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Abstract

Atrial fibrillation (AF) detection in electrocardiograms (ECG) remains challenging, par-
ticularly at the heartbeat level. Traditional deep learning methods typically classify ECG
segments as a whole, limiting their ability to detect AF at the granularity of individual
heartbeats. This paper presents AF-DETR, a novel transformer-based object detection
model for precise AF heartbeat localization and classification. AF-DETR incorporates a
CNN backbone and a transformer encoder—decoder architecture, where 2D bounding boxes
are used to represent heartbeat positions. Through iterative refinement of these bounding
boxes, the model improves both localization and classification accuracy. To further enhance
performance, we introduce contrastive denoising training, which accelerates convergence
and prevents redundant heartbeat predictions. We evaluate AF-DETR on five publicly avail-
able ECG datasets (CPSC2021, AFDB, LTAFDB, MITDB, NSRDB), achieving state-of-the-art
performance with Fl-scores of 96.77%, 96.20%, 90.55%, and 99.87% for heartbeat-level
classification, and segment-level accuracies of 98.27%, 97.55%, 97.30%, and 99.99%, respec-
tively. These results demonstrate the effectiveness of AF-DETR in accurately detecting AF
heartbeats and its strong generalization capability across diverse ECG datasets.

Keywords: atrial fibrillation; deep learning; electrocardiogram; object detection; cross-
database validation

1. Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia [1], with its global
incidence and prevalence on the rise [2]. The presence of AF promotes thrombus formation,
which may lead to stroke [3] and systemic embolism [4], and increases the risk of other car-
diovascular diseases such as heart failure [3], myocardial infarction [5], and sudden cardiac
death [6]. Currently, ECG signals serve as the gold standard for clinical AF diagnosis [7].
On an ECG, AF is characterized by irregular ventricular rhythms, absence of P waves, and
presence of F waves [8]. According to guidelines, AF episodes lasting at least 30 s on ECG
can be diagnosed as clinical AF [9]. AF is inherently progressive, meaning that it tends to
worsen over time without intervention [10]. Therefore, early diagnosis of AF is crucial for
timely intervention [11].
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However, due to the often asymptomatic [12] and paroxysmal nature of AF, clinical
screening for AF remains challenging. While palpitations, dyspnea, fatigue, and chest
discomfort are common symptoms, a substantial proportion of AF patients remain asymp-
tomatic, posing major challenges for timely detection and management. Recent evidence
indicates that approximately 27% of AF patients are asymptomatic, with estimates rang-
ing from 20% to 50% across populations [13]. Importantly, asymptomatic AF carries a
risk of thromboembolic and cardiovascular events comparable to, or even higher than,
symptomatic AF, largely due to delayed diagnosis and treatment. Moreover, asymptomatic
status has been associated with specific clinical profiles—including male sex, diabetes
mellitus, chronic kidney disease, and prior stroke or transient ischemic attack—that may
predispose individuals to unrecognized AF episodes. Relying solely on infrequent and
short-term rapid ECG assessments (30 s) for detecting AF may lead to underdiagnosis. It is
further emphasized that patients at higher risk of AF prediction require long-term ECG
monitoring [14] to increase the chances of early AF detection. In addition, there is still a
need to rely on medical experts for interpreting ECG data. Manual visual inspection of
ECG recordings is also a highly time-consuming and error-prone task. This significantly
reduces the chances of timely detection of AF. Therefore, reliable automated methods must
be developed for analyzing and interpreting long-term ECG recordings, particularly for
asymptomatic individuals. Automated beat-level AF localization algorithms could facilitate
earlier detection and personalized intervention, helping to prevent progression and reduce
the burden of AF-related complications.

In recent years, machine learning (ML) and deep learning (DL) have been extensively
developed in the field of AF detection [15]. Machine learning methods focus on classifying
ECG segments using manually extracted features obtained through feature extraction and
feature selection, with generally low computational costs in training and testing [16]. It
is worth noting that the process of developing effective handcrafted features and finding
the best-performing feature combinations is time-consuming and labor-intensive, heavily
relying on manual operations. In the majority of ML-based AF detection approaches, QRS
wave detection is a mandatory initial step. The performance limitations of QRS detectors
and the presence of noise can affect the performance of the final ML model. Furthermore,
there are significant differences in electrocardiographic signals among different patients,
making it challenging to find effective ECG morphological features. Therefore, machine
learning methods based on handcrafted features alone are insufficient for accurate AF
detection. More and more studies are employing DL methods to achieve more accurate
prediction results, albeit potentially requiring higher computational costs. Most DL-based
methods utilize end-to-end frameworks with raw data as input to automatically extract
features, allowing the model to learn feature embeddings most suitable for specific classifi-
cation tasks. Deep learning demonstrates tremendous potential in automatically detecting
and classifying arrhythmias from electrocardiographic signals and exhibits proficiency at a
level comparable to that of medical experts in classifying various arrhythmias.

However, there are still some overlooked issues in existing methods that require
further research. Firstly, the majority of existing AF detection methods generate a sin-
gle prediction label for an ECG segment without providing beat-level prediction labels.
An ECG segment may contain both AF and non-AF parts, leading to ambiguity in the
feature space and misleading the model to embed them into overlapping feature spaces.
Secondly, AF beat detection in long-term ECG recordings remains a challenge. The re-
search on beat-level AF detection is significantly less explored and its performance needs
improvement. Existing AF detection models expect isolated heartbeat signals as input for
beat-level detection. Although shorter input segment lengths can achieve more fine-grained
detection results, shorter ECG segments mean fewer modeled heartbeat dependencies,
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which often lead to poorer detection performance. Additionally, AF detection methods
that use a single heartbeat signal or RRI sequence as input still require explicit heartbeat
localization. Traditional threshold-based QRS detection algorithms still have limitations in
various arrhythmia scenarios, and erroneous localization results may further restrict the
detection capabilities.

To address these issues, this paper models the AF detection task as an object detection
problem to achieve beat-level prediction. An AF object detection model takes fixed-length
ECG segments as input and outputs classification results for AF beats along with position
predictions. By capturing heartbeat dependencies, the model can enhance the classification
performance of individual beats. Considering all beat classification results collectively also
allows for segment-level classification predictions. The DETR architecture [17] has achieved
significant success in the field of image object detection. Inspired by this, we introduce the
DETR architecture for object detection in 1D ECG signals.

To be specific, this paper presents a novel AF object detection model named AF- DETR,
which consists of a CNN feature extraction backbone, a transformer encoder, a dual-query
transformer decoder, and several prediction heads. The AF-DETR model utilizes the CNN
backbone to extract rhythm and morphology information from ECG signals and feeds a
compact ECG feature representation into the transformer encoder to capture dependencies
between heartbeats. The refined encoder ECG features are further decoded by the decoder
to predict heartbeat positions and categories. In the decoder, decoder queries are divided
into content and positional parts, and position queries are designed using 2D bounding
boxes which represent heartbeat positions. Through iterative updates, the decoder pro-
gressively corrects the bounding boxes and captures crucial classification information,
ultimately achieving accurate heartbeat localization and classification predictions. Addi-
tionally, a denoising training method is introduced during the training process to stabilize
bipartite matching and accelerate model convergence. Positive and negative noise samples
are constructed from the same ground truth to help the model avoid duplicate outputs of
the same target. Cross-dataset testing is conducted using five datasets to evaluate beat-level
localization and classification performance as well as segment-level classification perfor-
mance, demonstrating the strong AF detection capabilities of the model. The contributions
of this paper are as follows:

(1) Anovel AF-DETR model with a CNN-Transformer architecture is proposed to model
the AF detection as an object detection problem, thereby achieving localization and
classification of AF heartbeats.

(2) Deriving decoder positional queries from 2D bounding boxes representing heartbeat
positions, enabling the decoder to iteratively update bounding boxes layer by layer,
thus accelerating model convergence and effectively localizing AF heartbeats.

(3) Denoising training is introduced to stabilize bipartite matching. Concretely, a con-
trastive denoising mechanism is conducted to help the model avoid duplicate detec-
tions of the same heartbeat by adding positive and negative noise samples.

(4) The proposed AF-DETR model achieves accurate detection of AF heartbeats in cross-
dataset testing on four external datasets and demonstrates excellent generalization
performance. Additionally, it performs comparably to existing methods in segment-
level classification performance.

The remaining parts of this study are arranged as follows. Section 2 introduces the
related work. Section 3 outlines the methods used in this study. Section 4 presents the
datasets, experiments and results. Section 5 discusses the proposed method. Section 6
summarizes this study.
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2. Related Work

The AF detection approaches can be roughly categorized into three types: methods
based on ventricular rhythm information, methods based on atrial morphology information,
and methods based on overall ECG information.

Methods based on ventricular rhythm typically involve extracting RR interval se-
quences and computing various handcrafted features, including multiple time-domain and
frequency-domain features [18], various entropy features [19-21], Poincare plots [22,23],
and Lorenz plots [24], to construct machine learning models such as support vector ma-
chine (SVM) [25-27], decision tree [28], k-nearest neighbor (KNN) [29], and random forest
(RF) [30-32]. A few studies have constructed DL-based models with RR interval sequences
as input [33,34]. Due to the good anti-interference performance of R-peak detection, meth-
ods based on irregular ventricular rhythm information generally exhibit good generaliza-
tion performance. However, they are difficult to implement in short time series, and the
irregular behavior of AF overlaps with other arrhythmias [35], leading to false positive de-
tection in cases with frequent premature beats. Additionally, in some cases, the RR intervals
of AF can also be regular, further limiting the effectiveness of rhythm-based methods.

Methods based on atrial morphology typically involve extracting P-wave/F-wave
morphological features to determine the disappearance of P-waves and the appearance
of F-waves [36,37]. To extract features from atrial activity, some studies isolate F- waves
by eliminating the QRS complex from the ECG signal [38]. However, due to the small
amplitude of P-waves and their susceptibility to various types of noise [39], the performance
of AF detection algorithms based on atrial morphology information is not very robust.
Therefore, the morphology-based methods are often used in conjunction with rhythm-based
methods [40,41] to further improve the accuracy of AF detection.

Methods based on overall ECG information do not explicitly extract ventricular rhythm
information or atrial morphology information but instead employ deep neural networks to
achieve end-to-end AF detection. CNN backbones are commonly used for automatic feature
extraction from ECG signals [42,43]. Some studies further refine the features extracted by
CNN backbones using LSTM [44-47], GRU [48], and transformer encoders [49].

Traditional AF detection methods typically generate segment-level AF detection re-
sults. When finer-grained prediction labels are desired, reducing the length of input
segments is a common approach, but this reduces the available heartbeat dependencies,
leading to a sharp decrease in classification performance. This paper aims to achieve
beat-level AF detection without reducing the length of input segments, using an object
detection approach.

3. Method
3.1. Problem Definition

Beat-level atrial fibrillation detection can be expressed as an object detection task to
predict the type and location of the target heartbeat. The AF-DETR architecture models
object detection as a set prediction problem that directly infers N predictions. The fixed
size N is set to be significantly larger than the number of objects in the sample, and an
additional class label Non-obj is set to indicate cases where there is no object in the predicted
bounding box.

A normalized ECG segment with a sampling frequency of fs and a duration of ¢
seconds is used as a sample, which can be defined as x.c¢ € REo*1 where the sample
length is Ly = t x f;. The ground truth set of objects of the ECG sample is expressed
asy = {y;}M, and each element y; can be represented as y; = (c;, b;), where ¢; is the
class label, b; = (x;, w;) is the ground truth box, x; € [0, 1] is the central coordinate, and
w; € [0, 1] is the width relative to the sample length.
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The AF-DETR model mainly consists of a backbone, a transformer encoder, and a
dual-query transformer decoder. Samples are fed into the CNN-based backbone to extract
a compact ECG feature representation. Then, the CNN features are refined by combining
positional encoding and the encoder. The encoded ECG features are decoded to N objects
in parallel by transformer encoder. The output of the final layer of the decoder generates
the prediction label and the 2D prediction box, respectively, through the classification
prediction head and the bounding box prediction head.

Since the predicted objects are not directly matched with the ground truth objects, the
loss is calculated according to the optimal bipartite matching between the ground truth
objects and the predicted objects during training. The AF-DETR model directly makes N
predictions based on the input sample, and each prediction corresponds to only one GT
object or Non-obj. To match the prediction set, the ground truth set y is considered as a
set of size N filled with @ (Non-obj). The Hungarian algorithm can be used to efficiently
compute an optimal bipartite matching between these two sets from the cost matrix of
objects, which means to find a permutation of N elements ¢ € &y with the lowest cost:

N
o = argmin) _ Liatch (y,»,y}(,')) @

ceSN i

where L .tch (yi, ]?a(i)) is a pair-wise matching cost between the ground truth y; and the
prediction 7, ;). The matching cost considers the location cost and the classification cost,
respectively. For the prediction 7, ;), the predicted box is defined as b,(;), and the prediction
probability of ¢; class is defined as p,(;). The negative prediction probability is used as the
classification cost, and the location cost is considered using the negative 1D generalized
intersection over union (GIloU) and the L1 norm of the bounding boxes. The 1D GloU and
L1 norms for ground truth and prediction boxes can be calculated as:

P b N by - A(bi, E(r(i)) — |bi Ub,(
Giou b bo) = bi U by ) A(bisbo)) ?
L1 (b bogiy) = || = B, ®)

The symbol |-| refers to the length of the box, and .4 means the length of the small-
est interval that covers both bounding boxes. Then, the matching cost adjusted by the
hyperparameters ¢s, @gio, and ¢ can be expressed as:

Lanate (VirTo(i)) = ~Liete) 9etsPoti) (@) = (e, 20) PgiouGloU + 11 2oyprall (&)

For the loss function, it is also necessary to consider both classification loss and
positioning loss, and the total loss can be expressed as:

N
Liotal (y/ 9) = Z [Aclsﬁcls (yi/ y?r(i)> + H{cl-7v$(2)}£box (yi/ 9{7(1’))} ()
i=1
where A is the classification loss coefficient. The classification loss function adopts
weighted multi-classification cross entropy loss to alleviate class imbalance, which can be
expressed as:

Lers (l/i,]?a(i)) = —aglogps(ci) (6)
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where a typical value a., = 0.1 is used when ¢; = @, and &, = 1 is used in other cases. In
addition, a linear combination of L1 loss and 1D GloU loss is used as the positioning loss to
improve the positioning accuracy. It is calculated as:

@)

Lipox (J/i,%(z‘)) = Agiou (1 — GloU(b;, B{r(i))) + )\u’ bi — bo() .

where Ay, and Ap are the hyperparameters for adjusting the loss weight.

3.2. CNN Backbone

The CNN backbone constructed with 1D residual blocks is shown in Figure 1. The
input sample xc; € RI0*1 is fed to a 1D convolution layer and four residual blocks to
acquire a compact ECG feature representation. Finally, the number of feature channels
is adjusted to D = 128 through a 1D convolution layer with kernel size of 1. Except
the last convolutional layer, all convolutional layers use a kernel size of 3 followed by
a batch normalization layer and a ReLU activation layer. Each residual block contains
two convolution layers and doubles the number of channels in the first convolution layer.
In addition to setting the first max pooling layer with stride size of 3 and kernel size of
3, all max pooling layers have a stride size of 2 and a kernel size of 2. The ECG features
extracted by the CNN backbone are fed to transformer for final predictions.

Loy 128
18

Lox1 ? !
ECG Sl ECG
Segments ‘ E i Features
=

N

Figure 1. Structure of the CNN Backbone in the AF-DETR.

3.3. Transformer Encoder

The transformer encoder consists of multiple encoder layers with the same structure,
all of which are capable of encoding ECG features at the same resolution as the input. As
shown in Figure 2, each encoder layer has a standard architecture consisting of an attention
module and a feed forward network (FEN) with a residual connection around them, and
followed by a layer normalization module. The feed forward network consists of two fully
connected layers, which are connected using the ReLU activation layer.

Classes Boxes

Decoder

Encoder

xX
Add & Norm

Add & Norm j-' Add & Norm
Multi-head Self-attention Multi-head Self-attention

Positional
Encoding

@)
vi kf o I S Y o
e U
ECG Features Positional Decoder
Encoding Embeddings

Figure 2. Structure of the transformer in the AF-DETR.



Bioengineering 2025, 12, 1104

7 of 26

3.3.1. Positional Encoding

Because of the permutation invariance of transformer architecture, fixed positional
encoding is added to the input of each attention module to capture positional dependencies,
which helps complement the location representation capabilities of model. The sinusoidal
function is used to construct a positional encoding vector on the same scale. The positional
encoding function PE: R — RP, which maps position x to a D-dimensional sinusoidal
embedding, is defined as:

PE(x)2: = sin( 575 ) (8)

PE(x)3i11 = cos (ﬁ) )

where symbol x in the encoder refers to the position of the encoding vector in the time
dimension. The subscripts 2i and 2i + 1 represent the index in the encoding vector, The
parameter T is a hand-designed temperature, and the typical value used in the encoder is
T = 10,000.

3.3.2. Multi-Head Self-Attention Module

In each encoding layer, ECG features are combined with positional encoding to gen-
erate a query Q, a key K, and a value V, respectively, as inputs to the self-attention
module. In the self-attention module, the query Q € RL*P, key K € REXP, and value
V € RLXD are linearly projected H times to obtain H groups Q; = QWI-Q e RLxd,
K; = KWK € RE¥4k and V; = VWY e REX42 | respectively, preparing for multi-head
self-attention. A typical setting is d; = dy = dy = D/h and the weight matrices
WZ.Q € RD*q, WK € RP*d and WY € RP*4 are learnable parameters of linear projection
layers. The scaled dot-product attention function for each head can be expressed as:

KT
Attention(Q;, K;, V;) = Softmax < %de > V; (10)

The output of all heads is concatenated in the feature dimension and fed to a linear
layer with a weight parameter W° € RP*D to produce the final output, which can be
expressed as:

MultiHeadAttn(Q, K, V) = Cat(Ay, Ay, - -+, Ap)W° (11)

where A; = Attention(Q;,K;, Vi) € RE*% is the output of the i-th head. The symbol Cat
represents the concatenation function.

3.4. Transformer Decoder

The transformer decoder uses multiple decoder layers to decode N targets in parallel.
Each decoding layer uses multi-head self-attention modules to update queries and cross-
attention modules to probe the objects based on the similarity of queries and keys. The
decoder updates the query layer by layer and continuously approximates the target ground-
truth objects. Considering that the keys in the cross-attention module contain both the
content part (encoded ECG features) and the location part (positional embedding), a dual-
query mode consisting of content queries and positional queries is introduced, where the
initial content query uses decoder embeddings.

3.4.1. Positional Query

In order to make the positional similarity of queries and keys in the cross-attention
module more consistent, the bounding boxes are directly learned in each decoder layer
and positional queries are derived from these bounding boxes with sinusoidal positional
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encoding functions. The g-th box of N bounding boxes is defined as b; = (b g7 bqw>,
where by, € R and by, € R. The corresponding content query and positional query are
represented as C; € RP and P, € RP, respectively, where D is the dimension of decoder
queries. The positional query P, derived from the given bounding box b, is:

P; = MLP(PE(b,)) = MLP(Cat(PE (bs), PE(bgw))) (12)

where the symbol PE represents the positional encoding function PE: R — RP that maps a
float number to a D-dimensional sinusoidal embedding. A hyperparameter setting T = 20 is
used in decoder. The symbol MLP represents a multi-layer perceptron MLP : R?P — RD,
which projects a 2D vector into D-dimensional vector. It includes two fully connected layers
and its parameters are shared between all decoder layers.

For the initial queries of the first decoding layer, the decoder embeddings and initial
bounding boxes need to be prepared, respectively. Here, the decoder embeddings are
designed to be learnable embeddings, while the initial bounding boxes adopt a fixed box
width and a uniformly distributed center point.

3.4.2. Self-Attention Module of Decoder

The self-attention module in the decoder is used to query updating the cross-attention
module. All queries, keys, and values use the same content item C,, while queries and keys
contain an additional positional item P;. The input of the self-attention module in the d-th
decoding layer can be expressed as:

d_ ~d d
Qi =i+ P (13)

d _ ~d d
Kd =Ci+ P (14)
vi=c] (15)

3.4.3. Cross-Attention Module of Decoder

The cross-attention module in the decoder also uses a multi-head attention mechanism.
In the cross-attention module, positional and content information are combined as object
queries to extract object information from the encoded ECG features. The input of the
cross-attention module in the d-th decoder layer can be expressed as:

Q¢ = LN (cg + sg) + P (16)
K4 = Fy + PE(x) (17)
Ve = L (18)

where F, is the feature vector at position x in the encoded ECG feature, ssg is the out-
put of the self-attention module in the decoding layer d, and LN represents the layer
normalization function.

3.4.4. Iterative Bounding Box Updating

The pattern of deriving positional queries from bounding boxes makes it possible
to update bounding boxes layer by layer. With the exception of the first decoding layer,
each decoder layer updates positional queries based on the updated bounding boxes of
the previous layer. Each layer predicts the relative offset of the bounding box (Abgx, Abgw)
for the next layer through the unshared bounding box prediction head MLP : RP — R?,
which helps to further reduce optimization difficulty. All bounding box prediction heads
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contains three fully connected layers. Given a bounding box l;;_l provided by the (d — 1)-th
decoder layer, the d-th decoder layer updates the bounding box as:

b = {o(abh + 07 (b81)) o (M0, + o (b0") ) | (19)

where the symbols ¢ and ¢! represent the sigmoid function and the inverse sigmoid
function, respectively.

3.4.5. Predicted Output

In addition to using the updated bounding boxes of each decoder layer as its box
prediction, the normalized output of each decoder layer is fed to an unshared classification
prediction head MLP : RP — R3 to make classification predictions. All classification
prediction heads consist of two fully connected layers. Hungarian matching is applied
to predicted results of each decoder layer against the ground truth objects, and auxiliary
loss of each decoder layer is built to update parameters, which helps speed up model
convergence. For stable training, the bounding box prediction head and classification
prediction head of each decoder layer use only its auxiliary loss for parameter updating.
The predictions of the last decoder layer are the predictions of the whole model. When
inference is performed, predictions with a Non-obj label can be omitted, and other valid
predictions need to be retained.

3.5. Denoising Training

In order to mitigate the instability caused by Hungarian matching, denoising (DN)
training is introduced, which is able to reconstruct the object from the noised ground truth.
Therefore, random noise is added to the bounding box and class label of each ground truth
object to construct additional noisy query. Similar to the ordinary query, the noise query
is also composed of content query and positional query. The noised labels generate the
initial content queries of the decoder, and the noised bounding boxes generates the initial
positional queries. Noised bounding boxes and noised labels are constructed as follows:
(1) Noised bounding boxes: The method of center shifting is adopted for adding noise

to bounding boxes. Random noise Ax satisfying |Ax| < )‘77” is added in the center

point of the box, so that the center of the shifted box is still in the original box. The
random noise is controlled by the noise scale parameter A. Contrastive denoising

(CDN) training is further considered to help the model avoid duplicate predictions of

the same object. Contrast denoising training generates positive and negative queries

by setting two different parameters A; and A;. A positive query which satisfies

|Ax| < % is expected to reconstruct its corresponding ground truth box. Negative

queries satisfy % < |Ax| < Asz’ and they are expected to be predicted as Non-ob;.
(2) Noised labels: Noised labels are acquired by randomly flipping some ground truth

labels to other labels, and the proportion of label flipping is controlled the hyperpa-

rameter . For the noise query, label embedding generated by the noised label is used

as the content part.

In fact, multiple groups of noisy queries can be constructed. It is important to note
that despite the addition of noise, the noise query contains information about the true
object. In order to prevent information leakage, when the self-attention module of the
decoder calculates the attention weight matrix, it is necessary to use attention mask isolation
between ordinary queries and multi-group noise queries. The predictions corresponding to
noise queries can bypass bipartite matching and directly calculate its reconstruction loss
with the corresponding ground truth objects. The reconstruction loss of noise queries is
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similar to that of ordinary queries. Noise queries are only added to the decoder during
training and removed during inference.

4. Experiments and Results
4.1. Datasets

In this work, five publicly available datasets from Physionet [50] were used. They
all have manually corrected heartbeat positional annotations and label annotations. The
datasets are described as follows:

(1) MIT-BIH Atrial Fibrillation Database (AFDB) [51]: The AFDB includes long-term ECG
recordings from 25 human subjects with AF (mostly paroxysmal), each lasting 10 h.
Each record contains two ECG signals, sampled at a rate of 250 samples per second.

(2) The 4th China Physiological Signal Challenge 2021 (CPSC2021) [52]: The database
provides two training sets, which together comprise 1406 records extracted from
dynamic ECG recordings of 49 AF patients (23 paroxysmal AF patients) and 56 non-
AF patients (including other abnormalities and normal rhythms). Each ECG recording
provides two channel signals of leads I and II at 200 Hz.

(3) Long Term AF Database (LTAFDB) [53]: The LTAFDB consists of long-term ECG
recordings from 84 subjects with paroxysmal or persistent AF. Each record is digitized
at 128 Hz and has varying durations, typically ranging from 24 to 25 h.

(4) MIT-BIH Arrhythmia Database (MITDB) [54]: The dataset comprises 48 half-hour dual-
channel dynamic ECG recordings, digitized at 360 Hz. Each record is independently
annotated by two or more cardiac experts. The ECG signals primarily consist of lead
II'and V1.

(5) MIT-BIH Normal Sinus Rhythm Database (NSRDB) [50]: The dataset provides long-
term ECG recordings from 18 subjects without obvious arrhythmias. Each record
contains two ECG lead signals sampled at a frequency of 128 Hz, and corresponding
beat annotation files are available.

Table 1 summarizes detailed information about the five open-source datasets. All
records in the datasets provide dual-channel dynamic ECG signals. When lead information
is available, channels containing leads I and II are prioritized. If this information is not
available, channels similar to lead II are selected from the two channels for analysis. Only
one lead was used for model input. When two leads were available, Lead II was prioritized
for both training and testing because of its stable morphology and common use in single-
lead wearables. It should be noted that the record “07162” in the AFDB dataset was
excluded from the analysis in this paper due to a large number of beat annotation errors.

The dynamic ECG recordings were resampled to 128 Hz to ensure a consistent sam-
pling rate across all datasets. A bandpass Butterworth filter with a filter order of 5 and
passband frequency range of 0.5 to 40 Hz was applied to remove baseline drift and high-
frequency noise from the ECG signals. Each record was segmented into non-overlapping
30 s ECG segments for analysis, and each ECG segment was normalized using z-score
normalization. To remove segments with severe noise, a signal quality index based on
R-peak detection (bSQI) was used to assess the signal quality, and the ECG segments with
bSQI < 0.8 were excluded from the analysis. In addition, to increase sample diversity, the
number of ECG fragments was amplified using a data augmentation method of vertical
flipping [55]. This operation mimics the physiological polarity difference between lead I
and lead II configurations across datasets, allowing the model to learn polarity-invariant
morphological features rather than memorizing lead-specific signal directions. Since AF
detection primarily relies on rhythm irregularity and the presence of fibrillatory activity
instead of absolute waveform polarity, this augmentation does not alter the underlying
rhythm pattern. To further verify this, we conducted an ablation study comparing models
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trained with and without polarity inversion. According to the annotations of the datasets,
each heartbeat in each segment was labeled as AF/AFL (positive) or Non-AF (negative);
AF and AFL were included in the positive class, whereas all other rhythms were labeled as
Non-AF. Table 2 summarizes the details of the segmentation for each dataset.

Table 1. Details of the datasets used in this study. Freq: Sampling frequency, NR: Total number
of records, NS: Number of subjects in the recording, TD: Total duration, AFD: AF duration, NEB:
Number of ectopic beats.

Freq Record
Dataset (Hz) NR NS Lead Length Rhythms TD AFD NEB
ECG1, 93.40 h
AFDB 250 25 25 ECC2 10h 4 23428 h (39.87%) N/A
164.44 h 93,545
CPSC2021 200 1436 105 I I 0-6.8h 3 480.19 h (34.24%) (4.4%)
ECG1, 1030.89 h 285,100
LTAFDB 128 84 84 ECG2 626 h 9 1960.60 h (52.58%) (3.2%)
II, V1,v2, 221h 34,442
MITDB 360 48 47 V4, V5 0.5h 15 2407 h (9.18%) (31.5%)
NSRDB 128 18 18 ]égg;’ 23-26 h 1 437.5h 0h (0%) 127 (0.007%)
Table 2. Data description after segmentation.
Non-AF AF Non-AF
Dataset Segments Segments Beats AF Beats
AFDB 15,752 9461 586,321 455,171
CPSC2021 69,626 36,155 2,482,631 1,399,633
LTAFDB 100,067 115,755 3,510,824 5,023,006
MITDB 2413 220 90,132 9553
NSRDB 45,616 0 1,716,253 0

4.2. Experimental Setup
4.2.1. Experimental Environment

Under the hardware configuration of Intel(R) Xeon(R) E5-2640 CPU (Beijing, China)
and NVIDIA GeForce RTX 3090 GPU (Beijing, China), the training and testing of the
proposed AF-DETR model were implemented using Python 3.9.15 with PyTorch 1.12.1 and
CUDA 11.6.

4.2.2. Training Setup

Each bounding box of heartbeat consists of a center position and width. The R-peak
positions are used as the center of the boxes and an empirical value of 400 ms is adopted
as the width of the ground truth boxes and the initial bounding boxes of decoder. To
evaluate the robustness of the empirical 400 ms width across different cardiac rhythms,
we further conducted an ablation experiment on the heartbeat-box width. Four width
strategies were compared:

(1) Fixed-300 ms, a narrow window approximating fast heart rates (~100 bpm);

(2) Fixed-400 ms, the default configuration used in the main experiments;

(3) Fixed-500 ms, a broader window approximating slow heart rates (~60 bpm) and
wide-QRS morphologies;

(4) Adaptive-RR, in which the box width is dynamically defined as 0.5 x the local R-R
interval estimated from adjacent beats.
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During training, all other settings (optimizer, learning rate, epoch number, and dataset
split) were identical. The matching between predicted and ground-truth boxes was still
performed by the Hungarian algorithm to ensure one-to-one correspondence, thereby
preventing collisions when boxes overlapped at high heart rates. The center position
and width of each box are normalized to [0, 1]. Figure 3 visualizes the setup for the
ground truth boxes and the desired effect of the predicted boxes. For the transformer
part, we use 4 encoder layers and 4 decoder layers, with each feature length set to D = 128.
The number of heads for multi-head attention is set to H = 8. During training, we use
the adaptive moment estimation algorithm (Adam optimizer) to optimize the model.
The hyperparameters involved in the network are manually fine-tuned. Finally, the cost
coefficient for bipartite matching is determined as @5 : ¢11 : @gion = 2: 5 : 2, and the loss
function coefficient is A : Ar1 @ Agiou = 1:5: 2. The initial learning rate #pase is set to
0.0001, and the batch size is 64. The formula for the learning rate change with training
epochs is:

1 = foase /(1410 X Teur / Tonax)? (20)

where Toyr represents the current training epoch, and T,y represents the total number of
training epochs. In this work, Ty is set to 30.

Amplitude
o — ~ w - wn o ~

—ECG
A
- . 0 s A ! Target Boxes
\A/w /\ \u\‘/»’v\/“ /\M‘J " ARV " /\th‘ | /1, - /\ . TargetBoxes |
8 10

Time/s

Figure 3. Visualization of ground truth boxes and predicted boxes.

4.2.3. Testing Setup

In this work, we primarily conducted external independent testing, where different
datasets were used for training and testing. This cross-dataset testing approach ensures
that data segments from the same patients do not appear in both the training and valida-
tion sets, thereby better validating the generalization and robustness of model. We used
the CPSC2021 dataset as the training set because it has the largest number of subjects,
an adequate number of samples, a relatively balanced data distribution, and clear lead
information, which helps evaluate the real performance of model. Other datasets were
further used for external independent testing.

4.2.4. Evaluation Metric

In this work, the overall performance of the model needs to be evaluated by separately
assessing its localization performance and classification performance. Metrics such as
Accuracy (Acc), Sensitivity (Sen), Precision (Pre), F1-score (F1), etc., can be used to measure
the localization performance and classification performance. When using True Positives
(TP), False Positives (FP), False Negatives (FN), and True Negatives (TN) to represent these
metrics, they are defined as follows:

TP+ TN

A = TN T EP T EN 1)

TP

Pre=——
T TP FP

(22)
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4.3. Results
4.3.1. Localization Performance

To evaluate the heartbeat detection performance of AF-DETR, the ground truth boxes
were matched with predicted boxes that are not labeled as Non-obj. A prediction box is
considered as a correct detection when its IoU with a ground truth box is greater than 0.5.
Precision and sensitivity are used as metrics to evaluate the positioning performance. We
follow these rules: (1) TP is defined as correct detections of ground truth boxes. (2) FP is
defined as incorrect detections where no object exists, or where the position of an object
is incorrectly detected. (3) FN is defined as the cases where ground truth boxes are not
detected. In addition, the predicted boxes with the same prediction label and an IoU greater
than 0.8 are merged to ensure correct statistics.

Cross-dataset validation was conducted to evaluate the localization performance of
AF-DETR. It should be noted that all tests performed were external independent tests using
the model trained on the CPSC2021 dataset. Table 3 shows the localization results of the
AF-DETR model on four external datasets. In the localization task, AF-DETR achieved the
highest precision (Pre 99.79%) and sensitivity (Sen 99.96%) on the NSRDB, indicating that
AF-DETR can achieve nearly perfect heartbeat localization for sinus rhythm. The sensitivity
on AFDB, LTAFDB, and MITDB was 99.21%, 99.09%, and 99.54%, respectively, indicating
that this method can accurately detect heartbeats of various arrhythmias, including AF.
Compared to sensitivity, the precision on AFDB, LTAFDB, and MITDB was generally
lower, with the lowest precision observed on MITDB (Pre 98.39%), suggesting that frequent
arrhythmias may lead to increased false detection. However, despite the slight decrease in
performance, the model still demonstrates good overall localization accuracy.

Table 3. The heartbeat positioning performance of AF-DETR on the external datasets.

Dataset TP FP FN Pre (%) Sen (%) MAE (ms) M.A E
(Points)
AFDB 1,033,235 14,622 8257 98.60 99.21 13.71 1.75
LTAFDB 8,456,444 132,009 77,386 98.46 99.09 12.29 1.57
MITDB 99,231 1624 454 98.39 99.54 10.66 1.36
NSRDB 1,715,492 3676 761 99.79 99.96 5.81 0.74

In addition, we considered the localization accuracy of each correctly detected bound-
ing box. The distance of the center points between the predicted and ground truth boxes
was further analyzed, and the mean absolute error (MAE) was used to represent localization
accuracy. The average absolute errors of the AF-DETR model on AFDB, LTAFDB, MITDB,
and NSRDB were 13.71 ms, 12.29 ms, 10.66 ms, and 5.81 ms, respectively. Considering the
signal sampling rate of 128 Hz, the average absolute errors in localization are all less than
2 sampling points, which is acceptable.

4.3.2. Classification Performance

In order to better observe the classification performance of the AF-DETR model, the
heartbeat-level classification performance and segment-level classification performance
should be separately analyzed and reported.
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AFDB

98.62% 1.06%

Non-AF

True Label
AF

0.26% 0.73% 99.01%

Non-obj

Non-AF AF Non-obj
Predicted Label

Beat-Level Performance

For the heartbeat classification task, AF-DETR actually makes predictions of three
classes: Non-AF, AF, and Non-obj. However, a large number of Non-obj predictions are
not the intended objects. Although including the Non-obj predictions in the statistics
may lead to an overall inflated classification performance, it does not reflect the actual
classification performance. Therefore, only the classification performance of the Non-AF
and AF classes is evaluated, and the average of the two class performance metrics is used
to represent the overall classification performance. Building upon the aforementioned
localization rules, the matching between predicted labels and true labels is further refined
to evaluate the heartbeat-level classification performance of AF-DETR on external datasets.
It is worth noting that once the localization detection is incorrect, the corresponding
heartbeat classification prediction results are also incorrect, which imposes higher demands
on the performance.

Figure 4 illustrates the confusion matrices on external datasets, while Table 4 presents
the classification results of Non-AF and AF on external datasets. AF-DETR achieved
Fl-scores of 96.77% and 96.20% on AFDB and LTAFDB, respectively. Considering the
relatively balanced data distribution in these two datasets, this indicates that AF- DETR
effectively extracts neighboring heartbeat information to achieve robust AF heartbeat
detection. On MITDB, 98.76% of AF heartbeats and 95.96% of Non-AF heartbeats were
accurately localized and classified. Among Non-AF heartbeats, 3.67% were misclassified as
AF while there were almost no AF heartbeats misclassified as Non-AF. Furthermore, due
to the extremely imbalanced data distribution in MITDB, the AF class exhibited a lower
precision (Pre 73.02%). For the NSRDB dataset, which only contains Non-AF samples, only
the classification performance of the Non-AF class is reported. Similar to the localization
results, the best classification results (Pre 99.79%, Sen 99.94%, F1 99.87%) were achieved on
NSRDB, where 99.99% of heartbeats were accurately classified among correctly localized
heartbeats. Overall, these experimental results confirm the good heartbeat classification
performance of AF-DETR method on external datasets.

LTAFDB MITDB NSRDB i
S = =
< < -
o 96.63% 3.16% 0.21% e 95.96% 3.67% 0.37% = 0.04% 5
5 5 5 80%
Zz 4 z
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= - ] ” <
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1 o017%  0.84% I i 0%
=3 =3 o
z 4 7z
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Figure 4. The confusion matrixes of beat-level classification results on the external datasets.

Table 4. Beat-level classification performance on the external datasets.

AFDB 96.23
LTAFDB 95.63

AF Non-AF
Dataset Pre (%) Sen (%) F1 (%) Pre (%) Sen (%) F1 (%) Pre (%) Sen (%) F1 (%)
95.35 95.79 96.88 98.62 97.74 96.56 96.99 96.77
96.36 96.00 96.18 96.63 96.41 95.91 96.50 96.20
98.76 83.96 98.35 95.96 97.14 85.69 97.36 90.55

MITDB 73.02
NSRDB /

/ / 99.79 99.94 99.87 / / /




Bioengineering 2025, 12, 1104

15 of 26

Segment-Level Performance

Since the AF-DETR model is designed for heartbeat classification, AF-DETR needs to
undergo inference and postprocessing to provide segment-level prediction labels. Here,
the accuracy of heartbeat localization does not need to be considered. Instead, all AF
and Non-AF heartbeat predictions from the model are adopted to assign segment-level
prediction labels according to postprocessing rules. In this work, when the number of
predicted AF heartbeats in an ECG segment exceeds 50%, the classification output label of
that segment is determined to be AF; otherwise, it is predicted as Non-AF.

To further validate the generalization ability of AF-DETR, we conducted segment-
level external independent testing. Similarly, the model trained on CPSC2021 was tested
on other public datasets. The experimental results of external independent testing are
summarized in Table 5, with the corresponding confusion matrix results shown in Figure 5.
The AF-DETR model achieved the highest accuracy (98.24%) and F1-score (98.15%) of AF
detection on the AFDB dataset, while on the LTAF dataset, the accuracy and F1-score were
97.55% and 97.54%, respectively. However, the AF-DETR model had the lowest accuracy
(97.30%) and F1-score (92.31%) on the MITDB dataset, which is related to the imbalanced
data distribution and the presence of a greater variety of arrhythmias. On the NSRDB
dataset, due to the excellent performance of heartbeat classification, AF-DETR also achieved
99.99% accuracy in segment classification. Overall, the segment classification performance
has been further improved based on the heartbeat classification performance, validating
that the AF-DETR model can screen suspicious AF heartbeats and provide more reliable
predictions for ECG records.

Table 5. Segment-level classification performance on the external datasets.

AF Non-AF
Dataset Pre (%) Sen(%) F1(%) Pre(%) Sen (%) F1(%) Acc(%) Pre(%) Sen (%) F1 (%)
AFDB 98.55 96.82 97.67 98.11 99.14 98.62 98.27 98.33 97.98 98.15
LTAFDB  97.58 97.86 97.72 97.52 97.20 97.36 97.55 97.55 97.53 97.54
MITDB 75.60 100 86.11 100 97.06 98.51 97.30 87.80 98.53 92.31
NSRDB / / / 100 99.99 99.99 99.99 / / /
AFDB LTAFDB MITDB NSRDB 0%
1) = ] ] "
3 99.14% I 97.20% I I 0.01% i
= z > z 2 z ° z
= = =2 = 60%
= 3 3 a
= = = =
= 96.82% ) 97.86% = | 0.00% 0.00%

Non-AF
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Figure 5. The confusion matrixes of segment-level classification results on the external datasets.

As the beat-level precision and segment-level precision on MITDB were lower than on
other datasets, an extended rhythm-wise error and calibration analysis was conducted to
identify the specific sources of false positives and to evaluate probability calibration (see
Section 4.3.5).

To further examine the validity and clinical consistency of the post-processing rule
used for segment-level labeling, an extended sensitivity and temporal continuity analysis
was performed. In the default configuration, a 30 s segment was labeled as atrial fibrillation
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(AF) when more than 50% of its constituent beats were predicted as AF. Although this
majority-vote rule has been widely employed in previous AF detection studies, it is a
heuristic criterion rather than a clinical definition. From a clinical standpoint, an AF
episode is defined by the persistence of fibrillatory activity for at least 30 s, irrespective of
the proportion of AF beats within the interval.

To assess the robustness of this threshold, a threshold-sensitivity analysis was con-
ducted by varying the AF-beat ratio parameter 6 from 0.3 to 0.7 in increments of 0.1. For
each 6, segment-level accuracy and F1-score were calculated under the CPSC2021—AFDB
cross-dataset setting, with all other configurations kept constant. The aim was to determine
whether the default 50% criterion introduces bias or whether the performance remains
stable across a reasonable range of thresholds.

In addition, a time-consecutive criterion was introduced to better align the post-
processing decision with clinical diagnostic standards. Under this criterion, a segment
was labeled as AF only if the predicted AF beats formed a continuous time span lasting
at least 30 s (corresponding to 3840 samples at 128 Hz). This formulation directly follows
the clinical definition of an AF episode lasting > 30 s and serves as a temporal-consistency
verification of beat-level predictions.

The quantitative results of the two analyses are presented in Tables 6 and 7.

Table 6. Effect of the AF-beat ratio threshold (6) on segment-level performance (CPSC2021— AFDB).

Threshold 0

(AF-Beat Ratio) Segment Acc (%) AF F1 (%) Non-AF F1 (%)
0.3 98.12 97.68 98.43
0.4 98.21 98.01 98.32
0.5 (default) 98.27 98.15 98.33
0.6 98.25 97.94 98.30
0.7 98.11 97.60 98.21

Table 7. Comparison between majority-vote and time-consecutive decision rules (CPSC2021— AFDB).

Segment Acc  AF Precision AF Recall

Decision Rule %) %) (%) AF F1 (%)
Majority-vote (>50%) 98.27 98.55 96.82 97.67
Time-consecutive 98.22 98.46 96.74 97.59

(>30 s continuous AF)

The results demonstrate that AF-DETR maintains consistent segment-level accuracy
and Fl-scores under different threshold settings and time-based criteria. The performance
difference between the two rules (<0.1%) indicates that the beat-level predictions exhibit
strong temporal continuity, effectively satisfying the clinical requirement of >30 s of
persistent AF activity. Hence, the 50% majority-vote criterion can be regarded as a practical
and clinically consistent approximation of the time-based AF definition.

4.3.3. Ablation and Robustness Studies
Ablation on Performance of AF-DETR

To identify factors contributing to the performance improvement of the model, we
removed or modified certain components or methods of the model during the training
process and tested them under the original experimental conditions. Here, AF-DETR is
used as the baseline for comparison, and we sequentially studied the effects of components
such as the CDN mechanism in the denoising training and auxiliary loss. Table 8 presents



Bioengineering 2025, 12, 1104

17 of 26

the ablation study results on the MITDB dataset regarding both heartbeat localization
and classification.

Table 8. Ablation study performance of AF-DETR on the MITDB dataset.

Positioning Beat-Level Classification
Method Pre (%)  Sen (%) I:fn‘:f Pre (%) Sen (%)  F1(%)
AF-DETR 9839 9954 1066 8569 9736 9055
DN without CDN 9879  99.85 6.5 8167 9685  87.39
No DN 9580 9761 1926 8386 9427 8833

No auxiliary loss 92.16 93.21 27.83 75.44 86.65 79.85

The results of the ablation experiments indicate that the auxiliary loss is crucial for
improving both heartbeat localization accuracy and classification performance. After re-
moving auxiliary loss, there is a significant decrease in the precision and sensitivity of
heartbeat localization, a substantial increase in mean absolute error, and a subsequent
decline in heartbeat classification performance. In fact, the auxiliary loss can bring addi-
tional parameter updates to the classification prediction head and bounding box prediction
head of each decoding layer, which helps the decoding layers extract the classification
information faster and give more accurate bounding box updates, thus improving the
model’s performance.

For the denoise training, the CDN mechanism is removed firstly. Although there
was a slight improvement of 0.40% and 0.31% in the precision and sensitivity of heart-
beat localization, respectively, there was a noticeable decrease in heartbeat classification
performance. Moreover, after removing the denoising training mechanism entirely, both
heartbeat localization and classification performance showed significant declines. We can
infer that denoising training and the CDN mechanism have a significant positive impact
on performance. The denoising component does not require bipartite matching, which
avoids the instability caused by bipartite matching, thus accelerating model convergence
and helping to improve object detection performance.

Ablation on Bounding-Box Width

Table 9 summarizes the influence of different heartbeat-box widths on localization and
classification metrics using the CPSC2021— AFDB external-testing protocol. The results
show that the proposed 400 ms setting already achieves near-optimal performance. The
adaptive-RR strategy yields only marginal improvements (<0.1% in AF F1 and 0.3 ms
in MAE), confirming that the fixed empirical width is sufficiently robust across different
heart-rate ranges and QRS morphologies. Moreover, the matching algorithm effectively
resolves potential overlaps between adjacent boxes at high heart rates, ensuring stable
localization statistics.

Table 9. Effect of bounding-box width on localization and AF classification performance.

Box Width Strategy IoU MAE (ms) AF F1 (%)
Fixed 300 ms 0.921 15.84 97.68
Fixed 400 ms (default) 0.934 13.71 98.26
Fixed 500 ms 0.932 14.32 98.19

Adaptive RR (0.5 x R-R) 0.936 13.45 98.33
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Ablation on Polarity Inversion Augmentation

To assess the physiological plausibility and quantitative influence of the polarity
inversion (vertical flipping) augmentation, we conducted an ablation experiment in which
the AF-DETR model was retrained without vertical flipping, while keeping all other
configurations identical. This analysis aimed to verify whether polarity inversion affects
the visibility of P/F waves or alters rhythm recognition in single-lead ECGs.

Table 10 demonstrates that polarity inversion augmentation produces negligible
changes (<0.05%) in AF F1, confirming that it does not distort rhythm characteristics
or hinder the visibility of atrial fibrillatory waves. These results suggest that polarity inver-
sion provides lead-polarity robustness—helping the model generalize to datasets recorded
with opposite electrode configurations—without sacrificing physiological interpretability.
In addition, polarity inversion yields a slightly higher IoU and lower MAE, indicating
marginally improved heartbeat localization stability. This confirms that the augmentation
is safe and effective for enhancing cross-dataset generalization, while preserving the clinical
meaning of single-lead ECG morphology.

Table 10. Effect of polarity inversion augmentation on model performance.

Augmentation Strategy IoU MAE (ms) AF F1 (%)
Without vertical flip 0.933 13.76 98.21
With vertical flip (default) 0.934 13.71 98.26

Lead-Swap Robustness Test

To evaluate robustness against lead variations, we conducted a lead-swap experiment
on the CPSC2021 dataset, which provides paired Lead I and Lead II signals. The model
was trained using Lead I signals and tested on Lead II (Lead-swap setting), while the
default setting used Lead II for both training and testing. Table 11 shows the comparison.
AF-DETR achieved almost identical localization and classification performance under
the lead-swap configuration, with only a minor 0.36% drop in AF F1, indicating strong
cross-lead generalization and confirming that the model can operate reliably on different
single-lead configurations encountered in wearable ECGs.

Table 11. Lead-swap robustness test (CPSC2021—AFDB).

Lead Configuration IoU MAE (ms) AF F1 (%)
Train II—Test II (default) 0.934 13.71 98.26
Train I—Test II (lead-swap) 0.931 13.89 97.90

4.3.4. Cross-Database Generalization and Statistical Robustness

To verify that the observed performance is not specific to the CPSC2021 dataset char-
acteristics, we performed symmetric cross-database experiments. AF-DETR was trained on
CPSC2021 and tested on AFDB and MITDB (default setting), and vice versa. In addition,
a joint training scenario combining CPSC and AFDB was evaluated. Each experiment
was repeated three times with different random seeds (42, 3407, 9821), and mean £ 95%
confidence intervals are reported in Table 12.

The results indicate that AF-DETR maintains high accuracy across different sampling
rates and labeling protocols, with less than 0.7% variation in AF F1 across databases. This
demonstrates that the model generalizes well to unseen datasets and that its performance is
not idiosyncratic to CPSC2021. Furthermore, no patient overlap exists among the PhysioNet
databases used, as each repository originates from independent clinical cohorts.
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Table 12. Cross-database generalization performance (mean £ 95% CI over 3 runs).
Train Dataset— Test Dataset IoU MAE (ms) AF F1 (%)
CPSC2021— AFDB (default) 0.934 + 0.002 13.7 £0.3 98.26 + 0.06
CPSC2021—+MITDB 0.927 £+ 0.003 141+£04 97.93 £ 0.08
AFDB—CPSC2021 0.923 + 0.004 145 £ 0.5 97.61 £ 0.10
LTAFDB—AFDB 0.925 + 0.003 143 £0.4 97.75 £ 0.09

CPSC + AFDB joint training—MITDB  0.936 £ 0.002 13.6 £0.3 98.34 + 0.05

4.3.5. Rhythm-Wise Error Analysis and Probability Calibration on MITDB

This subsection provides a detailed rhythm-wise error and calibration analysis cor-
responding to the classification results reported in the Beat-Level Performance Section,
focusing on the MITDB dataset where lower precision was observed.

To identify the primary sources of false positives in the MIT-BIH Arrhythmia Database
(MITDB), a rhythm-wise analysis was conducted, as shown in Table 13. MITDB contains
48 records with beat- and rhythm-level annotations, comprising 109,494 heartbeats from
47 subjects, and includes a broad distribution of ectopic and conduction abnormalities.
False-positive (AF) beats produced by AF-DETR (trained on CPSC2021 using cross-entropy
loss) were mapped to reference rhythm labels according to the official MITDB annotation
files. Five confounding rhythm categories were considered: premature atrial contrac-
tions (PAC), premature ventricular contractions (PVC), bigeminy (atrial or ventricular),
atrioventricular (AV) conduction block, and noise or motion artifacts.

Table 13. Summarizes the rhythm-wise distribution of false-positive (AF) detections.

Confounding Rhythm Fals(eé Ezilltt;ves Proportl((:/g of Total
PAC (premature atrial contraction) 148 32.2
PVC (premature ventricular contraction) 121 26.3
Bigeminy (atrial /ventricular) 84 18.2
AV block (conduction delay) 39 8.5
Noise or motion artifact 68 14.8
Total 460 100.0

PAC and PVC together accounted for 58% of all false positives, indicating that tran-
sient RR-interval irregularities and wide QRS morphologies constitute the major sources
of misclassification. Bigeminal patterns contributed 18%, whereas AV block and noise
segments accounted for the remainder.

To reduce the influence of these confounders, additional training was performed using
focal loss (y = 2, o« = 0.75) and class-weighted cross-entropy (inverse-frequency weighting).
All other training parameters were kept identical. Performance metrics were averaged over
three independent runs (random seeds 42, 3407, 9821) with 95% confidence intervals. The
results for beat-level AF detection on MITDB under the different loss functions is shown
in Table 14.

Table 14. The results for beat-level AF detection on MITDB under the different loss functions.

. AF Precision  AF Recall o Overall F1
Loss Function (%) (%) AF F1 (%) (%)
Cross-entropy (default) 73.0+0.3 987+02 840+03 90.6+£02

Focal loss (y =2, « =0.75) 785 +04 98.0+£02 871+03 921+£02

Class-weighted 76.3 + 0.4 982+03 861403 916402
cross-entropy
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The application of focal loss increased AF precision by 5.5% points and improved
overall F1 by 1.5 percentage points compared with the default cross-entropy training.
Analysis of rhythm-specific results indicated an 18% reduction in PAC-related false positives
and a 13% reduction in PVC-related false positives, with minimal loss of recall.

Per-beat probability calibration was further examined using the expected calibration
error (ECE) and Brier score. The focal-loss model achieved an ECE of 0.046 and a Brier score
of 0.052, compared with 0.081 and 0.067 for the cross-entropy baseline, respectively, demon-
strating improved alignment between predicted probabilities and empirical outcomes.

Overall, the analyses confirm that ectopic beats, particularly PAC and PVC, are the prin-
cipal sources of false-positive AF detections on MITDB. Loss-reweighting strategies such as
focal loss and calibrated class weighting effectively mitigate these errors and enhance model
calibration. These results also imply that the inclusion of auxiliary tasks, such as ectopy or
signal-quality classification, may further improve robustness in future developments.

4.3.6. Comparison with Previous Works

For decades, automatic QRS wave detection has been a significant topic in ECG
analysis, with numerous studies focusing on QRS detection algorithms. In this study, we at-
tempted to compare the AF-DETR model with several QRS wave detection algorithms. The
NeuroKit2 [56] toolkit was used to replicate these QRS wave detection algorithms [57-60],
and they were tested on ECG segments segmented from the MITDB dataset. Unlike AF-
DETR, these QRS wave detection algorithms used ECG segments that were not z-score
normalized. When calculating performance metrics, we applied the same criteria used for
AF-DETR to these other QRS wave detection algorithms. Using a default box width of 0.4 s,
the predictions of these QRS wave detection algorithms were converted into prediction
boxes, and then metrics such as TP, FP, FN, Pre, and Sen were calculated. Table 15 presents
the comparison results between the AF-DETR model and other QRS wave detection algo-
rithms. The comparison results indicate that the localization performance of the AF-DETR
model is comparable to that of other algorithms. Additionally, the performance of AF-DETR
is slightly better than that of the well-known Pan-Tompkins [57] algorithm. The proposed
model demonstrates strong competitiveness with existing methods.

Table 15. Comparison of the positioning performance between the proposed method and previous works.

Study TP FP FN Pre (%) Sen (%)
Pan et al. [57] 97,794 2036 1891 97.96 98.10
Hamilton et al. [58] 94,075 8883 5610 91.37 94.37
Zong et al. [59] 99,043 6732 642 93.64 99.36
Christov et al. [60] 98,027 2894 1658 97.13 98.34
AF-DETR 99,231 1624 454 98.39 99.54

In addition to localization performance, we further attempted to compare the AF
classification performance of AF-DETR with existing studies. However, few studies report
cross-dataset evaluation results for AF object detection, which limits the number of papers
available for comparison. Therefore, we included some studies on segment-level AF
classification that underwent cross-dataset testing for comparison. Despite differences
in preprocessing strategies and training settings among studies, we tested them using
the same training sets and testing sets to supplement the results of AF-DETR. Table 16
presents the comparison results of the proposed method with existing works in terms of
classification performance. From various metrics, it can be observed that the proposed
model outperforms previous studies.
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Table 16. Comparison of the classification performance between the proposed method and
previous works.

Study Year Trasueling Test Set Acc (%) Pre (%) Sen (%) F1 (%)
Andersen et al. [33] 2019 AFDB MITDB 87.40 45.45 98.96 /
AFDB NSRDB 95.01 / / /
Shi et al. [61] 2020 AFDB MITDB 874 81.11 97.46 /
Seo et al. [62] 2021 AFDB MITDB 86.68 / / /
Liu et al. [34] 2022 AFDB MITDB 92.23 53.92 95.17 68.84
NSRDB 96.86 / / /
Yun et al. [63] 2023 CPSC2021  LTAFDB / 96.45 94.84 95.64
AF-DETR 2024 CPSC2021  LTAFDB 97.55 97.55 97.53 97.54
CPSC2021 AFDB 98.27 98.33 97.98 98.15
AFDB MITDB 92.97 77.15 95.96 83.16
AFDB NSRDB 96.12 / / /

5. Discussion
5.1. Overview of the Proposed Method

In this work, an AF object detection model called AF-DETR is proposed to accurately
localize AF heartbeats in single-lead ECG records. In the transformer decoder, decoder
positional queries are constructed using 2D bounding boxes which represent the heartbeat
positions, enabling iterative updates of the bounding boxes for precise heartbeat localization
and classification prediction. Additionally, a denoising training method is introduced to
stabilize bipartite matching and accelerate model convergence, while contrasting denoising
mechanisms to avoid redundant predictions of the same heartbeat. Cross-dataset testing
results demonstrate the excellent detection accuracy and generalization performance of the
proposed method, making it applicable to various datasets without the need for parameter
adjustments in practical applications.

5.2. Method Evaluation

The DETR architecture is introduced for object detection in 1D ECG signals. The
research results suggest that the DETR architecture has the potential to improve the accu-
racy of physiological signal analysis, which could have a broader impact on the field of
physiological signal diagnosis.

For AF heartbeat detection, both classification performance and localization accuracy
are equally important. In the AF-DETR model, 2D bounding boxes composed of center
points and box widths are introduced to derive positional queries. The positional queries
are encoded using sine positional encoding, similar to the positional encoding used for
encoder features, ensuring the similarity between the position queries and the positional
information in the encoder features. Deriving queries using coordinates enables the iterative
updating of bounding boxes, and the progressively updated bounding boxes allow the
construction of auxiliary losses using outputs from each decoding layer. These strategies
accelerate model convergence and enhance both localization and classification accuracy.

Due to the stochastic nature of the training process, slight changes in the cost matrix can
lead to significant variations in matching results, resulting in unstable bipartite matching
and unstable model training. Denoise training can reduce the instability of bipartite
matching to accelerate model convergence. In fact, denoise training bypasses bipartite
matching because the correspondence between the noise query prediction and the truth
value is known. By training the model to reconstruct boxes from noised boxes close to
ground truth, denoise training allows the model to focus more on the nearby region of each
query, preventing potential prediction conflicts between queries. Additionally, we construct
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positive and negative noise queries for the same ground truth object, which helps the model
differentiate subtle differences between bounding boxes and avoids redundant predictions.

Considering factors that affect AF detection performance during model training is
crucial, as it determines whether the trained model can generalize to unseen individuals.
Employing appropriate strategies can enhance model performance. Firstly, the diversity of
samples in the training set significantly impacts model performance. Typically, the number
of participants in the dataset is directly related to sample diversity, as ECG samples from
the same participant over a short period tend to be highly similar. Data augmentation
methods are often used to enhance sample diversity. Secondly, while considering sample
diversity, the balance of samples should not be overlooked. Imbalanced samples can reduce
the model ability to recognize minority classes. However, its effects can be mitigated by
sampling strategies or special loss functions. Additionally, differences between training
and testing data in terms of lead configurations can lead to prediction failures. Therefore,
in this work, we applied a polarity inversion (vertical flipping) augmentation to emulate
physiological polarity differences between leads. As verified by the ablation in Section 4.3.3,
the augmentation yields negligible impact on F-wave visibility while slightly improving
cross-lead generalization. Future work will further incorporate lead-aware augmentations
such as baseline wander, narrowband interference, and electrode noise to better reflect
real-world ambulatory artifacts

Although the AF-DETR framework uses a fixed 400 ms heartbeat-box width, the
additional ablation demonstrated that the performance is largely insensitive to moderate
variations in box size. The adaptive-RR configuration provided only minimal gains, in-
dicating that the empirical width adequately captures the P-QRS-T morphology under
both bradycardic and tachycardic conditions. Therefore, the fixed-width design offers an
effective trade-off between physiological coverage and computational simplicity.

Cross-database evaluation further confirmed that AF-DETR generalizes robustly across
datasets with differing sampling rates and labeling styles, maintaining consistent perfor-
mance within +0.7% AF F1.

The additional analysis on MITDB demonstrated that premature atrial and ventricular
ectopy are the dominant causes of false-positive AF detections. The use of focal loss or class-
weighted cross-entropy significantly improved both precision and probability calibration,
suggesting that ectopy-aware training objectives could further enhance model reliability in
future studies.

The sensitivity and time-consecutive analyses verified that the 50% segment-level
criterion approximates the clinical 30 s AF definition with high fidelity, confirming
that the beat-level predictions of AF-DETR possess adequate temporal continuity for
clinical interpretation.

5.3. Limitation and Future Work

Although there are many benefits, this study still has certain limitations. Firstly, the
AF-DETR model did not consider the impact of different levels of noise on its performance.
Another limitation is that there is still room for improvement in the positioning performance
of the model, because the positioning performance affects the classification performance
of the heartbeat. Lastly, the model still needs validation in more realistic clinical settings.
In the future, we plan to validate our proposed AF-DETR method in clinical practice
at hospitals, and expand datasets with diverse arrhythmia data collected from different
environments for training and evaluation to achieve higher accuracy in AF heartbeat
detection. Additionally, we aim to investigate its interpretability.
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6. Conclusions

A novel AF object detection model called AF-DETR is proposed in this work, aiming
to achieve localization and classification of AF heartbeats. The model adopts the DETR-like
architecture and introduces a 2D bounding box in the transformer decoder to derive posi-
tional queries. Through the iterative bounding box refinement mechanism at each decoder
layer, the model dynamically corrects prediction boxes, accelerating model convergence
while simultaneously improving localization and classification performance. Additionally,
contrastive denoising training is introduced to expedite model convergence and avoid
redundant predictions for the same heartbeat. External independent testing results demon-
strate that AF-DETR can achieve state-of-the-art performance in segment-level classification
tasks, while providing accurate heartbeat-level classification labels and positions. More-
over, the localization performance of heartbeat detection is comparable to mainstream QRS
detection algorithms. These results establish the effectiveness of the AF-DETR approach,
enabling precise quantification of AF and providing valuable references for diagnosis by
medical professionals.
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