration. First, we
compared results across two datasets: one containing only high-quality HE-stained patches
with sufficient visible cells, and a second comprising a broader range of patches includ-
ing lower-quality patches and those with fewer visible cells. Afterwards, we compared
different training durations to assess their impact on model performance. Additionally,
generated images were reviewed and evaluated by the expert pathologist.

While our previous paper deeply analysed the quality of generated images, evaluating
Ki67 information hidden in HE images is more challenging. In this paper, we complete
the evaluation of this conditional model, incorporating the analysis of latent space and
the evaluation of the conditional generator from different aspects. Moreover, we generate
sequences of HE-stained images with changing values of the Ki67 index and analyse the
relationship between HE and Ki67 staining.

Several of the approaches discussed above address the simulation of cancer pro-
gression in histological images. Daroach et al. [12] and Quiros et al. [14] performed
interpolation within the latent space between latent vectors of two different images, while
Schutte et al. [19] adopted a logistic regression classifier to identify the direction in latent
space in order to change the image labels. In contrast, our approach modifies the original
image by adjusting the conditioning input for the conditional generator.

3. Methods

We use the conditional StyleGAN model presented in [7], where we provided a
detailed analysis of image generation quality and validation by the pathologist. In that
work, the expert pathologist confirmed the quality of the synthetic images, describing
them as highly realistic. Synthetic images could only be distinguished from real ones upon
close and detailed examination. However, in that work we omitted analysis of the Ki67
information within generated HE-stained images as well as analysis of the latent space. In
this paper we conduct a detailed evaluation of these aspects.

3.1. Dataset

We employ the dataset presented in our previous paper [21]. The unprocessed
histopathological dataset was provided by the Department of Pathology, Jessenius Medical
Faculty of Comenius University and University Hospital Martin. It consists of HE- and
Ki67-stained whole-slide images of seminoma, a testicular tumour. This dataset comprises
77 pairs of HE-stained and Ki67-stained digital tissue scans, with each pair created from
adjacent tissue sections. Although the sections do not match exactly at the cellular level, we
assume that tissue sections from the same region share similar characteristics. Consequently,
we utilise Ki67-stained images to annotate the adjacent HE-stained images.

In this paper, we use the processed dataset initially introduced in our previous
work [22] and subsequently employed to train the conditional StyleGAN model in [6,7].
The processed dataset was prepared through the semi-automated annotation approach, as
the unprocessed dataset lacked annotations. This process involved three main steps: tissue
registration, colour-based clustering, and Ki67 index quantification. Due to the large size of
whole-slide images and computational constraints, the images were divided into smaller
256 x 256 square patches at the second-highest resolution level. Corresponding HE and
Ki67 patches were cut from the same positions. Each HE patch was subsequently labelled
with the Ki67 index, which was computed as the proportion of positively stained (brown)
pixels in the corresponding clustered Ki67 patch. Figure 1 illustrates an example of an HE
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patch with its corresponding Ki67 patch, including the Ki67 patch after clustering. The
Ki67 index of this particular patch is 0.1 (10%).

E*) &
s&{ tw * i
original Ki67 clustered Ki67

Figure 1. Example of corresponding HE patch, original Ki67 patch, and clustered Ki67 patch. The
Ki67 index is equal to 0.1 [6].

To ensure the quality and relevance of the patches, we applied a comprehensive
filtering process, the details of which are presented elsewhere. The filtering involved edge
detection, blur detection, blob detection, and clustering techniques to exclude patches with
lower quality or insufficient cellular content. As a result, the filtered dataset consists of
177,907 patches derived from 77 tissue scans, with each HE-stained patch labelled with
its corresponding Ki67 index. Figure 2 illustrates examples of HE patches included in the
filtered dataset along with their corresponding Ki67 patches and Ki67 index labels, while
Figure 3 shows example patches that were excluded by the filtering process.

__Ki67=0.5 Ki67=0.7

-
'

2
Figure 2. Examples of HE patches with Ki67 index labels from the filtered dataset alongside their
corresponding Ki67 patches.

Figure 3. Examples of HE patches excluded by our filter [7].

3.2. Generative Model

We utilised the generative model introduced in our earlier work [7], which is a con-
ditional StyleGAN model that generates HE-stained image patches conditioned on the
Ki67 index. The architecture of the conditional generative model is illustrated in Figure 4.
It takes a latent vector z € Z as input and uses a specified Ki67 index to condition the
generation of the HE-stained patches.
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Conditioning is applied within the StyleGAN mapping network following the official
implementation by NVlabs [23]. Figure 5 compares the traditional unconditional mapping
network (left) with the conditional version (right). In the conditional mapping network, the
Ki67 index is first passed through a fully connected (FC) layer to produce a vector with the
dimension of the intermediate latent space W. This vector is then normalised in the same
way as the input latent vector z. The two vectors are concatenated and passed through
two FC layers, as in the original mapping network, resulting in the final intermediate latent
vectorw € W.

Daroach et al. [12] successfully applied StyleGAN [11] and StyleGAN2 [24] for
histopathology image synthesis, which motivated our choice of the improved alias-free suc-
cessor, StyleGANBS, proposed by Karras et al. [23]. Specifically, we adopt the StyleGAN3-R
variant; this architecture maintains equivariance to both translation and rotation, which is
convenient for histological images.

Ki67 index Discriminator loss

_t
Real samples —
Real
D —) |
Discriminator Fake

i -
o | =

I
5 ==) Generated samples —
Latent vector | Generator P

| —) |
z€Z = L

I Generator loss

Figure 4. Conditional GAN [7].

Mapping Conditional
network mapping network

Latent vector Latent vector Ki67 index
Z

FC
L4 ¥ i
normalise ‘ normalise ‘ ‘ normalise ‘

| concatenate |

v l
FC FC
L L
FC FC

- L

el | ae

Figure 5. Comparison of unconditional and conditional mapping networks.

The model was trained using the official implementation from NVlabs with the reg-
ularisation parameter gamma set to 2 and adaptive discriminator augmentation enabled.
Training was conducted on the filtered dataset, which consists of pairs of HE image patches
and corresponding Ki67 index values. For most experiments, we utilised the model trained
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for 5343 kimgs, indicating that the model processed 5,343,000 HE patches during the train-
ing phase; thus, it iterated through the whole dataset approximately 28 times. In a few
experiments, we also employed the model trained for 10,000 kimgs in order to compare its
performance with that of the 5343 kimgs model.

3.3. Evaluation Metrics

We use three metrics—Fréchet Inception Distance, Fréchet Histological Distance, and
Perceptual Path Length—to evaluate the generative model’s performance, considering the
quality of the generated images and the latent space. All these metrics are minimised for
more realistic generated images and improved latent space quality. Together, these metrics
provide a comprehensive evaluation of synthetic histological images by assessing visual
and histological fidelity, diversity, and latent space disentanglement.

The Fréchet Inception Distance (FID) [25] offers a quantitative assessment of how
closely generated images approximate real-world data in terms of quality and diversity.
This metric evaluates images based on high-level feature representations [26] from a pre-
trained inception model, which aligns with human judgment. Specifically, the FID measures
the distance between the distributions of generated and real images by calculating the
Fréchet distance [27] between two Gaussian distributions.

The second metric is the Fréchet Histological Distance (FHD), which is a modified
version of the FID designed specifically for histological images. Because the inception
model is trained on ImageNet, it does not consider histological features. To address this,
we replaced the inception model with a histological model in which images are represented
as high-level features of the histological model [22]. This model was then trained to predict
the Ki67 index from the HE-stained images.

The Perceptual Path Length (PPL) was introduced along with the StyleGAN model [11]
to evaluate the quality of latent space. It assesses the entanglement of latent space by quan-
tifying the perceptual smoothness of interpolation between latent vectors. The perceptual
distance between two images is calculated using VGG16 [28] embeddings.

4. Results

This section evaluates the conditional generator and its latent space, with a focus
on the Ki67 index. We propose sequences of HE-stained images generated by modifying
the Ki67 index, then analyse the relationship between the generated HE images and their
corresponding Ki67 index values.

4.1. Analysis of Training Progress

In our previous paper [7], we demonstrated the proposed model’s superior results on
a high-quality filtered dataset, particularly in terms of image quality and training stability.
Figure 6 illustrates the FID and PPL progression during the training of this model. It is
evident that while FID decreases as expected, the PPL shows an increasing trend. This
increase in PPL is likely due to the model overfitting to the data; hence, the distance
between the real and synthetic data distribution decreases, but the latent space grows
more entangled. This phenomenon may be linked to mode collapse, in which the model
generates a limited variety of images.

While Figure 6 suggests that the model trained for 2000 kimgs achieved low values
for both FID and PPL, visual inspection revealed that the generated images were less
realistic. Expert pathologists evaluated images as realistic only after 5000 kimgs of training.
Consequently, we selected the model with a training duration of 5343 kimgs for most of
our subsequent experiments, as indicated by the vertical line in the figure. This choice
represents a compromise between FID and PPL, achieving a balance between image quality
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and latent space structure. Specifically, the selected conditional StyleGAN3-R model
achieved an FID of 5.5, FHD of 10.52, and PPL of 1541.35. In comparison, the unconditional
StyleGAN3-R variant produced lower image quality, with an FID of 14.79 and FHD of
42.81, while significantly outperforming it in terms of latent space structure, achieving a
PPL of 24.64. The conditional StyleGAN3-T model achieved performance results that were
between these two models in terms of image quality metrics (FID 9.39, FHD 17.45), but
exhibited the weakest latent structure, with a PPL of 85,333.9. All FID and FHD scores were
computed by comparing synthetic images generated by the corresponding model with real
HE-stained images from our dataset.

700 :
; 2000 -
600 A i
500 7 1500 4
400
300 ! 1000 - i
200
500
100
0L, ‘ : ‘ ‘ ‘ 015 ‘ . ‘ ‘ :
0 2000 4000 6000 8000 10,000 0 2000 4000 6000 8000 10,000
kimg kimg
(a) (b)

Figure 6. Training progress in terms of FID and PPL metrics [7]: (a) FID scores and (b) PPL scores.

4.2. Evaluation of the Conditional Generator

A conditional generator produces data with a specified property. In our case, it
generates HE-stained histological images conditioned on a given Ki67 index. To assess
whether the generated images effectively incorporate the Ki67 information, we compared
real HE-stained images from our dataset with synthetic images generated across various
Ki67 index intervals. This comparison provides a quantitative validation of the presence
and fidelity of Ki67-related information in the generated HE-stained images.

Ki67 index values are within the (0, 1) range. To evaluate the generator’s ability to
generate HE-stained images with the specific Ki67 indexes, we divided the full Ki67 range
into smaller Ki67 intervals, which were chosen as follows: (0.5,1), (0,0.5), (0.2,0.5), (0,0.2),
(0.1,0.2), (0,0.1). The use of Ki67 index intervals for seminoma tumours is not standardised,
and there is no consensus regarding the optimal cut-off values; therefore, intervals were
defined based on pathologists’ recommendations and considering the dataset distribution
over Ki67 index labels. Certain intervals are hierarchical, with one interval being a subset of
another, while others are complementary, thereby representing non-overlapping datasets.
The hierarchy of intervals is illustrated in Figure 7.

(0,0.2) [(0.2,0.5)

(0,0.1) [0.1,0.2

Figure 7. Ki67 intervals.
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Before evaluating the generator, we assigned the real HE-stained images from our
dataset to defined Ki67 intervals according to their Ki67 index labels. The distribution of
real data across Ki67 intervals in the dataset is shown in Figure 8. It can be observed that
the Ki67 index labels are highly imbalanced, with the majority of the data labelled with a
Ki67 index below 0.1 and only 2% of the data having a Ki67 index above 0.5. Second, we
created synthetically generated Ki67 intervals by randomly generating synthetic HE images
for each Ki67 interval using our conditional generator. For each evaluation, we generated
50,000 new synthetic HE images. Finally, we analysed the relationships between the dataset
and the generated Ki67 intervals to assess the generator’s conditional performance.

2%
12%

0.5,1)
0.2,0.5)
0.1,0.2)
0,0.1)

13%

P N N N

73%

Figure 8. Distribution of real HE-stained images across Ki67 intervals in the dataset.

4.2.1. Evaluation Using Fréchet Inception Distance

In our first evaluation of the generator’s performance, we scrutinised the visual
similarity between Ki67 intervals. For this purpose, we adopted the Fréchet Inception
Distance score, which measures the difference in the feature distribution between real data
and generated data using the inception model. FID scores were calculated between all of
the dataset’s Ki67 intervals of real images and all of the generated Ki67 intervals of synthetic
images produced by the conditional generator. The results are presented in Table 1, where
rows correspond to dataset intervals and columns represent generator intervals; hence,
the values in the Table are not symmetric. We highlight the hierarchical structure of the
intervals in the row and column descriptions through different colours.

Each value in the table represents the FID score calculated between images from the
corresponding real and generated intervals, reflecting the distance between their feature
distributions. Lower FID scores indicate more similar distributions, suggesting that images
from the generated interval more closely resemble those from the dataset interval. Lower
FID scores are expected between subset intervals, and are highlighted in the table with
a green background. Conversely, higher FID scores are expected for complementary
intervals, and are distinguished with a yellow background. Unexpected FID scores are
emphasised with red-coloured text. The lowest FID scores are anticipated along the table’s
diagonal, where the real and generated intervals are identical. These diagonal FID scores
are marked in bold. Appendix A includes Table Al, which complements Table 1 by
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presenting FID scores with a heatmap background for a more intuitive visualisation of FID
score differences.

From analysing the results presented in Table 1, it is evident that the interval (0.5,1) is
complementary to all other intervals. As expected, the lowest FID score is found along the
diagonal. When comparing the dataset interval (0.5, 1) with all generator intervals in the
row, the interval (0.2,0.5) exhibits the closest FID score to the diagonal, corresponding to
the closest interval in terms of Ki67 distribution.

Table 1. FID results on dataset vs. generated Ki67 intervals.

Generator

<0.5,1>

Dataset <0205 | <0,0.2) " 165 | <0,0.1)
<0.5,1> 1516 | 19.10 | 1645 | 19.85 | 17.18 | 2052
1972 | 567 9.80 5.52 713 5.59
<0.2,0.5) 2050 | 817 9.90 8.42 9.45 8.57
<0,0.2) 212 | 545 | 1026 | 5.9 7.24 5.65
<0.1,02) 1953 | 652 8.76 6.59 6.61 7.01
<0,01) | 2077 | 586 | 1075 | 567 7.72 5.64

Next, we analyse the interval (0,0.5). As anticipated, the FID score with the comple-
mentary interval (0.5,1) is high. The remaining intervals are subsets of (0,0.5); as expected,
the FID scores are lower compared to the complementary interval (0.5,1). The highest FID
score is associated with the interval (0.2,0.5), but is still more than two times lower than
the score for the complementary interval (0.5,1). This is due to the fact that the majority of
the real dataset within the interval (0,0.5) consists of images with low Ki67 index values.

The Ki67 interval (0.2,0.5) exhibits the least favourable performance in the table. For
the (0.2,0.5) generator interval in the column, the FID score with the complementary dataset
interval (0.1,0.2) is lower than the diagonal score, indicating that the generated images
are more similar to real images from the (0.1,0.2) interval than to those from the (0.2,0.5)
interval. Furthermore, the (0.2,0.5) dataset interval in the row shows a shorter distance to
the complementary intervals (0,0.2), (0.1,0.2), and (0,0.1). This can be attributed to the
imbalanced distribution of the real data. However, the interval shows the expected high
FID score with the complementary (0.5, 1) interval and the expected low score with (0,0.5).

The remaining intervals—(0,0.2), (0.1,0.2), and (0, 0.1)—all have expected FID scores,
with lower values for subset intervals and higher values for complementary intervals.
Along with (0, 0.5), these intervals exhibit the lowest diagonal FID scores, as they contain
the majority of real data; in contrast, the interval (0.5,1) has the highest diagonal FID, as
it contains the smallest number of real HE images. Therefore, the conditional generator
demonstrates the highest performance in terms of visual similarity for the lower Ki67
index values.

4.2.2. Evaluation Using Fréchet Histological Distance

In addition to visual similarity, we evaluated the histological similarity between Ki67
intervals using the Fréchet Histological Distance. FHD quantifies the distance between the
feature distributions of real and generated HE images using the histological model.

FHD results for the dataset vs. generator Ki67 intervals are summarised in Table 2,
which follows the same structure as described in Section 4.2.1. Additionally, Table A2
in Appendix A presents FHD values with a heatmap background for enhanced visual
representation. The FHD results are proportionally similar to the FID scores in Table 1, with
a slight improvement. Although the generator interval (0.2,0.5) in the column again shows
a lower distance to the dataset interval (0.1,0.2) than the diagonal FHD score, the dataset
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interval (0.2,0.5) in the row has the lowest FHD score along the diagonal, as expected.
However, the diagonal FHD for the interval (0.5,1) remains significantly higher than the
diagonal FHD of other intervals.

Table 2. FHD results on the dataset vs. generated Ki67 intervals.

Generator
<0.5,1>

Dataset <0.20.5) | <00.2 ", 62) | <0,0.1)

<0.5,1> 32.41 43.08 33.39 45.68 37.62 47.95
45.40 10.36 19.85 10.41 12.95 10.83

<0.2,0.5) 35.47 23.42 20.71 25.70 22.31 26.67

<0,0.2) 4497 10.49 21.05 10.45 13.70 10.77

<0.1,0.2) 37.01 15.28 17.56 16.51 13.07 17.83

<0,0.1) | 47.78 11.32 23.86 11.14 15.31 11.03

Subsequently, we evaluated the generator vs. generator FHD scores to verify that
the generator captures relevant histological characteristics for specific Ki67 intervals. The
results are presented in Table 3 and by the heatmap in Table A4 of Appendix A. These
tables follow the same structure as the previous tables in this section. However, in this case
both the rows and columns represent generator intervals, making the table symmetric. The
results are analogous to the dataset vs. generator results, where the interval (0.2,0.5) shows
a smaller distance to the complementary interval (0.1,0.2) than to (0,0.5). Apart from this,
all other results align with expectations.

Table 3. FHD results for generator vs. generator Ki67 intervals.

Generator
<0.5,1>
Generator <0.2,0.5) [ <0.1,0.2) | <0,0.1)

<0.5,1> 0.42 33.87 13.11 38.12 29.10 41.70
33.87 0.45 9.99 0.70 3.27 1.05
<0.2,0.5) 13.11 9.99 0.44 12.92 5.72 15.35

<0,0.2) 38.12 0.70 12.92 0.44 441 0.61

<0.1,0.2) 29.10 3.27 5.72 441 0.42 6.00

<0,0.1) 41.70 1.05 15.35 0.61 6.00 0.44

Additionally, we evaluated FHD scores for the dataset vs. dataset Ki67 intervals in
order to verify the properties of our dataset. The results are summarised in Table 4 and by
the heatmap in Table A3 of Appendix A. The tables have a similar structure to the generator
vs. generator tables, but both the rows and columns correspond to dataset intervals, making
this table symmetric as well. The results reflect the Ki67 imbalance in the dataset, with the
most accurate results observed for the lower Ki67 indices. The only notable inconsistency is
that the Ki67 interval (0.2,0.5) appears more similar to the complementary interval (0.1,0.2)
than to (0,0.5), which is a consequence of the majority of data in the (0,0.5) interval having
Ki67 labels close to 0. This inconsistency is also reflected in the behaviour of our conditional
generator, and as such can be observed in all of the previously presented tables.
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Table 4. FHD results for the dataset vs. dataset Ki67 intervals.

Dataset

<0.5,1>
Dataset <0205 | <0,0.2) " ;65 | <0,0.1)
<0.5,1> 0.00 | 4095 | 3147 | 4438 | 3275 | 47.80
4095 | 000 | 1282 | 030 6.19 0.87
<0.2,0.5) 3147 | 1282 | 000 | 1681 | 943 19.56
<0,0.2) 4438 | 030 | 1681 | 0.0 7.72 0.24
<0.1,02) 3275 | 6.19 9.43 7.72 0.00 10.58
<0,0.1) | 4780 | 087 | 1956 | 024 | 1058 | 0.00

4.2.3. Evaluation Using Perceptual Path Length

In addition to visual and histological similarity, we analysed the conditional properties
of the latent space using Ki67 intervals and the Perceptual Path Length (PPL), which
measures latent space entanglement. The corresponding results are presented in Table 5.
The PPL score for the entire Ki67 range (0,1) is 1526.11, which is close to the average score
across all evaluated Ki67 intervals. Notably, the PPL scores exhibit minimal variation,
leading to the conclusion that the disentanglement of the latent space is consistent across
all Ki67 intervals.

Table 5. PPL results for Ki67 intervals.

<0,1>

<0.5,1>

<0205 | <002 ;105 | <0,0.1)
149620 | 153352 | 148250 | 1559.26

1526.11 ‘ 1561.95 | 1549.54

4.2.4. Discussion

The results presented in these tables demonstrate adequate relationships between
various Ki67 intervals as validated by FID and FHD scores. However, slightly worse per-
formance is observed for the interval (0.2,0.5) in all the FID and FHD tables, and a higher
diagonal score is noted for the interval (0.5,1) in the dataset vs. generator evaluations.
These discrepant results can be attributed to the highly imbalanced dataset, in which a ma-
jority of the data exhibits low Ki67 indices. Nevertheless, the findings in the tables confirm
the generator’s ability to conditionally generate HE-stained images that correspond to the
specified Ki67 index. Additionally, the PPL results validate the consistent disentanglement
of the latent space across Ki67 conditions.

4.3. Analysis of Ki67 Expression in HE-Stained Images

To analyse the Ki67 expression within HE-stained images, we generated sequences
of HE images that correspond to varying Ki67 index values. This approach allowed us to
scrutinise how variations in the Ki67 index are reflected in HE-stained images, providing
insights into potential correlations between HE staining patterns and Ki67 expression. Due
to the insufficient number of images in the dataset with Ki67 indices above 0.5, we focused
this analysis exclusively on Ki67 index values ranging from 0 to 0.5 in order to ensure
reliable results. Furthermore, sequences with Ki67 indices above 0.5 were evaluated by
pathologists as being less realistic.

The sequences were generated according to the following rules:
¢  Each sequence contained six images.
¢ Images within each sequence were generated from the same randomly selected input

latent vector, while the input latent vector differed between sequences.
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* The Ki67 index started at Ki67 = 0 for the first image and increased to Ki67 = 0.5, with
a step size of 0.1.

We generated two groups of sequences, each containing 20 sequences; the first group
was generated using the conditional StyleGAN model trained for 5343 kimgs, while the
second group was generated using the model trained for 10,000 kimgs. Both groups of
sequences were evaluated by two expert pathologists.

4.3.1. Analysis of the First Group of Sequences

The first group of sequences was generated using the conditional StyleGAN model
trained for 5343 kimgs. Sequences are shown in Figure 9. Each row corresponds to one
sequence, with the sequence number indicated on the left, while each column corresponds
to the specific Ki67 index, which is denoted above each image.

Two expert pathologists independently evaluated each sequence, and their assess-
ments are presented in Table 6. Each pathologist marked each sequence as ‘certainly real’,
‘rather real’, ‘certainly unreal’, ‘rather unreal’, or ‘partially real and unreal’. The first pathol-
ogist’s choices are marked by ‘1" and the second pathologist’s choices by ‘2, with different
colours used to visually distinguish their selections.

Table 6. Pathologists” evaluation of the first group of sequences generated by the conditional
StyleGAN model trained for 5343 kimgs.

Sequence Certainly Rather Partially Rather Certainly
Order Unreal Unreal Real and Real Real
Unreal
1 1
2 1
3 12
4 12
5 12
¢ e
7 12
8 1
9 1
10 1
11 12
12 1
13 12
14 1

—_
Q1
—_

—_
(@)}
—_

—_
N
—_

—_
o

12

—_
\O
—_

N
o
—_

Before evaluating the sequences, we analysed the consistency of the pathologists’
assessments. The distances between their evaluations are summarised in Table 7. If we
consider an evaluation to be inconsistent when the distance exceeds one, we find that
70% of the pathologists” assessments are consistent, with the maximum observed distance
being 2.
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Figure 9. The first group of sequences generated by the conditional StyleGAN model trained for

5343 kimgs.
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Table 7. Distances between pathologists” evaluations of the first group of sequences.

Distance Number of Sequences
0 7
1 7
2 6
3 0
4 0

The pathologists” evaluation of the generated sequences is summarised in Table 8.
The first pathologist rated 45% of the sequences as real, 40% as partially real, and 15% as
unreal. Similarly, the second pathologist evaluated 45% of the sequences as realistic, 20%
as partially real, and 35% as unreal. Together, the pathologists assessed 45% of sequences
as real, 30% as partially real, and 25% as unreal. These results indicate that the majority of
generated sequences were perceived as either realistic or partially realistic, suggesting that
they plausibly reflect actual biological processes. According to both pathologists, the most
realistic sequences were 3, 7, 11, 15, and 16.

Table 8. Summary of pathologists” evaluation of the first group of sequences.

Certainly Rather Partially Rather Certainly
Real and
Unreal Unreal Real Real
Unreal
Pathologist 1 0 3 8 9 0
Pathologist 2 2 5 4 6
Pathologist 1 and 2 2 8 12 15 3

The pathologists concluded that the sequences generated by the model trained on
whole-slide images of seminoma samples reproduced the tumour histopathology in a
highly realistic manner, including the typical cytology of tumour cells and inflammatory
immune response. The generated images copied the tissue arrangement corresponding to
real tissue with no apparent central or axial symmetry artifacts, to the degree where they
were practically indistinguishable from real microphotographs.

Both pathologists independently established their evaluation criteria for rating the
Ki67 sequences. Changes such as increasing percentage and/or density of tumour cells,
decreasing amount of supportive non-tumour tissue (the so-called stroma), arrangement
corresponding to real tissue, and increase of inflammatory cells were evaluated as ’'certainly
real’ or ‘rather real’ by one of the pathologists.

One pathologist considered findings where the tumour population exhibited changes
but did not grow in number as less realistic due to the failure of the sequence to produce
more tumour cells. Another pathologist evaluated as more real those sequences displaying
the same number of tumour cells but showing cytological changes such as increased density
of nuclear chromatin or increased eosinophilia of cytoplasm, potentially indicating markers
of more rapid growth even in real tissue.

Changes that appeared to be inconsistent such as a fluctuating number of tumour and
inflammatory cells, were evaluated as “partially real and unreal’. The morphology was
consistent with real images; however, the differences between the sequences were minimal,
difficult to compare, or apparently random, making it impossible to determine the pattern
of change. This criterion was consistent among both pathologists.
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Changes where the model performed poorly were evaluated as ‘certainly unreal’
or ‘rather unreal’; these included areas of nonvital tissue (so-called necrosis) increas-
ingly present in sequences with high Ki67 index, which were evaluated as less realistic
(Sequence 6 in Figure 9). This type of regressive change does not react with Ki67 antigen
due to the lack of preserved nuclei in necrotic areas. The increase of images resembling
tumour stroma was also evaluated similarly (Sequence 4 and Sequence 5 in Figure 9). This
tissue normally does not display a high proliferation rate; therefore, its presence is expected
to decrease with increasing Ki67.

4.3.2. Analysis of the Second Group of Sequences

The second group of sequences was generated using the model trained for 10,000 kimgs.
Sequences are shown in Figure 10. The figure is organised in the same manner as the first
group in Figure 9 in the previous section, with each row representing one sequence and
each column corresponding to the particular Ki67 index.

Similar to the first group, sequences were evaluated by two expert pathologists. The
results are presented in Table 9, which follows the same structure as Table 6 in Section 4.3.1
describing the results for the first group. Initially, we analysed the consistency of the pathol-
ogists” assessments. The distances between their evaluations are presented in Table 10.
Defining a distance greater than 1 as inconsistent, we find that 55% of the assessments
demonstrate consistency, reflecting a lower level of consistency than observed in the first
group of sequences. Furthermore, the Sequence 10 shows a distance of 4 between the
pathologists” assessments.

Table 9. Pathologists” evaluation of the second group of sequences generated by the conditional
StyleGAN model trained for 10,000 kimgs.

Sequence Certainly Rather Partially Rather Certainly
Order Unreal Unreal Real and Real Real
Unreal
12
12

Q| | U1 x| W N~

10
11
12
13
14
15
16
17 1
18
19
20
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Figure 10. The second group of sequences generated by the conditional StyleGAN model trained for
10,000 kimgs.

Table 11 provides a summary of the pathologists’ assessments of the second group of
sequences. The pathologists rated this group as being less realistic and less consistent than
the first group. The first pathologist classified 50% of sequences as real, 15% as partially real,
and 35% as unreal. Similarly, the second pathologist’s evaluation indicated lower realism,
with 35% of sequences rated as real, 15% as partially real, and 50% as unreal. Together,
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their evaluations considered 42.5% of the sequences to be real, 15% to be partially real, and
42.5% to be unreal. The proportions of sequences rated as real and unreal are identical.
Therefore, we can conclude that the sequences in the second group were less realistic than
those in the first group. According to the assessments of both pathologists, sequences 3, 9,
16, and 18 were the most realistic.

Table 10. Distances between pathologists’ evaluations of the second group of sequences.

Distance Number of Sequences
0 4
1 7
2 6
3 2
4 1

Table 11. Summary of pathologists’ evaluations of the second group of sequences.

Certainly Rather 11::?11:% Rather Certainly
Unreal Unreal Real Real
Unreal
Pathologist 1 1 6 3 8 2
Pathologist 2 3 7 3
Pathologist 1 and 2 4 13 6 10 7

The pathologists” evaluation was performed using the same criteria as described in
the previous section. Sequences evaluated as ‘certainly real’ or ‘rather real’ showed a
consistent increase of tumour and/or inflammatory cells, a decrease in supportive tissue,
and increased density of observed changes. Sequences evaluated as ‘partially real and
unreal’ failed to display one consistent pattern, fluctuating between increase and decrease
of tumour cells. The ‘certainly unreal” or ‘rather unreal” rating was reserved for images
containing necrosis in all images of the sequence, generated sections of random non-
tumour tissue, and/or an increase in the blank white space corresponding to no tissue or
tearing artifacts.

4.3.3. Discussion

The first group of sequences generated by the conditional StyleGAN model trained
for 5343 kimgs was evaluated by the pathologists as being more realistic, with 45% of
sequences assessed as real and 30% as partially real. The pathologists’ assessments for this
group showed a 30% inconsistency rate.

In contrast, the second group of sequences produced by the conditional StyleGAN
model trained for 10,000 kimgs was considered less realistic, with 42.5% of sequences rated
as unreal. The pathologists also demonstrated lower agreement in their evaluations of this
group, with 45% of assessments showing inconsistency.

The largest observed discrepancies were a result of variations in the evaluation criteria.
The first pathologist (1) considered a change in tumour cytology to be a real finding even
without a consistent increase of tumour cells, while the second pathologist (2) regarded
failure to generate a steadily increasing amount of tumour cells as being less realistic.

In summary, the conditional StyleGAN model trained for 5343 kimgs generated
sequences with more realistic variations in Ki67 expression within HE-stained images,
albeit with lower image quality. In contrast, the model trained for 10,000 kimgs produced
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higher-quality images but showed less realistic Ki67 index variation. These results align
with the observations in Section 4.1, where the PPL was found to increase during training,
suggesting that while image quality improved, the quality of the latent space diminished,
leading to less realistic Ki67 index variations.

5. Conclusions

In this paper, we have extended our prior works [6,7] by scrutinising the generation of
HE-stained histological images conditioned on the Ki67 index by utilising a conditional
StyleGAN model. Our previous studies evaluated the quality of generated HE-stained
images without addressing the Ki67 information. Hence, this paper focuses on the model’s
ability to capture Ki67 expression in HE-stained images.

Our analysis of the model’s conditional performance in generating HE-stained images
confirms its alignment with Ki67 index conditioning. Using the FID and FHD metrics, we
validated the correspondence of Ki67 intervals between generated and real data. However,
slightly lower performance was noted in the intervals (0.2,0.5) and (0.5,1) due to dataset
imbalance, where most of the data exhibit lower Ki67 indices. Nevertheless, these results
confirm our model'’s reliability in generating HE-stained images conditioned on the Ki67
index. Furthermore, the PPL scores demonstrate consistent latent space disentanglement
across all Ki67 intervals. Our future work will explore techniques for handling imbalanced
datasets, e.g., data augmentation or resampling. Incorporating these strategies in future
research could further improve the reliability of conditional generation.

In the second part of the paper, we generated sequences of HE-stained images with
varying Ki67 indices. These sequences enabled us to scrutinise how changes in Ki67
expression are reflected in HE-stained images, offering insights into potential relationships
between HE and Ki67 staining patterns. Expert pathologists concluded that the generated
sequences accurately replicate the histopathological characteristics of tumours. The experts’
evaluation of the generated sequences leads to the following conclusions. The first group
of sequences produced by the model trained for 5343 kimgs was considered more realistic,
with 45% of sequences assessed as real and 30% as partially real. This group had a 30%
inconsistency rate between the two pathologists” assessments. In contrast, sequences from
the model trained for 10,000 kimgs were deemed less realistic, with 42.5% rated as unreal
and 45% disagreement between the pathologists.

Our results demonstrate that the conditional StyleGAN model trained for 5343 kimgs
produces sequences with more realistic variations in Ki67 expression, although with lower
image quality. In contrast, the model trained for 10,000 kimgs produces higher-quality
images, but these less accurately reflect the Ki67 index variation. This outcome aligns with
our findings that the FID values decreased during training, while the PPL values increased.
This indicates that while visual fidelity improves, the structure of the latent space becomes
more entangled, leading to less realistic Ki67 index variations. The results suggest that
the model trained for a shorter duration offers a better balance between latent space and
image quality. Thus, our findings show a tradeoff in conditional generative modelling
for histopathological applications. Future work will explore advanced approaches for
increasing the disentanglement in the latent space in order to improve both image and
latent space quality, supporting applications of our model in predictive histopathology
and cancer progression analysis. One potential research direction is exploring alternative
StyleGAN variants. While the currently selected StyleGAN3-R model achieved an FID score
of 5.5, FHD of 10.52, and PPL of 1541.35, preliminary experiments with the StyleGAN2-
ADA model yielded significantly better results, achieving an FID score of 1.65, FHD of 2.96,
and PPL of 12.13.
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The conditional StyleGAN model offers a promising foundation for generating syn-
thetic HE-stained images that accurately reflect Ki67 expression. Future directions include
leveraging generative models to develop an explainable framework for predicting and
analysing the Ki67 index from HE-stained images, with potential applications in counter-
factual analysis and cancer progression simulations.
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Appendix A. Heatmap Tables for Ki67 Intervals

Table Al. FID heatmap results for dataset vs. generator Ki67 intervals.

Generator
<0.5,1>

Dataset <0205 | <002) " 102) | <0,0.1)
<0.5,1> 15.16 19.10 16.45 19.85 17.18 20.52

19.72 9.80
<0.2,0.5) 20.50 8.17 9.90 8.42 9.45 8.57

<0,0.2) 22.12 10.26

<0.1,0.2) 19.53 8.76

<0,0.1) | 20.77 10.75
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Table A2. FHD heatmap results for dataset vs. generator Ki67 intervals.
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Generator

Generator <0.1,0.2)
29.10

<0.1,0.2)
<0,0.1)

Table A5. PPL heatmap results for Ki67 intervals.

<0,1>

1526.11 1561.95 | 1549.54 1533.52 1559.26

1. Gurcan, M.N; Boucheron, L.E.; Can, A.; Madabhushi, A.; Rajpoot, N.M.; Yener, B. Histopathological image analysis: A review.
IEEE Rev. Biomed. Eng. 2009, 2, 147-171. [CrossRef] [PubMed]

2. Band, S.S.; Yarahmadi, A.; Hsu, C.C.; Biyari, M.; Sookhak, M.; Ameri, R.; Dehzangi, I.; Chronopoulos, A.T.; Liang, HW.
Application of explainable artificial intelligence in medical health: A systematic review of interpretability methods. Inform. Med.
Unlocked 2023, 40, 101286. [CrossRef]

3. Regulation, G.D.P. Art. 22 GDPR. Automated individual decision-making, including profiling. Intersoft Consult. 2020, 2. Available
online: https://gdpr-info.eu/art-22-gdpr (accessed on 20 April 2023).

4. Evans, T,; Retzlaff, C.O.; Geiller, C.; Kargl, M.; Plass, M.; Miiller, H.; Kiehl, T.R.; Zerbe, N.; Holzinger, A. The explainability
paradox: Challenges for xAl in digital pathology. Future Gener. Comput. Syst. 2022, 133, 281-296. [CrossRef]

5. Mekala, RR;; Pahde, F; Baur, S.; Chandrashekar, S.; Diep, M.; Wenzel, M.; Wisotzky, E.L.; Yolcu, G.U,; Lapuschkin, S.; Ma, J.; et al.
Synthetic Generation of Dermatoscopic Images with GAN and Closed-Form Factorization. arXiv 2024, arXiv:2410.05114.


http://doi.org/10.1109/RBME.2009.2034865
http://www.ncbi.nlm.nih.gov/pubmed/20671804
http://dx.doi.org/10.1016/j.imu.2023.101286
https://gdpr-info.eu/art-22-gdpr
http://dx.doi.org/10.1016/j.future.2022.03.009

Bioengineering 2025, 12, 476 23 of 24

10.
11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Piatrikova, L.; Cimrak, I.; Petrikova, D. Generation of H&E-Stained Histopathological Images Conditioned on Ki67 Index
Using StyleGAN Model. In Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and
Technologies—BIOINFORMATICS, Rome, Italy, 2022 February 2024; INSTICC, SciTePress: Lisbon, Portugal, 2024; pp. 512-518.
[CrossRef]

Piatrikova, L.; Cimréak, I.; Petrikovd, D. Hematoxylin and Eosin Stained Images Artificially Generated by StyleGAN Model
Conditioned on Immunohistochemical Ki67 Index. Commun. Comput. Inf. Sci. 2025, in press.

Goodfellow, I.; Pouget-Abadie, ].; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672-2680.

Ding, Z.; Jiang, S.; Zhao, J. Take a close look at mode collapse and vanishing gradient in GAN. In Proceedings of the 2022 IEEE
2nd International Conference on Electronic Technology, Communication and Information (ICETCI), Online, 27-29 May 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 597-602.

Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.

Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15-20 June 2019; pp. 4401-4410.
Daroach, G.B.; Yoder, J.A.; Iczkowski, K.A.; LaViolette, P.S. High-resolution Controllable Prostatic Histology Synthesis using
StyleGAN. Bioimaging 2021, 11, 103-112.

Daroach, G.B.; Duenweg, S.R.; Brehler, M.; Lowman, A K.; Iczkowski, K.A.; Jacobsohn, K.M.; Yoder, J.A.; LaViolette, P.S.
Prostate cancer histology synthesis using stylegan latent space annotation. In Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Intervention, Singapore, 18-22 September 2022; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 398—408.

Quiros, A.C.; Murray-Smith, R.; Yuan, K. PathologyGAN: Learning deep representations of cancer tissue. arXiv 2019,
arXiv:1907.02644. [CrossRef]

Brock, A.; Donahue, J.; Simonyan, K. Large scale GAN training for high fidelity natural image synthesis. arXiv 2018,
arXiv:1809.11096.

Jolicoeur-Martineau, A. The relativistic discriminator: A key element missing from standard GAN. arXiv 2018, arXiv:1807.00734.
Quiros, A.C.; Murray-Smith, R.; Yuan, K. Learning a low dimensional manifold of real cancer tissue with PathologyGAN. arXiv
2020, arXiv:2004.06517.

Claudio Quiros, A.; Coudray, N.; Yeaton, A.; Sunhem, W.; Murray-Smith, R.; Tsirigos, A.; Yuan, K. Adversarial learning of
cancer tissue representations. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI
2021: 24th International Conference, Strasbourg, France, 27 September— 1 October 2021; Proceedings, Part VIII 24; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 602-612.

Schutte, K.; Moindrot, O.; Hérent, P,; Schiratti, ].B.; Jégou, S. Using StyleGAN for visual interpretability of deep learning models
on medical images. arXiv 2021, arXiv:2101.07563.

Chen, F; Zhang, R.; Zheng, B.; Sun, Y.; He, J.; Qin, W. Pathological semantics-preserving learning for H&E-to-IHC virtual staining.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh,
Morocco, 6-10 October 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 384-394.

Petrikové, D.; Cimrak, I.; Tobiasova, K.; Plank, L. Dataset of Registered Hematoxylin-Eosin and Ki67 Histopathological Image
Pairs Complemented by a Registration Algorithm. Data 2024, 9, 100. [CrossRef]

Petrikova, D.; Cimrdk, I.; Tobiasova, K.; Plank, L. Semi-Automated Workflow for Computer-Generated Scoring of Ki67 Positive
Cells from HE Stained Slides. In Bioinformatics; Science and Technology Publications: Settibal, Portugal, 2023; pp. 292-300.
Karras, T.; Aittala, M.; Laine, S.; Harkonen, E.; Hellsten, J.; Lehtinen, J.; Aila, T. Alias-Free Generative Adversarial Networks. Adv.
Neural Inf. Process. Syst. 2021, 34, 852-863.

Karras, T,; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and improving the image quality of StyleGAN. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13-19 June 2020;
pp. 8110-8119.

Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANSs trained by a two time-scale update rule converge to a
local nash equilibrium. Adv. Neural Inf. Process. Syst. 2017, 30, 6629-6640.

Zhang, R; Isola, P; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018;
pp. 586-595.


http://dx.doi.org/10.5220/0012464200003657
http://dx.doi.org/10.59275/j.melba.2021-gfgg
http://dx.doi.org/10.3390/data9080100

Bioengineering 2025, 12, 476 24 of 24

27. Fréchet, M. Sur la distance de deux lois de probabilité. In Annales de I'ISUP; Publications de L'Institut de Statistique de
L’Université de Paris: Paris, France, 1957; Volume 6, pp. 183-198.
28. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



	Introduction
	Background
	Generative Adversarial Networks
	Related Work

	Methods 
	Dataset
	Generative Model
	Evaluation Metrics

	Results
	Analysis of Training Progress
	Evaluation of the Conditional Generator
	Evaluation Using Fréchet Inception Distance
	Evaluation Using Fréchet Histological Distance
	Evaluation Using Perceptual Path Length
	Discussion

	Analysis of Ki67 Expression in HE-Stained Images
	Analysis of the First Group of Sequences
	Analysis of the Second Group of Sequences
	Discussion


	Conclusions
	Appendix A
	References

