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Abstract

This article reviews the progress made in applying machine learning to predict the os-
teogenic differentiation of mesenchymal stem cells. Bone defects pose a significant clinical
challenge due to limitations of traditional therapies such as autologous bone graft donor
shortages, allograft immune risks and so on. Mesenchymal stem cells offer a promising
solution for bone regeneration due to their osteogenic differentiation potential, but their
clinical utility is hindered by unpredictable differentiation efficiency and heterogeneity.
Machine learning has emerged as a powerful tool to address these issues by enabling
early, non-invasive prediction of osteogenic differentiation and high-throughput analysis
of complex data like morphology and omics. This review systematically summarizes the
application of ML in three key areas: early prediction using cellular morphology, omics
data analysis for biomarker discovery, and drug/biomaterial screening for enhancing osteo-
genesis. We compare the performance of multiple ML models like ResNet-50, LASSO, and
random forests and highlight their advantages and limitations. Additionally, we discuss
challenges in data standardization and model interpretability, and propose future directions
for translating ML into clinical practice. This review provides a comprehensive overview of
how ML can revolutionize MSC-based bone regeneration by improving prediction accuracy
and optimizing therapeutic strategies.

Keywords: mesenchymal stem cells; machine learning; osteogenic differentiation

1. Introduction

A bone defect refers to the destruction of the structural integrity of bone tissue in
response to external forces, infection, or tumors, resulting in loss of function. Repair of
bone defects has been a medical challenge in clinical practice. And with aging, the number
of patients with bone defects is increasing. However, open osteotomies increase the risk of
infection, leading to complications and even disability, and there are also problems such as
insufficient autologous bone donors and immune rejection of allogeneic bone, the quantity
and quality of which cannot be guaranteed [1-3]. 3D printing and bioactive materials have
also been used for bone repair, but the mechanical properties (e.g., modulus of elasticity)
of artificial bone materials differ significantly from those of natural bone, and there is still
room for optimization.

In contrast, stem cell therapy demonstrates significant potential in treating bone de-
fects. Stem cells—particularly mesenchymal stem cells (MSCs)—possess the potential to
differentiate into osteoblasts and chondrocytes, enabling direct participation in repairing
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tissue-deficient areas. For instance, MSCs have already been applied to treat epidermol-
ysis bullosa [4]. Bone marrow-derived MSCs have been shown to completely heal large
bone defects in mouse models in as little as 4 weeks, significantly reducing the recov-
ery time required for conventional bone grafts [5]. It also possesses a relatively mature
evaluation system and direction [6]. However, stem cell therapies also face numerous
challenges. Although adult stem cells (ASCs) are widely available, their differentiation
potential and quantity may vary significantly depending on donor age, health status, and
cell isolation and culture conditions, limiting their efficacy and consistency in clinical
applications [7]. Therefore, predicting the osteogenic differentiation direction of stem cells
during the pre-transplantation culture process is crucial to achieve maximum therapeutic
effects. Traditional methods for predicting the osteogenic differentiation potential of mes-
enchymal stem cells (MSCs) primarily rely on endpoint detection after in vitro osteogenic
induction, such as alizarin red S staining to observe calcific nodule formation, alkaline
phosphatase (ALP) activity assays, or expression analysis of osteogenesis-related genes
(RUNX2, OSTERIX, OPN, etc.). While intuitive, these methods have significant limitations:
First, they are predominantly destructive assays requiring termination of cell culture, pre-
cluding real-time dynamic monitoring of the differentiation process. Second, the timing of
detection is empirically determined, making it easy to miss critical early changes and re-
sulting in findings that lag behind the actual differentiation state. Furthermore, traditional
methods overlook cellular heterogeneity; population-level detection masks differences
among subpopulations, limiting predictive accuracy. More critically, the in vitro induc-
tion environment differs markedly from the in vivo bone regeneration microenvironment.
In vitro osteogenic capacity may not accurately reflect in vivo osteogenic potential, causing
prediction results to diverge from animal or clinical efficacy. Consequently, traditional
methods face challenges in timeliness, precision, and clinical relevance, necessitating the de-
velopment of novel predictive technologies that are non-invasive, highly sensitive, capable
of early prediction, and integrate differences between in vivo and in vitro microenviron-
ments. With the rapid advancement of machine learning, an increasing number of artificial
intelligence technologies are being applied to predict stem cell osteogenic differentiation,
leveraging their advantages of high efficiency, precision, and reliability.

Existing review studies indicate that strategies for predicting mesenchymal stem
cell (MSC) osteogenic differentiation have shifted from traditional molecular biomarker
detection toward multimodal approaches integrating morphology, metabolomics, and
artificial intelligence. These advances offer novel insights for bone tissue engineering, cell
therapy quality control, and personalized bone repair material screening [8]. However, most
current reviews focus on single omics data types [9] or specific models (e.g., LASSO) [10].
This review addresses several critical gaps: First, it compares 10 ML models (ranging
from classical LASSO to deep learning ResNet-50) across three key application domains;
Second, it synthesizes the application of diverse omics data (transcriptomics, proteomics,
metabolomics) to provide a holistic view of osteogenesis prediction; Third, it surveys
recent advances in drug and biomaterial screening (Figure 1). By synthesizing recent
research, comparing ML model performance, and offering actionable recommendations for
standardization and interpretability, this paper fills this gap Figure 2.
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Figure 1. The research process diagram for this review.
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Figure 2. The analytical steps and structural points of this review.

2. Method

This systematic review rigorously adhered to the PRISMA guidelines to ensure
methodological transparency and reproducibility in literature selection. Comprehensive
searches were conducted across PubMed, Web of Science, and Scopus databases from
January 2018 to June 2025 using a carefully designed combination of keywords: (“ma-
chine learning” OR “deep learning” OR “artificial intelligence”) AND (“mesenchymal
stem cells” OR “MSCs”) AND (“osteogenic differentiation” OR “bone regeneration”) AND
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(“prediction” OR “screening”). The initial search yielded 1234 records, which were subse-
quently deduplicated using EndNote, resulting in 778 unique articles. Two independent
reviewers then performed a rigorous title/abstract screening process with strict inclusion
criteria: studies must employ machine learning techniques specifically for predicting MSC
osteogenic differentiation, provide quantitative performance metrics (e.g., accuracy, AUC,
sensitivity), and include detailed methodological descriptions of both the biological experi-
ments and computational approaches. This screening phase excluded 566 articles primarily
due to irrelevance to ML applications (n = 312), focus on non-osteogenic differentiation
(n = 187), or being non-research articles (n = 67).

The remaining 212 articles underwent full-text evaluation against more stringent
criteria, where an additional 154 studies were excluded for specific reasons: 35 were non-
English publications, 10 represented duplicate publications from the same research groups,
45 involved inappropriate cell types (e.g., not MSCs), and 64 lacked essential ML model val-
idation or proper performance reporting. The final 58 included studies were selected based
on their scientific rigor, with particular emphasis on those demonstrating methodological
innovation, clinical relevance (e.g., validation using patient-derived MSCs), or mechanistic
insights (e.g., linking morphological features to molecular pathways). While these covered
three primary research directions—morphology-based prediction, omics data integration,
and biomaterials screening—the review’s focus on ML model performance comparison and
mechanistic exploration led to more detailed discussion of 36 core references through read-
ing the whole article, supplemented by 8 additional citations from recommended readings
to provide broader context. This selective approach ensured the review maintained depth
in analyzing key methodological advances while comprehensively covering the field’s
current state (Figure 3).
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Figure 3. PRISMA Flow Diagram; the total number of cited references is 44.
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3. Early Prediction Based on Morphology

In MSCs research, morphological feature extraction technology, as an important analy-
sis tool, has far-reaching significance for the early prediction of cell differentiation process.
While traditional biochemical marker assays take weeks and are limited to the late stage of
differentiation, morphological analysis offers the possibility of early prediction by capturing
the early dynamic changes of cells in real time through microscopic techniques [7]. Typically,
morphological features of cells can be obtained through microscopy techniques such as
phase-contrast microscopy, fluorescence microscopy, and laser confocal microscopy [11,12].
These techniques enable researchers to observe the morphological changes of cells in real
time, and then extract information such as the size, shape, edge characteristics and internal
distribution of cells. For example, during osteogenic differentiation, the morphology of
BMSCs changes from spindle shape to polygonal shape, and the cell volume increases, and
the arrangement of the cytoskeleton changes [13].

In recent years, with the continuous development of machine learning and image pro-
cessing technologies, morphological feature extraction techniques have gradually moved
toward high-throughput and automation. Using deep learning models, people can auto-
matically identify and extract different morphological features from large-scale cell images.
Among them, the CNN algorithm performs well in image recognition. M. Mai’s research
team developed and compared four convolutional neural network (CNN) models (VGG 19,
InceptionV3, ResNet 18, and ResNet 50), combining live-cell imaging technology with
deep learning techniques to achieve efficient prediction of adipogenic and osteogenic
differentiation in hMSCs. The ResNet-50 model outperformed other models in terms of
area under the curve (AUC > 0.96) and accuracy, This is attributed to its residual block
design, which effectively mitigates the “vanishing gradient” problem in deep networks,
making it suitable for high-resolution cell image analysis (e.g., 1024 x 1024 pixels) [14].
In contrast, VGG19 (with 16 convolutional layers) tends to overfit on small datasets (e.g.,
<1000 images) due to its overly deep architecture, and its computational cost is twice that
of ResNet-50; Inception V3’s multi-scale feature extraction (e.g., 1 x 1,3 x 3 convolution
kernels) performs poorly in classifying cell morphology (e.g., polygonal, spindle-shaped)
(AUC = 0.89) [14]. Shi also used the CNN model by obtaining bright-field images taken at
different time points (e.g., days 0, 1, 3, 5, and 7) to perform quantitative analysis of MSC
morphological features, finding that morphological features such as cell area and edge
roughness are significantly correlated with osteogenic differentiation potential, which were
then input into the ResNet-50 model. The results showed that morphological features from
just 24 h (day 1) could achieve a 96.3% accuracy rate in predicting osteogenic differentiation,
significantly outperforming traditional methods (such as ALP activity detection, accuracy
rate = 78.5%) [15]. However, ResNet-50 requires large training datasets (>10,000 images)
and is sensitive to imaging parameters such as resolution. In experiments simulating
real-world label noise, ResNet-50 saw its accuracy drop by approximately 8-10% under
20% label noise. Although it outperformed VGG16 and ANN, its performance remained
significantly lower than on clean data [16]. Vision Transformers (ViTs) offer a promis-
ing alternative. Their self-attention mechanism captures global cellular features more
effectively than CNNs. ViTs have been widely applied in medical image recognition [17].
Mai also mentioned exploring this direction as a potential next step in research [14]. The
aforementioned studies demonstrate that deep learning models, particularly ResNet-50,
exhibit outstanding performance in morphological prediction. However, their depen-
dence on data volume and quality, coupled with the potential of ViTs, suggests that future
efforts should focus on further optimizing models to accommodate a broader range of
application scenarios.
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In addition to using image recognition, morphological features can also be converted
into parameters for analysis. H. Sasaki et al. used LASSO to select morphological features
of MSCs (such as cell spreading area and shape factor) and retained key features related to
osteogenic differentiation (such as cell area > 1000 um?), constructing a predictive model.
This enabled the early prediction of the differentiation potential of MSCs for osteogenic,
adipogenic and chondrogenic differentiation [8]. LASSO feature selection reduced overfit-
ting, achieving an accuracy rate of 82% in early prediction, and L1 regularization effectively
reduced overfitting, making it suitable for small sample data. These non-invasive meth-
ods avoid the damage to cells caused by traditional detection methods while enabling
large-scale cell screening through high-throughput image processing. In addition to direct
image analysis using a microscope, morphological feature extraction techniques can be
combined with traditional biochemical labeling methods. By comparing the relationship
between morphological features and biochemical markers, the predictive capability of MSC
osteogenic differentiation processes can be further enhanced. Studies have shown that
certain morphological features, such as cell area and cell shape factor, exhibit significant
correlations with the expression levels of osteogenic markers. In Matsuoka’s research, ALP
activity measured on day 14 of MSC culture and calcium deposition rate measured on
day 21 were used as osteogenic differentiation biomarkers, and ridge regression algorithms
were employed to assess the osteogenic differentiation potential of mesenchymal stem
cells [18]. By using a ridge regression model and optimizing image acquisition and analysis
methods, and with alkaline phosphatase activity and calcium deposition as biological
markers, researchers found that morphological features obtained just 3 days before cell dif-
ferentiation could accurately predict osteogenic differentiation outcomes after 3 weeks [19].
This links ML to tangible therapeutic outcomes. Zeng developed a convolutional neural
network (CNN) model based on dynamic images of live cells, successfully predicting differ-
ences in osteogenic differentiation efficiency among MSCs from different donor sources by
tracking cell migration trajectories and pseudopod formation patterns, thereby revealing
the deep connection between morphology and cell fate [20]. Through parametric analysis
and multimodal fusion, the integration of morphological features with biochemical markers
significantly enhances prediction accuracy and early detection capabilities, providing more
reliable evidence for clinical application.

The complexity and diversity of morphological data simultaneously drive innovation
in machine learning algorithms. Traditional image analysis methods depend heavily on
manually crafted feature extraction and are susceptible to subjective factors. Deep learning,
however, automatically extracts key features through end-to-end learning, which signifi-
cantly improves the objectivity and accuracy of the analysis. For example, by integrating
phase-contrast microscope images with a migration learning framework, a generalized
prediction model across experimental platforms can be established, which effectively over-
comes the bias caused by different microscope imaging parameters [21]. Or, by using a
generative adversarial network (GAN), the cellular image data is enhanced, which solves
the model overfitting problem in small-sample scenarios, ensuring that the prediction
accuracy is still preserved over 85% under limited data conditions [22]. Additionally, mul-
timodal fusion technology further expands the application boundary of morphological
analysis. By integrating cellular morphological features with transcriptomic data and
utilizing graph neural network (GNN) to construct a “morphology—gene” sociation map,
COL1A1 and other osteogenic marker genes that are highly correlated with the spread-
ing area of cells were identified, which provided a new perspective for understanding
the molecular basis of morphological changes [20]. In summary, the application of deep
learning in the prediction of osteogenic differentiation not only improves the timeliness
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and accuracy of prediction, but also promotes the updating of related algorithms, which
has a broad application prospect and research value.

4. Analyzing Omics Data to Find Predictive Targets

With the rapid advancement of regenerative medicine, research on the osteogenic
differentiation of mesenchymal stem cells (MSCs) has gained significant attention due
to their central role in bone regeneration and disease treatment. Traditional methods
rely on biochemical markers such as alkaline phosphatase (ALP) activity or calcium nod-
ule staining to assess differentiation status, but these methods typically require several
weeks and only provide results in the later stages of differentiation, making them unsuit-
able for early prediction or dynamic regulation [13]. In recent years, breakthroughs in
high-throughput omics technologies have provided multi-dimensional data sources for
elucidating osteogenic differentiation mechanisms. Machine learning (ML), as a powerful
data analysis tool, integrates information from multiple levels such as genomics, transcrip-
tomics, proteomics, and metabolomics, significantly improving predictive accuracy and
research efficiency. This has made it possible to rapidly identify key genes and molecules
predictive of osteogenic differentiation.

For example, single-cell RNA sequencing (scRNA-seq) combined with deep learn-
ing algorithms can reveal the heterogeneous characteristics of early-stage differentiated
cells, completely transforming the study of mesenchymal stem cell heterogeneity. MSCs
from different donor sources exhibit significant differences at the transcriptional and epi-
genetic levels, and this heterogeneity not only directly affects their osteogenic potential
but also helps reveal their differentiation direction. Machine learning models can screen
for core gene modules through clustering analysis and principal component reduction
(PCA) techniques to construct gene regulatory networks [23]. By comparing the results
of different machine learning algorithms in analyzing MSC transcriptome data, Zhou
found that the KNN algorithm achieved the highest overall accuracy (90.63%) in predict-
ing MSC osteogenic differentiation, providing a straightforward method for forecasting
the differentiation direction of MSCs [24]. For example, Shen et al. used Seurat for data
preprocessing (normalization and dimensionality reduction via PCA and UMAP) and the
Leiden algorithm for clustering to identify MSC subpopulations with different osteogenic
potentials. They then applied a random walk algorithm on the protein—protein interaction
(PPI) network to screen for genes with similar topological structures to bone-specific genes
(e.g., FOXA1) and validated their roles in regulating osteogenesis [25]. Additionally, recent
studies have begun incorporating single-cell latent variable models (scLVM, f-scLVM) into
MSC osteogenic differentiation prediction: Huang et al. utilized scATAC-seq combined
with scRNA-seq to construct a “chromatin potential” latent variable. Using LightGBM,
they predicted 7-day calcium deposition within 24 h, achieving an average correlation coef-
ficient of r = 0.82 and an AUC of 0.91, enabling donor-level potential ranking. AUC =0.91,
enabling donor-level potential ranking [26]. Epigenetic modifications (such as DNA methy-
lation) also play a key role in differentiation regulation. J. Chen analyzed methylation data
from high-fat diet-induced aged mesenchymal stem cells using logistic regression (LR) and
gradient boosting machine (GBM) models, identifying epigenetic silencing of the vitamin
D receptor (VDR) as a key driver of reduced osteogenic potential. This model achieved an
accuracy of 82% in predicting differentiation efficiency, with VDR methylation status emerg-
ing as a powerful biomarker [27,28]. K. Kamimoto utilized network inference models to
identify key signaling nodes in cell identity determination, providing a theoretical basis for
targeted interventions in osteogenic differentiation [29]. ZNF521 is a transcriptional repres-
sor that restrains osteogenic differentiation by silencing RUNX2 and Osterix. Its expression
level can serve as a negative biomarker of osteogenic potential [30]. Incorporating ZNF521
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mRNA, promoter methylation or chromatin accessibility into machine-learning models
will refine early prediction of bone-forming capacity and guide personalized regenerative
strategies. By integrating omics data and machine learning methods, researchers can more
precisely identify key genes and epigenetic markers regulating osteogenic differentiation,
offering new insights for personalized treatment.

In addition to transcriptomics, dynamic analysis of other omics data such as pro-
teomics, metabolomics, and spatial omics provides another dimension for understanding
the mechanisms of osteogenic differentiation. Proteomics serves as a bridge between gene
expression and function, and integrating transcriptomics and proteomics data using ML
models can capture the time-delayed effects between gene expression and protein activity.
By integrating transcriptomic and proteomic data, Kong et al. used a cross-modal Trans-
former model to fuse RNA-seq data from differentiating mesenchymal stem cells with
proteomics data based on tandem mass tagging (TMT). The model identified a 24 h delay
between ALP gene expression and protein activity, highlighting the importance of post-
transcriptional regulation in osteogenesis [21]. Feng identified 205 differentially expressed
proteins enriched in the extracellular matrix (ECM) pathway by analyzing proteomics data
from osteoporosis patients using support vector machines (SVM) and random forest analy-
sis. The ECM receptor interaction pathway was found to be a central regulator of osteogenic
differentiation, providing targets for therapeutic interventions [28]. Metabolomics captures
dynamic changes in energy metabolism (e.g., glycolysis, oxidative phosphorylation) during
osteogenic differentiation. Machine learning (ML) models are used to link metabolite levels
with differentiation efficiency. For example, Klontzas et al. analyzed metabolomics data
from 2D and 3D mesenchymal stem cell cultures using a random forest model, identifying
lactate and ATP as early predictors of osteogenic differentiation. The model achieved an ac-
curacy of 89% in predicting differentiation outcomes, demonstrating a positive correlation
between lactate levels and ALP activity [9]. Spatial omics technologies (e.g., spatial tran-
scriptomics, proteomics imaging) map the spatial distribution of cells in the bone marrow
microenvironment, revealing how microenvironmental factors (e.g., hypoxia, mechanical
stress) regulate differentiation [31]. Pifia et al. utilized the Visium platform combined
with single-cell data to construct the first spatial transcriptomic map of mouse embryonic
palatal fusion. They discovered that osteogenesis-related genes (such as Runx2, Spp1, and
Sost) were significantly upregulated only after fusion and were precisely localized to the
ossification centers. Further validation revealed that Deup1 and Lrrc23 are not only highly
expressed in nasal epithelium but also colocalize within palatal mesenchyme, suggesting
their potential role in regulating osteogenic differentiation [32]. Bandyopadhyay et al. used
spatial transcriptomics and multi-beam ion imaging (MIBI) to map MSC subpopulations
in human bone marrow, finding that osteogenic precursors aggregate near blood vessels.
They applied a graph convolutional network (GCN) to simulate spatial interactions be-
tween MSCs and their microenvironment, predicting that hypoxia (via HIF-1x) enhances
osteogenic differentiation [31]. The dynamic integration and spatial analysis of multi-omics
data provide novel insights into the microscopic mechanisms of osteogenic differentiation
and lay the foundation for developing targeted therapeutic strategies.

Machine learning, with its strong ability to process high-throughput data, is uniquely
suited for omics data processing, and its combination with a variety of omics data has
successfully achieved the function of accurately and rapidly predicting the differentiation
of mesenchymal stem cells. While omics data provide rich molecular insights, challenges
remain in data integration (e.g., dealing with different data types and scales) and model
interpretability (e.g., understanding how ML models identify predictive targets). Future
research should focus on developing multi-omics integration frameworks (e.g., multi-
modal transformers) and interpretable ML model to improve the translational value of
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omics-based predictions. Additionally, standardizing omics data acquisition will enhance
the reproducibility of results.

5. Drug and Biomaterial Selection

In drug and biomaterial selection for osteogenic differentiation of MSCs, machine
learning has demonstrated the potential for revolutionary applications, significantly ac-
celerating traditional experimental processes and improving screening efficiency through
data-driven high-throughput analysis and predictive model optimization. In the field of
drug selection, machine learning is able to rapidly identify candidate compounds with
osteogenic induction potential and analyze their molecular mechanisms by integrating
multi-dimensional data from the transcriptome, proteome and metabolome. For example,
vitamin D analogs (e.g., Calcitriol) significantly increase the expression levels of osteogenic
markers like Alkaline Phosphatase and osteocalcin by binding to the VDR. Through multi-
omics analysis, VDR was found to serve a central regulatory function in the aging process
of MSCs, and its expression level was negatively correlated with the risk of osteoporosis,
which was used as a molecular target to build a machine learning model for the screen-
ing of anti-osteoporosis drugs in Chen’s study [27]. Shengxue Busui Decoction (SBD)
shows efficacy in osteonecrosis clinics, but its mechanism is unknown. Machine learning
combined with experimental validation reveals that SBD inhibits osteoblast apoptosis by
regulating the PI3K/Akt and VEGF pathways, proving the efficacy of SBD [33]. Hitora
utilizes machine learning techniques to screen for osteoclast differentiation inhibitors from
natural products. While primarily targeting osteoclasts, its methods (e.g., data-driven
compound activity prediction) can be directly migrated to osteogenic differentiation drug
screening, and are particularly Y-referenced for high-throughput data processing and candi-
date compound prioritization [34]. Other researchers have used high-throughput screening
techniques to rapidly and cost-effectively identify osteogenic compounds including api-
genin, baicalein, and T63 [35-38], demonstrating that machine learning can significantly
improve drug screening efficiency. In exception to this, reinforcement learning algorithms
are able to accurately predict drug toxicity thresholds and achieve drug dose optimiza-
tion by simulating the dynamic relationship between drug concentration gradients and
cellular response. For example, the DRUG-seq technology developed by Ye combined with
machine learning enabled rapid analysis of single-cell transcriptome data to quantify the
intensity of regulation of osteogenesis-related genes such as RUNX2 and BMP2 by different
doses of strontium ranelate, providing a theoretical basis for the personalized design of
clinical drug regimens [39]. These studies show the great potential of machine learning in
drug screening.

In the field of biomaterial design, machine learning has significantly improved the
efficiency of developing bone repair materials by correlating the physicochemical parame-
ters of the materials (e.g., stiffness, surface morphology, pore structure) with the cellular
behavior data. Nanofiber scaffolds have become an ideal carrier to promote osteogenic
differentiation of MSCs due to their structural properties that mimic the extracellular matrix.
Zhang [22] analyzed the effect of nanofiber diameter and alignment density on osteogenic
differentiation using a random forest model and found that disordered aligned fibers with
diameters in the range of 200-400 nm could maximally promote calcaneal nodule formation,
and the mechanism may be related to cytoskeletal remodeling and mechanical signaling
(e.g., YAP/TAZ pathway). Some researchers have also used machine learning tools (Ten-
sorFlow and ArcGIS) to perform morphometric analyses and demonstrated that 30 nm
hydroxyapatite nanoparticles alone or in combination with laser photobiomodulation sig-
nificantly promote the proliferation and osteogenic differentiation of human umbilical
cord mesenchymal stem cells (hUC-MSCs), with superior results to conventional growth
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factors [40]. Spinodal decomposition is a phase separation phenomenon in a thermody-
namic process, resulting in the formation of bicontinuous structures with uniform feature
sizes and smooth interfaces. Such structures are widely used in biomaterials, such as
orthopedic implants in particular. Traditional methods to generate such structures are
computationally expensive. It has been proposed to replace the traditional physical and
mathematical approximation models with CNNs, combining the advantages of both, which
is both flexible and efficient [41]. Machine learning can also be used to build biomaterial
databases by integrating access to research. There are studies that analyze the design and
performance of osteoinductive biomaterials through machine learning to address the chal-
lenges of insufficient data quality (small samples, high missing rates, and high-dimensional
sparsity) and systematically integrate osteoinductive material databases [42]. The modu-
lation of material stiffness is also crucial in determining cell fate, and a prediction model
constructed by Liu [43] based on support vector (SVM) was able to predict the tendency
of MSCs to differentiate towards osteogenic or adipogenic differentiation with 89% accu-
racy by inputting the elastic modulus of the material (1-100 kPa) and surface roughness
data. In the design of functional drug-carrying scaffolds, to address the mismatch between
slow-release kinetics and cellular response, M. E. Klontzas [9] proposed an optimization
framework combining deep neural network (DNN) and metabolomics data to screen for the
ratio of loaded drugs with the highest efficiency of osteogenic differentiation, by simulating
the release profiles of BMP-2 from polylactic acid scaffolds and correlating the changes in
metabolite dynamics (e.g., lactate dehydrogenase activity). In summary, machine learning
can select biomaterials in a variety of ways and has broad applications in stem cell therapy.

6. Conclusions

Performance metrics for evaluating predictive algorithms include AUC (area under
the ROC curve), which measures binary classification performance across thresholds,
reflects overall correct classification accuracy, quantifies precision (the proportion of true
positives among predicted positives) to assess the reliability of positive predictions, and
quantifies key recall (the proportion of actual positives correctly detected) to capture
the model’s ability to identify true positives. In the context of osteogenic differentiation
studies, successful differentiation events are often rare. Relying solely on accuracy or
AUC can lead to significant misinterpretation due to class imbalance. For example, a
model achieving 90% accuracy by simply labeling all samples as negative may completely
fail to detect osteoblasts. This necessitates analyzing the trade-off between precision and
recall: high precision ensures the selected MSC subset is reliably distinguished (minimizing
false positives) but may miss true positives (low recall), while high recall maximizes
osteoblast detection (minimizing false negatives) at the cost of reduced precision. Therefore,
complementary metrics like F1 scores and precision-recall curves are essential for robust
evaluation in imbalanced scenarios. The major ML models discussed in this paper (such
as CNNs, LASSO, and random forests) each have their own advantages and limitations
in predicting MSC osteogenic differentiation, and these models are compared in detail
below (Table 1).

Research findings indicate that machine learning significantly enhances the timeliness,
accuracy, and scalability of predictions. Convolutional neural networks (CNNs) and
transfer learning prove particularly effective for morphological data, while multimodal
models demonstrate exceptional efficacy for omics integration.
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Table 1. Comparison of Machine Learning Models for Predicting MSC Osteogenic Differentiation.

Avplication Performance
Model Principle Advantages Limitations ppiica Metrics
Scenarios
(References)
Alleviates
gradient High accuracy High
vanishing in . .
(AUC > 0.96); computational Morphological
deep networks bl | ] ) . Tvsi AUC > 0.96 (Mai
via residual enables early cost; requires image analysis UC > 0.96 (Mai
prediction large training (e.g., live-cell etal.);
ResNet-50 blocks and o ¢ . o
) (within 24 h); datasets; imaging, Accuracy > 96%
automatically . o . .
. suitable for sensitive to bright-field [8]
extracts spatial hi . . . .
igh-resolution imaging images).
features (e.g., cell imaces arameters
edges, textures) ges: P '
from images.
Use§ Ll. Cannot handle
regularization hi
igh-
for feature Reduces . . .
. . dimensional Morphological
selection to overfitting; ]
. . image data; parameter
retain key suitable for small . . a0
g . relies on manual analysis (e.g., Accuracy: 82%
LASSO morphological sample sizes; f .
. . eature quantitative cell [15]
features (e.g., cell non-invasive .
. extraction; lower morphology
area, shape (avoids cell .
. . accuracy than indices).
factor) associated destruction). .
. . deep learning
with osteogenic models
differentiation. '
Optimizes image
acquisition and Enables early
analysis prediction (3.—day Requires .
methods, morphological o . Osteogenic
o . validation with o Accurately
combining features predict . . prediction .
3 . biochemical o predicts 3-week
. . biochemical 3-week results); combining .
Ridge Regression . markers; osteogenic
markers (e.g., improves morphology and . -
o o depends on ; : differentiation
ALP activity, reliability by . . biochemical
. . g consistent image results [19]
calcium integrating acquisition markers.
deposition) to biochemical q '
build prediction markers.
models.
Enhances cell
image data
through Solves
adversarial e .
. overfitting in Requires Small-sample
. training of a . . .
Generative small-sample high-quality morphological o
. generator and . ) - Accuracy > 85%
Adversarial discriminator cases; improves generated data; analysis (e.g., [22]
Network (GAN) . . model complex training limited cell
improving L .
model generalization process. image data).
ability.

performance in
small-sample
scenarios.
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Table 1. Cont.

Avplication Performance
Model Principle Advantages Limitations pprcat Metrics
Scenarios
(References)
Uncovers MSC
heterggenmty; Requires . . Identifies
random walk on identifies core Transcriptomic .
. scRNA-seq data; . osteogenic
PPI networks to osteogenic data processing
Random Walk depends on PPI regulatory genes
screen core regulatory genes; (e.g., scRNA-seq
network . (e.g., FOXAI)
genes. constructs gene analysis).
accuracy. [24]
regulatory
networks.
Fuses RNA-seq
(transcriptomics)
and TM.T Revea?s post- . Determines 24 h
(proteomics) transcriptional Requires . .
. . . Transcriptomics-  delay between
data, capturing regulatory multi-omics data; .
Cross-modal X . . proteomics ALP gene
time delays mechanisms; high . . ;
Transformer . . integration expression and
between gene integrates computational . . ..
. . . . analysis. protein activity
expression and multi-omics complexity. [21]
protein activity data.
via self-attention
mechanisms.
SVM for I.d entlflgs Proteomic/ Identifies 205
) differential . . . .
processing roteins in ECM Requires pro- metabolomic differential
Support Vector proteomic data p athwavs: teomic/metabolomic analysis (e.g., proteins in ECM
Machine (SVM) to identify parways, data; poor model data from MSCs  pathways (Feng
. . predicts early . 1 : ) g
differential . interpretability. of osteoporosis et al.); accuracy:
roteins metabolic atients) 89% [9]
p markers. p ' ’
Integrates
multiple decision
trees to analyze Resists Metabolomic
metabolomic overfitting; Poor model data screening
data (e.g., lactate, suitable for interpretability; (e.g., 000
Random Forest ~ ATP levels) and multi-feature long metabolomic Accurz[agc]y 9%
correlate data; identifies computation analysis of MSCs
metabolites with ~ early metabolic time. in 2D/3D
osteogenic markers. cultures).
differentiation
efficiency.

7. Perspective

Although machine learning provides efficient and precise tools for predicting os-
teogenic differentiation, several challenges limit the translational value of current research.
First, data standardization remains a major issue: inconsistent cell processing (e.g., isolation
protocols, culture conditions) and imaging parameters (e.g., microscope settings, resolu-
tion) introduce bias into ML models, reducing their generalizability across experimental
platforms. Second, the lack of model interpretability: most ML models operate as “black
boxes,” making it difficult to understand how predictions are derived. This hinders their
acceptance in clinical settings. Third, the absence of clinical validation: few studies test
ML models on patient-derived MSCs or in vivo models, creating a gap between laboratory
research and clinical application.
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Future research should focus on addressing these challenges. Standardization efforts,
such as establishing consensus protocols for cell processing and imaging, will enhance
data quality and model generalizability. Researchers should prioritize interpretable ML
models (e.g., SHAP, LIME, or graph neural networks with attention mechanisms) to reveal
the biological mechanisms underlying predictions. Clinical translation requires testing
models in patient populations, integrating clinical data (e.g., donor age, health status)
with molecular and morphological data, and developing user-friendly tools for clinicians.
Concurrently, machine learning necessitates improvements in data acquisition and quality,
ensuring consistency in cell processing and imaging while minimizing human variability.
Additionally, enhancing model transferability is crucial to maintain predictive performance
across different experimental conditions or cell lines. In omics research, transcriptomic
analysis remains predominant. Integrating additional omics data types (e.g., proteomics
and methylation) could provide a more comprehensive assessment of cellular differenti-
ation states. Moreover, predicting the osteogenic differentiation potential of MSCs from
different sources represents another promising avenue for expansion. Future models could
aim to elucidate such source-dependent variations in osteogenic differentiation (e.g., MSCs
derived from Kilian polyps exhibit lower differentiation potential toward osteocytes and
adipocytes compared to those from common nasal polyps [44]). Subsequent machine
learning approaches should incorporate more granular analysis, specifically accounting for
the origin of MSCs.

In summary, ML holds the potential to revolutionize the prediction of MSC osteogenic
differentiation. However, realizing this potential requires continued efforts in standardiza-
tion, interpretability, and clinical validation. By addressing these gaps, ML can become a
powerful tool for optimizing stem cell therapies and advancing bone tissue engineering.
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