
Academic Editor: Kwang Woo Ahn

Received: 23 August 2025

Revised: 10 October 2025

Accepted: 10 October 2025

Published: 13 October 2025

Citation: Ghadie, M.; Sardaar, S.;

Trakadis, Y. Disease-Specific

Prediction of Missense Variant

Pathogenicity with DNA Language

Models and Graph Neural Networks.

Bioengineering 2025, 12, 1098.

https://doi.org/10.3390/

bioengineering12101098

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Disease-Specific Prediction of Missense Variant Pathogenicity
with DNA Language Models and Graph Neural Networks
Mohamed Ghadie 1, Sameer Sardaar 1 and Yannis Trakadis 1,2,3,*

1 Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A 3J1, Canada
2 Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada
3 Department of Medical Genetics, McGill University Health Center, Montreal, QC H4A 3J1, Canada
* Correspondence: yannis.trakadis@mcgill.ca

Abstract

Accurate prediction of the impact of genetic variants on human health is of paramount im-
portance to clinical genetics and precision medicine. Recent machine learning (ML) studies
have tried to predict variant pathogenicity with different levels of success. However, most
missense variants identified on a clinical basis are still classified as variants of uncertain
significance (VUS). Our approach allows for the interpretation of a variant for a specific
disease and, thus, for the integration of disease-specific domain knowledge. We utilize a
comprehensive knowledge graph, with 11 types of interconnected biomedical entities at
diverse biomolecular and clinical levels, to classify missense variants from ClinVar. We use
BioBERT to generate embeddings of biomedical features for each node in the graph, as well
as DNA language models to embed variant features directly from genomic sequence. Next,
we train a two-stage architecture consisting of a graph convolutional neural network to
encode biological relationships. A neural network is then used as the classifier to predict
disease-specific pathogenicity of variants, essentially predicting edges between variant and
disease nodes. We compare performance across different versions of our model, obtain-
ing prediction-balanced accuracies as high as 85.6% (sensitivity: 90.5%; NPV: 89.8%) and
discuss how our work can inform future studies in this area.

Keywords: machine learning (ML); neural network classifier; variants of uncertain
significance (VUS); missense variants; disease-specific variant interpretation; genetic
variant pathogenicity prediction; ClinVar; graph convolutional neural network (GCN);
genomic embeddings

1. Background
Predicting the impact of genetic variants in human genetics has gained wide attention

in the past two decades [1]. With advancements in machine learning (ML) techniques,
recent efforts have focused on developing ML models for variant interpretation. Saloom
et al. made use of sophisticated deep learning classification techniques to predict the
type and influence of genetic variants on an individual’s risk to develop disease [2]. Yang
et al. used a gradient boosting decision tree to predict pathogenicity of structural variants
after annotating them with genomic, proteomic, and epigenomic features [3]. Liu et al.
applied a gradient boosting model on nonsynonymous variants annotated with 60 features
from 6 categories including epigenomics, functional effect, splicing effect, population-
based features, biochemical properties, and conservation [4]. Similarly, Molotkov et al.
proposed an ensemble model for predicting pathogenicity of nonsynonymous variants [5].
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Furthermore, Ge et al. used epigenomic functional and evolutionary information extracted
from genome and protein sequences to predict pathogenicity of missense variants [6].

Other studies applied different graphical approaches to integrate genetic variant
information with other biological data. Zhang et al. used a graph attention neural network
to predict pathogenicity of missense variants, with graph nodes capturing predictive
features of amino acids and edges weighted by strength of feature co-evolution [7]. Cheng
et al. predicted pathogenicity of missense variants using a graph neural network operating
on a network of genes and variants [8]. Wang et al. mapped atomic connections in protein
3D structures to residue-level network representations and used structural, topological,
biophysical and sequence properties of mutation sites as node attributes to predict variant
pathogenicity using a graph neural network [9]. These graph-based approaches mainly
rely on biomolecular, structural and evolutionary information. Other graph-based studies
such as Kamada et al. made use of higher-level aspects such as pathways to predict the
pathogenicity of missense variants [10]. Hou applied a graph neural network on a graph of
protein sequences passed through an Evolutionary Scale Modeling (ESM) model to predict
pathogenicity of nonsynonymous mutations [11].

These studies rely on an ensemble of techniques that require processing and integrating
biological data from many different sources. For example, the performance of the ML model
by Cheng et al. [8] relies heavily on pathogenicity scores obtained from PrimateAI [12].
PrimateAI uses protein 3D structures, multiple sequence alignments and variant frequencies
across primate species to infer variant pathogenicity. Moreover, the aforementioned studies
have focused on predicting pathogenicity of variants in a disease agnostic (non-disease-
specific) context. However, interpreting a variant in the context of a specific disease can be
more clinically useful, as it allows for integration of disease-specific domain knowledge.
Zhan and Zhang provided a neural network framework that can be fine-tuned on genomic
foundation models for more accurate prediction of variant pathogenicity in a disease-
specific context [13]. They evaluated their model in the context of cardiovascular disease
and post-transcriptional regulation of RNA splicing.

Despite all efforts to date, most missense variants identified on a clinical basis are
classified as variants of uncertain significance (VUS) [14]. Our study aims to advance the
field of variant pathogenicity prediction for missense variants, by combining different key
strategies. First, we follow a graph-based approach that not only includes information at
the molecular level but also information on higher-level aspects of human biology such
as phenotype, disease, drug and clinical information. Second, we integrate large-scale
structural, functional, and evolutionary data by taking advantage of DNA language models.
In brief, similar to ESM pretrained models for proteins, DNA language models can capture
variant features directly from its genomic sequence: e.g., DNABERT [15], HyenaDNA [16]
and Nucleotide Transformer [17]. Third, we follow the more clinically useful disease-
specific approach for predicting variant pathogenicity by utilizing our knowledge graph to
predict whether a variant is pathogenic or benign, in relation to a specific disease.

2. Methods
2.1. Graph-Based Prediction of Disease-Specific Variant Pathogenicity

We obtained a heterogeneous biomedical knowledge graph from Chandak et al.,
2023 [18] consisting of 129,375 nodes representing 10 different aspects of human biology,
clinical, and environmental information. The 10 node types are protein, disease, drug,
phenotype, pathway, molecular function, biological process, cellular component, drug,
exposure, and anatomy. These nodes are connected through 8,100,498 edges belonging to
30 different types. To integrate variants associated with genes into the graph, we first
split each protein node into two nodes, a gene node and a protein node, with each protein
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connected to its corresponding gene through a new type of edge. We then also connected
each variant to its associated gene through a new type of edge. In addition, each pathogenic
variant was connected to the disease it is known to be associated with in the ClinVar
database [19]. If the disease associated with a variant was not found in the graph, a new
node was created for that disease and then connected to the variant.

To further enrich the graph with biomolecular information, we also classified each
protein–protein edge into one of two types: transient or permanent, based on whether the
physical interaction between the two proteins is transient in time or permanent in time. To
classify a protein–protein interaction (PPI) as transient or permanent, we obtained time-
course gene expression data from experiments in the GEO database [20] and calculated
for each protein pair the time-course co-expression of their two coding genes in each
experiment. A PPI was then classified as transient in one experiment if the co-expression
of its two corresponding genes in that experiment is less than 0.1; otherwise, the PPI was
classified as permanent. An edge connecting two proteins in the graph was then labeled as
transient if its corresponding PPI was classified as transient in the majority of experiments;
otherwise, it was labeled as permanent. Edges whose corresponding PPIs were neither
classified as transient nor permanent, due to lack of co-expression data in GEO experiments,
were grouped into a third unlabeled category.

We also added a second edge type between every two connected proteins in the
graph, this time representing their level of tissue co-expression. We first obtained CAGE
(Cap Analysis of Gene Expression) peak data in human from the Fantom5 project [21]
and calculated the co-expression level for each pair of genes across different tissues and
cell lines. We then labeled the new connection between each protein pair in the graph
as “negative co-expression”, “no co-expression”, “low positive co-expression”, “medium
positive co-expression”, or “high positive co-expression”, based on the co-expression level
of the two corresponding genes. The full graph including all node types and edge types is
shown in Figure 1. The count for each edge type in the graph is shown in Table 1.

 

Figure 1. Full graph structure with all 12 node types after including variants. In contrast to the
full graph, the “basic graph” includes only the 5 node types: gene, protein, variant, pathway and
disease. Edges between disease nodes and pathogenic variants, represented here with a dotted link,
are masked during training.
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Table 1. Count for each edge type present in the full graph.

Edge Type Count

Drug–Drug (synergistic interaction) 2,672,628
Anatomy–Gene (expression present) 1,518,203

Protein–Protein (transient PPI) 376,344
Variant–Gene (associated with) 326,096

Protein–Protein (permanent PPI) 206,844
Disease–Variant (associated with) [masked during training] 202,093

Protein–Protein (low positive co-expression PPI) 185,140
Disease–Phenotype (phenotype present) 176,383
Protein–Protein (no co-expression PPI) 163,004

Bioprocess–Gene (interacts with) 144,805
Protein–Protein (medium positive co-expression PPI) 125,136

Bioprocess–Bioprocess (parent–child) 105,772
Disease–Gene (associated with) 97,338

Protein–Protein (negative co-expression PPI) 88,476
Cellular component–Gene (interacts with) 83,402

Disease–Disease (parent–child) 75,618
Molecular function–Gene (interacts with) 69,530

Drug–Effect/Phenotype (side effect) 64,784
Protein–Protein (unlabeled PPI) 58,962
Pathway–Gene (interacts with) 42,646

Protein–Protein (high positive co-expression PPI) 42,228
Phenotype–Phenotype (parent–child) 37,472
Contraindication (contraindication) 33,984
Anatomy–Anatomy (parent–child) 28,064

Protein–Gene (associated with) 27,610
Molecular function–Molecular function (parent–child) 27,148

Anatomy–Gene (expression absent) 19,887
Drug–Protein (target) 16,380
Indication (indication) 10,061

Cellular component–Cellular component (parent–child) 9,690
Drug–Protein (enzyme) 5,317

Pathway–Pathway (parent–child) 5,070
Exposure–Exposure (parent–child) 4,140
Phenotype–Gene (associated with) 3,330

Drug–Protein (transporter) 3,092
Off-label use (off-label use) 2,759

Exposure–Disease (linked to) 2,311
Exposure–Bioprocess (interacts with) 1,625

Disease–Phenotype (phenotype absent) 1,345
Exposure–Gene (interacts with) 1,212

Drug–Protein (carrier) 864
Exposure–Molecular function (interacts with) 45
Exposure–Cellular component (interacts with) 10

Initial feature vectors for all node types in the graph were obtained from BioBERT
v1.1 [22], a domain-specific language representation model pretrained on large-scale
biomedical corpora. For each node in the graph, we used a textual description of the
node as input to the BioBERT model to obtain an embedding vector of length 768. For
drug and disease nodes, natural language descriptions covering different biomolecular and
clinical features, provided by Chandak et al., 2023 [18], were used. The BioBERT output
for each drug or disease node was then averaged across all features to obtain the final
embedding of a node. For disease nodes that were not part of Chandak’s graph, the name
of the disease was used as the input. For variant nodes, the following textual description
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was used as input to the BioBERT model: “<variant type> located on chromosome <chromosome
number> at position <variant position> with reference allele <reference allele> and alternative allele
<alternative allele>”. For protein nodes, the following textual description was used as input
to the BioBERT model: “Protein encoded by gene <gene symbol>”. For all other node types,
the name of the node provided by Chandak et al. was used.

In addition to BioBERT, two other genomic foundation models were also used to gener-
ate an embedding vector for each variant, HyenaDNA [16] and Nucleotide Transformer [17].
HyenaDNA was pretrained on the human reference genome with context lengths up to 1
million tokens at the single nucleotide level. It provides four different models that take as
input genomic sequences of maximum lengths 1 Kb, 160 Kb, 450 Kb and 1 Mb. We used
the 160 K and 1 M models in our study. Nucleotide Transformer provides several models
each trained on a different set of reference genomes. We used the v2-500m-multi-species
model (NT-500m) in our study, which is a 500 million-parameter transformer pretrained on
850 genomes from a wide range of species. This model accepts genomic sequences with a
maximum length of 12,282 bases (12K).

To obtain an embedding for a missense variant using HyenaDNA or Nucleotide
Transformer, we first identified the variant position on the chromosome sequence and
obtained the variant’s surrounding sequence using a context window centered at that
variant position. The context window length was set to the maximum length accepted by
the model, which is 160 K or 1 M for HyenaDNA models and 12,282 (12 K) for Nucleotide
Transformer. The extracted sequence was then passed as input to the embedding model
after replacing the reference allele at the variant position with the alternative allele. In cases
where the variant was located near the edge of the chromosome with the context window
extending in that direction outside the chromosome sequence by n positions (on one side of
the variant), we shifted the context window by a number of n positions towards the other
side of the variant so that the context window falls completely within chromosome limits.

To obtain an embedding for an insertion variant, we first identified the position
where the insertion occurs on the chromosome sequence. We then obtained the variant’s
surrounding sequence using a context window centered at that position. Next, the insertion
sequence was inserted at the center of the extracted reference sequence. Subsequently, the
new sequence, which now included the inserted segment, was equally truncated on each
side to preserve its original length while factoring in the insertion. The alternative sequence
was then passed as input to the embedding model.

To obtain an embedding for a deletion variant, we first obtained the reference sequence
centered at the center of the “segment to be deleted” and of length equal to our set window
length plus the length of the “segment to be deleted”. We then removed the deletion
segment, which resulted in an alternative sequence of equal length to that of our set
window. The alternative sequence was then passed as input to the embedding model. In a
similar fashion, we obtained the embedding of an indel variant where a reference sequence
was replaced by an alternative sequence by treating it as a deletion followed by an insertion.

We then applied a 2-layer graph convolutional network (GCN) onto the graph, after
normalizing the initial embedding for each node using L2-normalization, followed by a
3-layer neural network (NN) operating as a decoder on the node embeddings generated by
the GCN. The goal here was to predict disease-specific pathogenicity of variants. To this end,
the NN took as input the embedding of a variant node concatenated with the embedding
of the disease node for which variant pathogenicity was to be predicted. The initial
dimension of an embedding vector for a variant node was either 256, 768 or 1024, depending
on the choice of embedding model (HyenaDNA, BioBERT or Nucleotide Transformer,
respectively). Every other node type in the graph had an initial embedding dimension
of 768 obtained from BioBERT. We set the hidden dimensions of the two GCN layers to



Bioengineering 2025, 12, 1098 6 of 14

d(1) = 256 and d(2) = 64 with a dropout rate of 0.3 applied to each layer. The NN decoder
took two node embeddings (variant–disease pair) as input with a total dimension of
2 × 64 = 128. We set the hidden dimensions of the two GCN layers to d(1) = 256 and
d(2) = 64 with a dropout rate of 0.3 applied to each layer. The NN decoder took two node
embeddings (variant–disease pair) as input with a total dimension of 2 × 64 = 128. We set
its hidden layers to d(1) = 64 and d(2) = 32 neurons, with a dropout rate of 0.3 applied to
each layer. A sigmoid activation function was then applied to the output neuron to map its
output to a value between 0 and 1, representing the final probability for a variant–disease
pair to be pathogenic.

For the positive class in our dataset, we paired every pathogenic variant in the graph
with each one of its associated diseases. We then concatenated the embeddings generated
by the GCN for the two nodes corresponding to each variant–disease pair and passed them
as input to the NN. For the negative class, we paired every benign variant in the graph
with every disease connected to the gene linked to that variant. We then concatenated
the embeddings generated by the GCN for the two nodes corresponding to each variant–
disease pair and passed them as input to the NN. Pathogenic variant–disease pair examples
were given a label of 1, whereas benign variant–disease pair examples were given a label of
0. To train the model, the full set of positive (pathogenic) and negative (benign) examples
were split into 70% for training, 15% for validation, and 15% for testing. We then trained
the full GCN+NN model in an end-to-end fashion using a stochastic gradient descent
optimizer with a learning rate of 0.001, weight decay of 0.1, and momentum of 0.9. Of note,
the edges between disease nodes and pathogenic variant nodes in the graph were masked
during training to avoid information leakage. The model state with minimum binary cross
entropy loss on the validation set was finally selected for testing.

2.2. Neural Network-Based Prediction of Disease-Specific Pathogenicity of Variants

As a baseline for comparing the performance of our graph model on disease-specific
prediction of variant pathogenicity, we trained a 3-layer NN alone without the graph. In
this approach, instead of using variant and disease embeddings generated by the GCN as
input to the NN, we used the initial raw embeddings generated by BioBERT for diseases,
and initial raw embeddings generated by either BioBERT, HyenaDNA or Nucleotide
Transformer for variants. We then trained the NN with hidden dimensions d(1) = 256 and
d(2) = 64, and learning parameters similar to those used with the full GCN+NN model for
the task.

2.3. Neural Network-Based Prediction of Non-Disease-Specific Pathogenicity of Variants

In the previous graph-based and baseline NN approach, our definition of variant
pathogenicity was disease-specific. In other words, we defined pathogenicity as a pairwise
attribute of variants and diseases, where a variant–disease pair was classified as pathogenic
(positive), if the variant was predicted to cause that disease in particular. On the other
hand, a variant–disease pair was classified as benign (negative), if the variant is predicted
to not cause that disease in particular.

Here, we again trained a 3-layer NN alone, without the graph, using the same archi-
tecture and learning parameters as before. However, this time we used only the variant
embedding as input. With this approach, pathogenicity was defined as a variant attribute
which was independent of any disease context. This allowed us to test how much signal
there was within the raw embedding generated from DNA language models for predicting
non-disease-specific pathogenicity of variants and also to further assess the advantage of
integrating these embeddings into a relational graph that captures biological dependencies.
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2.4. Optimizing the Graph Model by Fine-Tuning Nucleotide Transformer on Predicting
Variant Pathogenicity

The DNA language models, HyenaDNA and Nucleotide Transformer, that were
used to generate variant embeddings for our graph model, have not been pretrained
specifically on the task of predicting variant pathogenicity, even in a disease-agnostic
manner. Therefore, we hypothesized that fine-tuning the DNA language model on the task
of predicting variant pathogenicity would generate better embeddings that capture variant
pathogenicity features from raw DNA sequence and that this would consequently improve
the performance of our graph model.

To explore this hypothesis, we fine-tuned the Nucleotide Transformer model on the
task of predicting non-disease-specific pathogenicity of variants. To do this, we obtained the
genomic context sequence for each variant, as in previous sections. Sayeed et al. reported
that Nucleotide Transformer’s 100 million-parameter model (NT-100m) outperformed
other models when fine-tuned on this task [23]. Thus, we used the same parameters and
fine-tuned the NT-100m model using a sequence length of 400 bases.

After down-sampling the benign class to balance it with the pathogenic class, we split
the sequence dataset into 70% for training, 15% for validation, and 15% for testing. We
then trained the Nucleotide Transformer model for binary classification on small batches
of the data over 42 epochs (60,000 steps). We used 4 GPUs with 40 G memory each, a
cosine learning rate scheduler with a warmup ratio of 0.1, and learning rate not exceeding
1 × 10−5. Lastly, we generated variant embeddings from the fine-tuned model, trained our
graph model again on the new embeddings, and compared the performance of our model
based on fine-tuned embeddings with its performance without fine-tuning.

2.5. Computational Requirement

We used a single NVIDIA A100SXM4 GPU with 40 G memory to train all NN models
and graph-based models, except for fine-tuning NT-100m where we used four GPUs of the
same model. Models were implemented using Pytorch [24] and Pytorch Geometric [25]
deep learning frameworks.

2.6. ClinVar Variants

Our dataset included 42,335 missense variants from ClinVar [19]. We selected only
germline variants with their positions provided by ClinVar according to genome assembly
GRCh38. Specifically, we focused only on variants labeled as “benign” or “pathogenic”.
We discarded all other ClinVar variants, including those with labels “benign/likely be-
nign”, “likely benign”, “pathogenic/likely pathogenic”, “likely pathogenic”, “uncertain
significance”, “drug response”, “affects”, “risk factor”, “association”, “protective”, “not
provided”, “other”, “no interpretation for the single variant”, “conflicting data from sub-
mitters”, and “conflicting interpretations of pathogenicity”. Moreover, in terms of quality
of variants, we focused only on those whose review status in ClinVar is either “practice
guideline”, “reviewed by expert panel”, “criteria provided, multiple submitters, no con-
flicts” or “criteria provided, single submitter”. Finally, we selected only variants that are
associated with a gene and located on nuclear DNA.

Since most genes have an unbalanced ratio of benign variants to pathogenic variants
listed in ClinVar, during training we balanced the number of benign variants with the
number of pathogenic variants for each gene. More specifically, for every benign variant–
disease pair selected from a gene to be added as a negative example to the training set, we
selected one pathogenic variant–disease pair from the same gene to be added as a positive
example to the training set as well. At the same time, two other variants from the same
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gene were randomly selected to be included in the validation set and test set, with the two
variants selected from different classes (pathogenic vs. benign) when possible.

For our best performing pipeline, we repeated the analysis by splitting ClinVar variants
by their submission dates. Specifically, we used all variants submitted up to the end of
2022 for training and validation (split into 80% for training and 20% for validation), and
variants submitted during 2023–2024 for testing, thereby simulating a forward-in-time
deployment scenario.

2.7. Statistical Significance Test and Confidence Intervals

A binomial test with probability of success p = 0.5 was used to calculate the p-value
for each balanced accuracy, after adjusting the number of observed successes by the ob-
served balanced accuracy (i.e., successes = balanced accuracy × number of test cases).
95% confidence intervals for balanced accuracies were calculated using a Wilson score
on the observed number of successes adjusted for balanced accuracy as described above.
Confidence intervals were also calculated using the bootstrap method of the scikits library
on the prediction data directly. Both methods produced the same results.

3. Results
3.1. Predicting Pathogenicity of Missense Variants with a Neural Network Only vs. With
Our Graph

Training first the NN on predicting variant pathogenicity in a non-disease-specific
manner, allowed us to assess the signal within the raw embedding generated from DNA
language models for predicting variant pathogenicity. Table 2 summarizes the results
of using the variant embeddings obtained from BioBERT, HyenaDNA and Nucleotide
Transformer as input to the NN. Overall, regardless of the source of embeddings for
variants, when following this “non-disease-specific approach”, NN could not predict
pathogenicity of missense variants. The embeddings generated by DNA language models
had no signal to predict variant pathogenicity on their own.

Table 2. Balanced accuracy in predicting pathogenicity of missense variants using a neural network
without the graph.

Variant Type Variant Embedding Source

BioBERT HyenaDNA 160 K HyenaDNA 1 M NT-500m 12 K

Non-disease-specific 50.0
(95% CI: 47.9, 52.1)

50.2
(95% CI: 48.1, 52.4)

49.9
(95% CI: 47.7, 52.0)

50.1
(95% CI: 48.0, 52.3)

Disease-specific 62.3
(95% CI: 61.3, 63.3)

62.2
(95% CI: 61.2, 63.3)

50.0
(95% CI: 48.9, 51.1)

62.0
(95% CI: 61.0, 63.0)

Although NN alone (i.e., without the graph), had some signal when following the
“disease-specific approach” (Table 2), the balanced accuracy in predicting pathogenicity of
missense variants using our graph (Table 3) was higher than that of NN alone. Our graph
model shows up to ~8% improvement in performance compared to the baseline NN model.

Of note, balancing the number of benign variant–disease pairs and pathogenic variant–
disease pairs per gene, during training, lead to lower performance (Table 3). This is not
surprising as this approach was ensuring that the model could not exploit the skewed
distribution of pathogenic and benign variants within each gene.
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Table 3. Accuracy in predicting disease-specific pathogenicity using the graph model.

Variant Type Variant Embedding Source

BioBERT HyenaDNA 160 K HyenaDNA 1 M NT-500m 12 K

Missense variants 76.7
(95% CI: 75.8, 77.6)

79.8
(95% CI: 78.9, 80.7)

74.4
(95% CI: 73.5, 75.4)

75.2
(95% CI: 74.3, 76.2)

Missense variants
(balanced per gene)

70.8
(95% CI: 69.8, 71.7)

70.9
(95% CI: 69.9, 71.9)

70.6
(95% CI: 69.6, 71.5)

70.2
(95% CI: 69.3, 71.2)

3.2. Predicting Disease-Specific Variant Pathogenicity with a Basic Graph, Rather than Full Graph

Our full graph includes 12 node types of diverse biological and clinical nature. Some
of these node types may be more important for predicting variant pathogenicity than
others. For example, we expected nodes carrying information at the molecular level such
as genes and pathways to be more essential for predicting variant pathogenicity than other
nodes carrying information at the higher clinical and environmental level. To explore
this, we tested how our graph model performed if only five basic nodes were included in
the graph (variants, genes, proteins, pathways, and diseases). As shown in Table 4, our
model operating on the basic graph performs on par with the model operating on the full
graph, suggesting that these five basic elements of the graph are more essential for variant
pathogenicity prediction than other higher-level elements.

Table 4. Accuracy in predicting disease-specific pathogenicity using a basic graph.

Variant Type Variant Embedding Source

BioBERT HyenaDNA 160 K HyenaDNA 1 M NT-500m 12 K

Missense variants 76.5
(95% CI: 75.5, 77.4)

77.1
(95% CI: 76.2, 78.0)

77.9
(95% CI: 77.0, 78.8)

78.4
(95% CI: 77.6, 79.3)

Missense variants
(balanced per gene)

68.4
(95% CI: 67.3, 69.3)

69.7
(95% CI: 68.7, 70.7)

70.3
(95% CI: 69.3, 71.2)

67.5
(95% CI: 66.5, 68.5)

Of note, training our model on the basic graph using a much shorter genomic sequence
length of 400 bases for obtaining variant embeddings, did not affect model performance.

3.3. Improving Graph Model Performance with Fine-Tuned Nucleotide Transformer Embeddings

To further optimize the performance of our basic graph model on missense variants,
we then used variant embeddings obtained from the Nucleotide Transformer model with
and without fine-tuning (on predicting pathogenicity for missense variants). Our disease-
specific graph model showed a 10.7% increase in prediction accuracy when using variant
fine-tuned embeddings (Table 5). Variants assigned to the training, validation and test
partitions during fine-tuning stage were placed as part of the corresponding sets during the
graph learning stage as well. This was carried out to maintain consistency across stages and
ensure fail evaluation without label leakage. Fine-tuning was performed using only variant
sequence information, without incorporating additional data such as disease annotations,
to ensure that the model’s performance reflects its ability to generalize from sequence
features alone.
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Table 5. Accuracy in predicting pathogenicity of missense variants using the basic graph with variant
embeddings obtained from NT-100m with and without fine-tuning.

Variant Type Disease-Specific Graph Model

NT-100m Fine-tuned NT-100m

Missense variants 74.9 (95% CI: 74.0, 75.8) 85.6 (95% CI: 84.8, 86.3)

4. Discussion
Previous studies for predicting variant pathogenicity have generally followed non-

disease-specific approaches. They have either focused on predicting variant pathogenicity
targeting variants in both protein-coding regions and non-coding regions [23], or on pre-
dicting on all types of variants in coding regions [5]. To our knowledge, our study is the
first to focus on predicting pathogenicity for missense variants, which appear to represent
the most problematic type of variants for different reasons.

First, predicting pathogenicity of variants in coding regions is more challenging than
predicting pathogenicity across coding and non-coding regions. Pathogenic variants are
more likely to occur in coding regions than benign variants, and benign variants are
more likely to occur in non-coding regions than pathogenic variants. Hence, the task of
predicting pathogenicity is less complex when focusing on both coding and non-coding
regions, rather than when restricting the analysis to coding DNA. In addition, focusing
on missense variants represents a major clinical challenge, as a significant proportion of
missense variants identified in clinical settings are classified as VUS. Notably, most VUS are
missense variants. This is a substantial problem: approximately 41% of variants detected
by clinical diagnostic tests in protein-coding regions are classified as VUS, and only about
7% of these are later reclassified based on clinical and experimental evidence [14].

Our graph-based approach integrates variant genomic context into a relational struc-
ture that captures biological dependencies from multiple sources. This goes beyond the
conventional task of simply predicting variant pathogenicity in a disease-agnostic manner.
By tailoring variant effect predictions to specific disease contexts, our approach integrates
disease-specific domain knowledge, making our predictions more clinically relevant. Ac-
cording to our results, a neural network alone was unable to predict non-disease-specific
pathogenicity of missense variants, regardless of the source for obtaining variant embed-
dings (BioBERT, HyenaDNA or Nucleotide Transformer).

When introducing disease-specificity, a neural network alone was able to predict
pathogenicity of missense variants, albeit with a low accuracy (62%, Table 2). In contrast,
the accuracies of predictions exceeded 70% when a neural network was combined with our
graph (Table 3). This was true, irrespective of the sources for variant embeddings (BioBERT,
HyenaDNA or Nucleotide Transformer). Moreover, pruning the graph down to the five
basic node types (variants, genes, diseases, proteins, and pathways), while excluding all
other node types, had no significant impact on performance (Table 4). This suggests that the
corresponding five elements (gene, protein, variant, pathway, and disease) may be treated
as the backbone for future prediction models and be further exploited for performance
optimization. Similarly, fine-tuning the basic graph improved the disease-specific graph
model performance to ~86% (Table 5). For example, our model correctly classified all
14 pathogenic variants for Charcot-Marie-Tooth disease, despite their being spread in
different genes (LMNA, MFN2 and GARS1) [26].

It is worth noting that when we split the ClinVar dataset based on submission date,
the performance of the model was very similar, both at the fine-tuning stage as well as
the final graph learning stage. The final balanced accuracy was 86.5% compared with the
85.6% in random splitting used throughout the paper. Similarly, when we collapsed the
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PPI linkage to one type of edge, the balanced accuracy remained unchanged to 85.74%.
The consistent performance across both cases demonstrate that our pipeline is resilient to
sampling variation and graph construction bias. Performance metrics for all our analyses,
including 95% Confidence Intervals, are provided in Tables 2–5. The p-values are not
included in the tables, as they are all nearly zero (<1 × 10−5). The confusion matrices
are provided in the Supplemental Section, along with additional details for our model
(Supplemental Tables S1–S3).

Given the high sensitivity (Recall: 91%) and negative predictive value (NPV: 90%) of
the disease-specific basic graph model with fine-tuning, this can have clinical implications.
Our model can be used for bioinformatic tool as part of the American College of Medical
Genetics (ACMG) Guidelines for variant interpretation. As mentioned above, most genetic
variants are currently classified as VUS based on ACMG criteria. The standard interpre-
tation process factors in outputs of different bioinformatic tools. Popular bioinformatic
tools, such as CADD [27] or PolyPhen-2 [28], rely on a different methodology than our
model. Our approach can thus offer complementary bioinformatic evidence in the process
of variant interpretation. As whole genome sequencing (WGS) becomes a first-tier test
in clinical practice, and potentially a complement test for newborn screening (NBS) pro-
grams, our approach can contribute towards the classification of WGS variants in a disease-
specific manner.

Introducing disease specificity in variant interpretation appears to be a promising
approach to explore further. This is particularly true within our knowledge graph, which
was shown to largely improve accuracy of the predictions. However, our approach is
limited to variant interpretation for known diseases and cannot be used for variants in
novel genes which are not yet linked to diseases. An alternative strategy of training would
be to exclude entire genes from training for validation or testing, or to block gene–disease
links at training time. However, such approaches would not reflect real-world scenarios.
In practice, the set of genes is fixed, and the model must learn meaningful representation
(embeddings) for them, including the range of their diseases and the types of variants
that cause them. (The latter is not generalizable across genes, as highlighted by the higher
performance of our disease-specific approach). When a new variant arises in a clinical
setting, it would be mapped to one of the known genes within the graph, and the model
would predict its association with one of the known disease nodes. Our focus in a clinical
setting is to interpret variants within genes known to be associated with one or more
genetic diseases. To this end, our design allows for the model to learn which diseases are
associated with a specific gene through the existing gene–disease link. At the same time, by
including an equal number of positive and negative samples (variants) per gene relative to
its known diseases, we ensure that the algorithm is not exploiting unequal distribution of
variant–disease association within a gene.

In terms of technical learning lessons derived from our study, we should highlight the
importance of window size, when generating variant embeddings from genomic sequence.
This refers to the window size applied on both sides of the variant to read its context
sequence. Theoretically, a large window size can potentially capture long-range genomic
context of importance to a variant. However, it may also introduce unwanted noise affecting
the process of discriminating benign variants from pathogenic variants, especially when
these variants are in close proximity from each other. An extremely large window size may
even render the model unable to learn. To address this question, we used two different
DNA language models to generate variant embeddings from genomic sequence, namely,
HyenaDNA and Nucleotide Transformer, with different context window sizes: 160 K and
1 M for HyenaDNA, and ~12 K for Nucleotide Transformer. Although our results, overall,
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showed that varying the window size did not significantly affect performance, reducing
the context size was particularly important for the fine-tuning task.

In addition, our findings suggest that simply embedding the variant type, location,
reference allele and alternative allele using BioBERT can achieve similar performance to
that of the DNA language models. DNA language models have recently gained popularity,
as they can be trained on a large number of genomes from different species. Feng et al.
showed that DNA language models may exhibit superior performance for certain genomic
tasks [29]. However, Sayeed et al. evaluated the performance of these models in predicting
the pathogenicity of single nucleotide variants (SNVs) and found that these models may
not perform as well as the other non-DNA language models on this specific task [23]. Our
findings support these conclusions and do not provide evidence for a role of DNA language
models for variant interpretation.

Overall, in our two-staged training scheme, a DNA language model was fine-tuned at
the nucleotide level, and then, the resulting embeddings were integrated into a heteroge-
nous graph to predict disease-specific variant effect using GNNs. While our approach
uses DNA sequence-derived representations and a biomedical knowledge graph, multi-
stage training has broad applications. For example, Tan et al. [30] pretrained a GNN on
synthetic epidemic contact networks, using approximate likelihoods, and subsequently
fine-tuned it with more precise labels to infer superspreaders. The approach by Tan et al.
differs from ours in terms of the type of graph, task, and supervision. However, the two
approaches share the principle of progressively refining network representations through
staged learning. Multi-phase training strategies capture latent relational dependencies in
complex networks and can be useful in different clinical contexts.

5. Conclusions
In this study, we implemented a novel graph-based approach for predicting disease-

specific pathogenicity of missense variants. We utilized a comprehensive biomedical
knowledge graph integrating genetic variants with 11 types of entities covering different
levels of human biology. We also made use of multiple embedding models to integrate
biological features for every type of node in the graph, including genomic sequence in-
formation for all variants. Our graph model, optimized for predicting disease-specific
pathogenicity of missense variants, shows high performance with an accuracy reaching
~86% when variant embeddings are fine-tuned specifically for this task. Our study opens
the door to new approaches in studying variant pathogenicity in a way that is more relevant
to clinical practice by introducing disease specificity in a graph-based paradigm.

6. Future Directions
Our balancing the benign class and pathogenic class per gene, although crucial to

prevent class imbalance bias, lead to lower number of variants available per gene, and
negatively affected our model performance (Table 3). By increasing the sample size of
variants available for a given gene, our model would be able to better capture gene-specific
domain knowledge and potentially increase the accuracy of its predictions for certain
genes/diseases. Training our graph model using variants from large locus-specific/gene-
specific databases could lead to even higher accuracies for the corresponding variant
pathogenicity predictions. Over the next months, we are planning to make our model
available in a user-friendly manner at MD-YOU.COM. Meanwhile, we would be happy to
be contacted by moderators of different locus-specific databases and collaborate towards
optimizing our model’s performance for specific genetic conditions where large datasets of
clearly labeled variants (benign vs. pathogenic) are available.
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Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/bioengineering12101098/s1, Table S1. Confusion matrix
for the basic graph with variant embeddings from the NT-100m model without fine-tuning. Table
S2. Confusion matrix for the basic graph with variant embeddings from fine-tuned NT-100m model.
Table S3. Data split and training epochs for fine-tuning the NT-100m model and training the basic
graph with variant embeddings from NT-100m.
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