m bioengineering

Article

Classification of Hemiplegic Gait and Mimicked Hemiplegic
Gait: A Treadmill Gait Analysis Study in Stroke Patients and
Healthy Individuals

Young-ung Lee 10, Seungwon Kwon 2, Cheol-Hyun Kim 3, Jeong-Woo Seo *>*

check for
updates
Academic Editors: Fabiano Bini,

Christina Zong-Hao Ma and Hong Fu

Received: 15 July 2025
Revised: 17 September 2025
Accepted: 1 October 2025
Published: 2 October 2025

Citation: Lee, Y.-u.; Kwon, S.; Kim,
C.-H.; Seo, J.-W.; Lee, S. Classification
of Hemiplegic Gait and Mimicked
Hemiplegic Gait: A Treadmill Gait
Analysis Study in Stroke Patients and
Healthy Individuals. Bioengineering
2025, 12, 1074. https:/ /doi.org/
10.3390/bioengineering12101074

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

and Sangkwan Lee 1:3*

Stroke Korean Medicine Research Center, Wonkwang University Gwangju Medical Center,

Gwangju 61729, Republic of Korea; www8744@naver.com (Y.-u.L.); lambroskch@gmail.com (C.-H.K.)
Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine,

Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; kkokkottung@hanmail.net
Department of Internal Medicine and Neuroscience, College of Korean Medicine, Wonkwang University,
Iksan 54538, Republic of Korea

Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34504, Republic of Korea
Korean Convergence Medical Science, University of Science and Technology,

Daejeon 34113, Republic of Korea

*  Correspondence: jwseo02@kiom.re kr (J.-W.S.); sklee@wku.ac.kr (S.L.); Tel.: +82-42-868-9275 (J.-W.S.);
+82-62-670-6700 (S.L.)

Abstract

Differentiating genuine hemiplegic gait (HG) in stroke survivors from hemiplegic-like gait
voluntarily imitated by healthy adults (MHG) is essential for reliable assessment and inter-
vention planning. Treadmill-based gait data were obtained from 79 participants—39 stroke
patients (HG) and 40 healthy adults—instructed to mimic HG (MHG). Forty-eight spatiotempo-
ral and force-related variables were extracted. Random Forest, support vector machine (SVM),
and logistic regression classifiers were trained with (i) the full feature set and (ii) the 10 most
important features selected via Random Forest Gini importance. Performance was assessed
with 5-fold stratified cross-validation and an 80/20 hold-out test, using accuracy, F1-score, and
the area under the receiver operating characteristic curve (AUC). All models achieved high
discrimination (AUC > 0.93). The SVM attained perfect discrimination (AUC = 1.000, test
set) with the full feature set and maintained excellent accuracy (AUC = 0.983) with only the
top 10 features. Temporal asymmetries, delayed vertical ground reaction force peaks, and
mediolateral spatial instability ranked highest in importance. Reduced-feature models showed
negligible performance loss, highlighting their parsimony and interpretability. Supervised
machine learning algorithms can accurately distinguish true hemiplegic gait from mimicked
patterns using a compact subset of gait features. The findings support data-driven, time-efficient
gait assessments for clinical neurorehabilitation and for validating experimental protocols that
rely on gait imitation.

Keywords: stroke; hemiplegic gait; mimicked hemiplegic gait; machine learning; gait clas-
sification

1. Introduction

Stroke refers to neurological symptoms caused by damage to brain tissue due to either
the blockage of blood vessels (ischemic stroke) or their rupture (hemorrhagic stroke) [1].
It is one of the leading causes of long-term disability, with more than 80% of survivors
experiencing gait disturbances [2]. Even with continuous rehabilitation, approximately
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18% of stroke patients are unable to walk, 11% require assistance, and only about half
can regain independent walking ability [2]. The most common gait abnormality among
stroke survivors is hemiplegic gait, which results from muscular weakness, impaired motor
control, proprioceptive deficits, and increased muscle tone on the affected side [3]. This
typically manifests as a flexor synergy in the upper limb and an extensor synergy in the
lower limb, leading to joint patterns such as hip extension and internal rotation, knee exten-
sion, and ankle plantarflexion and inversion [1]. To achieve foot clearance during swing,
patients often compensate through hip hiking or circumduction [4]. These compensatory
strategies alter gait mechanics, causing increased energy expenditure and fatigue, and
consequently elevate the risk of falls [5]. Therefore, the recovery of gait ability is a critical
objective in stroke rehabilitation to promote independent daily functioning [6]. Recent
studies have focused on quantifying gait impairments and identifying key variables for
recovery using advanced analytical methods, including gait analysis systems, wearable
sensors, and instrumented treadmills [7]. Given the distinguishable gait characteristics
of stroke survivors, researchers have applied machine learning (ML) and deep learning
techniques to develop automated algorithms capable of identifying gait deviations, predict-
ing recovery outcomes, and classifying stroke severity [8]. These data-driven approaches
have demonstrated promising performance; however, existing models primarily focus
on distinguishing normal and pathological gait patterns under natural conditions. In
real-world clinical and administrative settings, there are cases where patients may exag-
gerate or mimic hemiplegic gait, either consciously or due to external incentives such as
insurance claims or return-to-work assessments. A previous study documented abnormal
behaviors during rehabilitation by a stroke patient involved in a traffic accident [9], raising
concerns about potential malingering or fraud. Other reports suggest that caregivers may
also influence evaluations, as in Munchausen Syndrome by Proxy [10]. It is particularly
challenging to detect mimicked hemiplegic gait visually because it is relatively easy to
reproduce spatiotemporal patterns such as foot drop or pelvic tilting. Kinematic imitation
involving joint angles can often be controlled voluntarily, making it difficult for clinicians
to reliably differentiate between neurologically impaired and cognitively generated gait
patterns. Despite growing interest in the objective quantification of gait impairments, there
remains a lack of research specifically addressing the differentiation between genuine hemi-
plegic gait and its mimicked counterpart. Prior machine learning studies have not explored
whether such models can detect intention-based imitation, a scenario with meaningful
implications in clinical diagnostics, functional evaluations, and medico-legal contexts.
Moreover, the interpretability, efficiency, and reproducibility of gait classification models
remain underexplored, especially in settings where visual assessment may be subjective
or inconsistent. The objective of this study was to determine whether machine learning
techniques could accurately classify mimicked hemiplegic gait performed by healthy in-
dividuals and actual hemiplegic gait exhibited by stroke patients. Using treadmill-based
spatiotemporal and force-related gait parameters, we developed and evaluated three super-
vised classifiers—Random Forest, Support Vector Machine (SVM), and Logistic Regression.
We also investigated whether reduced-feature models using the top 10 most important
gait parameters could maintain classification performance. Ultimately, this study aims to
enhance the objectivity and reliability of clinical gait assessment, particularly in ambiguous
or bias-prone scenarios, and to support functional evaluations for rehabilitation planning,
insurance verification, and return-to-work decisions.
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2. Materials and Methods
2.1. Data Sources and Participant Selection

This study retrospectively analyzed individuals who underwent gait analysis through
a treadmill gait analysis system at Wonkwang University Korean Medicine Hospital in
Gwangju (WKUGH). As this research only used simple measurement or observation
equipment that does not lead to physical changes, it received review approval from the
institutional review board of the hospital (WKIRB 2022-07, 29 June 2022). We selected
data from subjects who visited WKUGH between November 1 2018 and June 30 2022, and
who met the inclusion criteria for both the hemiplegic gait (HG) group and the mimicked
hemiplegic gait (MHG) group and did not fall under the exclusion criteria (Table 1).

Table 1. Inclusion and exclusion criteria for the HG and MHG group.

Inclusion Criteria Exclusion Criteria

- Individuals with clinical symptoms that could affect
their walking ability (such as musculoskeletal
diseases, acute sprain, etc.)

HG erou - Individuals diagnosed with stroke via CT or MRI and who have hemiparesis
§roup - Individuals capable of independent walking for more than 30 s on a
treadmill (with Manual Muscle Testing (MMT) grades 3-5 for lower limbs,
and Functional Ambulation Categories (FAC) 9 level 3-5).
MHG group - Individuals who have not been diagnosed with stroke

- Individuals who can mimic hemiplegic gait following the instructions of the

medical staff

A total of 79 subjects were retrospectively analyzed in this study, consisting of 39 in
the hemiplegic gait group (19 with left hemiparesis, 20 with right hemiparesis) and 40 in
the mimicked hemiplegic gait group (20 mimicking left, 20 mimicking right hemiparesis)
(Table 2).

Table 2. Demographic characteristics of subjects.

Characteristics HG Group MHG Group

Subjects (number) 39 40

o Male 20 (51.2%) 28 (70%)
Sex (number (%)) Female 19 (48.8%) 12 (30%)
Age (Mean (SD)) 62.8 (6.44) 26.98 (2.27)
Affected side Left 19 (47.5%) 20 (50%)
(number (%)) Right 21 (52.5%) 20 (50%)
MMT Upper limb 4(1) 5(0)
(median (IQR)) Lower limb 4(0) 5 (0)

HG, hemiplegic gait; MHG, mimicked hemiplegic gait; SD, standard deviation; IQR, interquartile range (at least
50% of the observations share the same value); MMT, manual muscle test.

2.2. Experiment and Equipment

We conducted a gait analysis using a treadmill equipped with a pressure plate (Figure 1).
When the subject starts walking on the treadmill, the pressure exerted on the pressure plate
is measured, and spatiotemporal features of gait are collected. The pressure applied to the
treadmill (AP2010-2Si, Apsun Inc., Seoul, Republic of Korea) is transmitted to the Zebris FDM
software (version 1.18.44, Zebris Medical GmbH, Isny/Allgdu, Germany) on the computer [11].

For the HG group, the subjects were asked to walk on the treadmill at their preferred
speed for 30 s. For the MHG group, we conducted training on the flexor synergy pattern of
the upper limbs and the extensor synergy pattern of the lower limbs, which are characteristic
of post-stroke hemiparesis. They were instructed to mimic the characteristics of hemiplegic
gait, including hip extension and internal rotation, knee extension, and plantar flexion and
inversion of the ankle, while performing hip hike and circumduction during swing phase.
Gait analysis was conducted when it was judged that they could sufficiently reproduce
the hemiplegic gait after watching videos of actual hemiplegic gait of stroke patients and
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demonstrations by doctors of Korean Medicine. For the MHG group, the walking speed
was limited to 0.7 km/h, which is the average walking speed of the HG group, as they
tended to perform normal walking when the walking speed was set high.
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Figure 1. Gait analysis system using treadmill.

2.3. Gait Feature

The spatiotemporal features such as foot rotation degree, step length, stride length,
velocity, cadence, and others, as well as the movement of the center of pressure (CoP)
during gait, the ratio of the gait cycle of each lower limb, and the vertical ground reaction
force (VGRF) generated during gait are calculated and obtained (Figure 2). These methods
have been described previously [12].

(@) (b)

Figure 2. (a) Length of gait line (green), (b) single-limb support line (blue), and (c) lateral symmetry
(red). The lines of single-limb support and lateral symmetry are derived from the butterfly-shaped
diagram that illustrates the trajectory of the COP during walking.

The gait cycle is split into the stance and swing phases, which are determined by the
toe off. The initial contact of the opposite side (left side in this case) happens when the
right side reaches 50% of the cycle. There are two double limb support phases where both
feet touch the ground: once at the start of the cycle (0-10%) and again midway (50-60%)
(Table 3). Details of the gait cycle phases have been described previously [13].
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Table 3. Gait features obtained by treadmill.
Feature (Unit) Description
FOF;;;::SOH positive: external rotation/negative: internal rotation
fSpatlal Step length (cm) from heel contact of one foot to the other foot
eature Stride length (cm) initial contact of the same foot
Step width (cm) width between the feet
Step time (sec) step time is the time taken between the heel contact of one foot and the heel contact of the other foot
Temporal Stride time (sec) stride time is the elapsed time between the first contact of two consecutive footprints of the same foot
feature Cadence (steps/min) steps per minute
Velocity (km/h) walking speed during gait analysis
Length of gait line CoP movement on one foot during the entire stance phase
CoP (mm)
feature Single-limb support line (mm) CoP movement during the single-leg support
Latera(lnsl}rznn;metry horizontal distance from the center point of the horizontal line
Stance phase (%) from heel strike to toe off
Load response (%) begins with initial contact, the instant the foot contacts the ground
G;;f:;f:t Smgle-hg}b) support the swing phase where only one limb in in contact with the ground
Pre-swing (%) final phase of stance, starting with initial contact of the opposite limb
Swing phase (%) period during which the foot is in the air
Double s(t;r;ce phase both feet are simultaneously in contact with the ground
fzs:t(;fe Time max;g\;l m force 1 first maximum vertical force, which occurs at the end of loading response

2.4. Statistical Analysis

All statistical analyses were performed using Python (version 3.10) and open source
scientific libraries. Data preprocessing and management were conducted using Pandas,
and group comparisons between the hemiplegic gait (HG) and mimicked hemiplegic gait
(MHG) groups were performed using independent t-tests. The ¢-tests were implemented
via the SciPy package [14].

To facilitate interpretation, since the direction of hemiparesis varies among the subjects,
features that can be obtained from one side of the body (foot rotation, step length, stance
phase, load response, single-limb support, pre-swing, swing phase, step time, length of gait
line, single-limb support line, time maximum force 1) were uniformly converted to (+) for
the unaffected side and (—) for the affected side, based on the study by Lee et al. [15].

For lateral symmetry, the unaffected direction was converted to (+) and the affected
direction to (—). Additionally, to interpret time maximum force 1, the time maximum force
ratio was calculated by dividing the unaffected side feature by the affected side feature,
referencing Patterson’s study method [16].

To assess between-group differences in gait features while controlling for the effect of
age, an Analysis of Covariance (ANCOVA) was conducted for each dependent feature. The
primary fixed factor was group type (hemiplegic gait [HG] vs. mimicked hemiplegic gait
[MHG]), and age was treated as a covariate. The model also included the interaction term
between age and group to test whether the relationship between age and the dependent
feature differed across groups.

To examine group differences in gait features between the HG and MHG groups, appro-
priate statistical tests were selected based on normality assessments using the Shapiro-Wilk
test. For features in which both groups satisfied the assumption of normality (p > 0.05),
independent samples t-tests were employed. For non-normally distributed features, the
non-parametric Mann-Whitney U test was applied.

2.5. Machine Learning Model

Since there is no established formula for calculating the required sample size in
machine learning, we referred to the empirical rule-of-thumb for multiple regression
proposed, which recommends a minimum sample size of N > 50 + 8 m, where m is the
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number of predictors [17]. For a maximum of 10 predictors, this criterion suggests that at
least 130 participants are needed. However, our study included only 79 participants, falling
short of this recommendation.

A post hoc sensitivity analysis was conducted as follows: for the full model test with
m = 10 predictors and N = 79 participants, the numerator and denominator degrees of
freedom were set to dfj =m=10and dfy =N —m — 1 =79 — 10 — 1 = 68, respectively.
At a significance level of o = 0.05, the critical F-value was F,;;(10,68) ~ 1.973. The non-
centrality parameter A required to achieve 80% power was obtained from the noncentral F-
distribution as A*~218.4875. Based on this, the minimum detectable effect size was calculated
as f2=% ~ 027, R?> = i ffZ ~ 0.21. This result indicates that while the study had adequate
power to detect medium-to-large effects, it may have failed to detect smaller true effects.

According to Cohen’s conventional thresholds for multiple regression (f? = 0.02 for small,
f2 = 0.15 for medium, and 2 = 0.35 for large effects), the calculated f? value of 0.2 corresponds
to a medium-sized effect. This suggests that although the independent variables included
in the model influence the dependent variable, the magnitude of this influence may not be
substantial. Nevertheless, even very small effects can have considerable practical or clinical
importance if they affect a large population.

A total of 79 observations were included in the data-set, consisting of two groups
labeled as hemiplegic gait (HG) and mimicked hemiplegic gait (MHG) groups. Each
observation included 26 spatiotemporal and force-related gait features, excluding age-
sensitive features based on prior ANCOVA results.

To reduce model complexity and improve generalization due to the limited data-set
size, feature selection was performed using the Gini impurity-based feature importance
scores computed from a Random Forest classifier [18]. Specifically, a Random Forest model
was trained on the entire standardized dataset using all available input features, and
the importance of each feature was quantified by averaging the total reduction in Gini
impurity that the feature contributed across all decision trees in the ensemble. Features
that contributed more to reducing impurity were assigned higher importance scores. The
features were then ranked in descending order based on their computed importance values,
and the top 10 features were selected. These top-ranked features were consistently used
in all subsequent modeling, hyperparameter tuning, and evaluation procedures to ensure
comparability and to reduce the risk of overfitting [19].

To classify HG versus MHG by gait features, supervised machine learning models were
developed using the top 10 features identified through feature selection. Three classification
algorithms were employed: a Random Forest classifier, a Support Vector Machine (SVM)
with a radial basis function (RBF) kernel [20], and a logistic regression model.

Random Forest is an ensemble method that constructs multiple decision trees and
aggregates their outputs to improve prediction robustness. SVM identifies the optimal
hyperplane to separate different classes, while Logistic Regression models the probability
of class membership using a linear function. These models were chosen for their comple-
mentary strengths and their established use in biomedical data analysis

All models were implemented using scikit-learn (v1.3.0) with default hyperparameters
initially, followed by hyperparameter tuning via grid search [21]. The Random Forest model
leveraged ensemble decision trees to enhance robustness and interpretability, while the
SVM model offered nonlinear boundary discrimination. Logistic regression was included
for its simplicity and high interpretability in clinical contexts. All models were trained and
evaluated on the same standardized feature set to ensure comparability across methods.

To mitigate the risk of overfitting due to the limited sample size, models were primarily
evaluated using 5-fold stratified cross-validation, ensuring balanced representation of both
gait groups within each fold [22]. In addition to cross-validation, an 80:20 holdout split
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was performed to further validate model performance on unseen data. Specifically, 80%
of the data-set was randomly selected and used as a training-set for model fitting and
hyperparameter tuning, while the remaining 20% was reserved as an independent test
set for performance evaluation [23]. Model performance was assessed using accuracy,
F1-score, and area under the Receiver Operating Characteristic—Area Under the Curve
(ROC AUC), which reflect overall classification accuracy, robustness to class imbalance,
and discriminative ability, respectively.

3. Results
3.1. Result of Age Effect

To examine the effect of age on gait features and to control for potential confounding,
an analysis of covariance (ANCOVA) was performed with age as a covariate. The results
indicated that age had a statistically significant effect on multiple features, including single-
limb support line (+) (p = 0.003), foot rotation (+) (p = 0.007), velocity (p = 0.037), and
step length (+) (p = 0.049) (Figure 3). No significant age-related effects were found in the
remaining features. Additionally, no significant age x group interaction was found in any
feature, suggesting that the effect of age was consistent across both groups.

Single limb support line +, mm vs Age by Group Foot rotation +, degree vs Age by Group

x patient x  patient
X mimic X mimic
—— patient 20 [ —— patient
—— mimic —— mimic

15

[+
o

=}
=}
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I
w (9]
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Figure 3. Distributional characteristics of features significantly influenced by age.

3.2. Result of Gait Feature

To examine group differences, independent samples t-tests were conducted for each
variable, and Cohen’s d was calculated as a measure of effect size. Furthermore, to assess the
relative importance of the variables, a Random Forest classification model was employed, and
the Gini importance for each variable was computed as the average decrease in Gini impurity
contributed by that variable across the ensemble. The results revealed that several features
showed statistically significant differences between the HG and MHG groups. Specifically,
swing phase (—) (p < 0.001, Cohen’s d = —2.103), stance phase (—) (p < 0.001, d = 2.103), and
time maximum forcel (—) (p < 0.001, d = 1.556) showed large to very large effect sizes, indicating
substantial biomechanical differences. Additionally, Time maximum force ratio (p < 0.001,
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d = —1.196) and step time (—) (p < 0.001, d = —0.615) also demonstrated meaningful group
differences (Table 4).

Table 4. Comparison of features.

Features (Test Type) HG Group MHG Group p-Value Cohen’s d Gini
#Foot rotation (+) (b) 10.74 = 4.97 3.43 +4.82 0.000 ** —1.492 0.051
Foot rotation (—) (b) 13.63 £ 8.14 3.96 +10.05 0.000 ** —1.056 0.037
#Step length (+) (b) 17.48 + 8.73 23.19 £ 7.02 0.002 * 0.723 0.019

Step length (—) (b) 19.64 + 8.48 20.32 +7.58 0.709 —0.084 0.004
Stride length (a) 37.12 £ 15.64 43.51 + 6.34 0.022 * —0.538 0.011

Step width (a) 15.27 £ 3.51 16.37 & 4.49 0.230 —-0.272 0.012

Stance phase (+) (a) 7410 + 5.54 78.32 £ 5.15 0.001 ** —0.791 0.018
Stance phase (—) (b) 72.74 £5.37 59.00 4+ 7.50 0.000 ** 2.103 0.138
Load Response (+) (b) 23.59 £ 5.11 19.48 £ 6.31 0.002 * 0.715 0.018
Load Response (—) (a) 23.72 £ 4.71 17.80 £ 4.71 0.000 ** 1.256 0.038
Single-limb support (+) (b) 26.98 £ 5.61 41.06 £7.56 0.000 ** —-2.110 0.144
Single-limb support (—) (b) 25.26 + 6.31 21.67 £5.13 0.007 * 0.625 0.011
Pre-Swing (+) (a) 23.55 +4.93 17.79 +4.71 0.000 ** 1.195 0.027
Pre-Swing (—) (b) 23.61 +5.29 19.50 £+ 6.32 0.002 * 0.704 0.019
Swing phase (+) (a) 25.90 £ 5.54 21.68 £ 5.15 0.001 ** 0.791 0.014
Swing phase (—) (b) 27.26 £ 5.37 41.00 £ 7.50 0.000 ** —2.103 0.155
Double stance phase (a) 47.10 £ 8.36 37.23 £8.09 0.000 ** 1.200 0.037
Step time (+) (b) 0.98 + 0.58 0.87 +0.22 0.274 0.252 0.008

Step time (—) (b) 1.02 £ 0.67 1.33 £0.22 0.010 * —0.615 0.061
Stride time (b) 2.00 +1.24 220+ 0.31 0.346 -0.217 0.016
Cadence (a) 72.66 £ 25.57 55.78 £ 8.37 0.000 ** 0.892 0.017
#Velocity (a) 0.75 4+ 0.32 0.71 4+ 0.01 0.501 —0.155 0.025

Length of gait line (+) (a) 124.13 + 22.62 134.88 + 24.10 0.044 * —0.460 0.007
Length of gait line (—) (a) 115.44 + 27.07 101.73 + 17.74 0.010 * 0.601 0.007
#Single-limb support line (+) (b) 36.55 + 20.92 42.19 + 14.65 0.171 0.313 0.005
Single-limb support line (—) (b) 22.26 £15.07 24.47 £ 832 0.424 —0.182 0.011
Lateral symmetry (a) —14.51 4 24.26 —21.60 4+ 18.50 0.149 0.329 0.002
Time maximum force 1 (+) (b) 26.74 + 5.44 28.50 £ 8.25 0.267 —0.251 0.013
Time maximum force 1 (—) (a) 28.67 +5.25 20.52 +£5.22 0.000 ** 1.556 0.042
Time maximum force ratio (b) 0.95 £+ 0.19 1.46 + 0.57 0.000 ** —1.196 0.035

Data are presented as mean =+ standard deviation (SD). HG, hemiplegic gait; MHG, mimicked hemiplegic gait.
(a): independent t-test; (b): Mann-Whitney U test. * p-value < 0.05; ** p value < 0.001; #: features excluded due to
age. For HG and MHG groups, the values of the unaffected side and affected side were entered as (+) and (—),
respectively. In case of the reference value, values corresponding to the right and left sides were entered in (+)
and (—), respectively.

3.3. Result of Feature Importance Analysis

After excluding four features influenced by age (e.g., velocity, single-limb support line
(+), foot rotation (+), step length (+)), the top 10 features with the highest importance scores
were selected, and their relative contributions are visualized in Figure 4.

Feature Importance Scores (Random Forest)
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Swing phase -, %
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Time maximum forcel -, %

Double stance phase, %
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Foot rotation -, degree

Pre-Swing +, %

Stride time, sec
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Time maximum forcel +, %
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Length of gait line -, mm Other features
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Figure 4. Feature importance scores by GINI Impurity of RF.
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The most influential feature was stance phase (—) (Gini importance = 0.224), followed
by single-limb support (+) (0.147), swing phase (—) (0.132), and step time (—) (0.064).
Additional key features included time maximum forcel (—) (0.044), double stance phase
(0.039), time_max_ratio (0.034), stance phase (+) (0.026), load response (+) (0.025), foot

rotation (—), degree (0.025).

These top 10 features were subsequently used for feature-reduced model training,

resulting in comparable or improved classification performance compared to models

trained on the full feature set.

3.4. Result of Machine Learning Model

To evaluate classification performance, each model was trained and validated using

both the full feature set (26 features) and a reduced feature set comprising the top 10 most

important features selected via Random Forest. Table 5 summarizes the results of 5-fold

stratified cross-validation across all models.

Table 5. The test results of classification models using top 10 features.

Feature Set Accuracy F-1-Score ROCAUC
Random F All features 0.875 0.889 0.961
andom Forest Top 10 features 0.923 0.924 0.949
All features 0.938 0.941 1.000
SVM (RBF Kernel) Top 10 features 0911 0913 0.961
Logistic Regression All features 0.911 0.901 0.932
& & Top 10 features 0911 0.907 0.941

When using the full feature set, the Support Vector Machine (SVM) with a radial basis
function kernel demonstrated the highest classification performance, achieving an accuracy of
93.8%, F1-score of 0.941, and a perfect ROC AUC of 1.000. Logistic Regression also performed
robustly on the full dataset, with an accuracy of 91.1% and ROC AUC of 0.932, while Random
Forest yielded slightly lower accuracy (87.5%) but a comparably high AUC (0.961).

Upon restricting the input to the top 10 features, classification performance improved

or remained stable across all models. Random Forest showed improved accuracy (92.3%)
and F1-score (0.924), with a slight decrease in AUC to 0.949. The reduced-feature SVM
achieved an accuracy of 91.1%, Fl-score of 0.913, and maintained a high AUC of 0.961.
Logistic Regression, using the same reduced features, also performed consistently well,
with an accuracy of 91.1%, Fl-score of 0.907, and AUC of 0.941 (Figure 5).
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Figure 5. ROC curve comparison of three classifiers using top 10 and all features.
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These results indicate that reducing the feature space to the most informative features
not only maintained but, in some cases, enhanced model performance. Furthermore, while
SVM demonstrated the highest discriminative capacity, both Random Forest and Logistic
Regression achieved comparable results with the added benefit of interpretability and ease

of integration in clinical settings.

3.5. Result of Machine Learning Model Using Non-Significant Variables

To examine whether the classification performance was solely driven by variables
with significant group differences, we performed an additional analysis using only vari-
ables with p > 0.05 between the hemiplegic and mimicked hemiplegic gait groups. The
variables included in this analysis were step length —, step width, step time +, stride time,
velocity, single-limb support line +, single-limb support line —, lateral symmetry, and time
maximum forcel +. Three classifiers—Random Forest, Support Vector Machine (SVM), and
Logistic Regression classifiers—were trained on the training set (80%) and evaluated on the
independent test set (20%) using Accuracy, F1-score, and ROC AUC metrics. The results
are presented in Table 6 and Figure 6.

Table 6. The test results of classification models using non-significant features.

Accuracy F-1-Score ROCAUC
Random Forest 0.875 0.875 0.969
SVM (RBF Kernel) 0.875 0.889 0.953
Logistic Regression 0.625 0.667 0.578

ROC Curves on Independent Test-set
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Figure 6. ROC curve comparison of three classifiers using non-significant (independent) features.

4. Discussion

This study aimed to identify key gait features and develop machine learning models
to distinguish true hemiplegic gait (HG) from mimicked hemiplegic gait (MHG) using
quantitative gait analysis data.

Gait features that can be collected through gait analysis include not only spatiotem-
poral features but also a wide variety of features related to the force, or movement of the
center of pressure, making analysis difficult. In this study, machine learning was used
to compare gait features obtained from numerous subjects in two groups to identify and
classify the relationships between them. In this study, the collected gait analysis data were
analyzed through machine learning, and the following results were obtained.
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Firstly, In this study, ANCOVA revealed that four gait features—velocity, single-limb
support line (+), foot rotation (+), and step length (+)—were significantly influenced by
age. As a result, these features were excluded from intergroup statistical comparisons
and machine learning modeling. Although each of these features represents clinically and
biomechanically meaningful aspects of gait—including overall function, stability, joint
control, and step efficiency—their strong association with age-related changes makes them
less suitable for isolating pathological gait characteristics.

For example, velocity, a widely used marker of mobility and gait efficiency, is known
to decrease with age due to reduced strength, balance, and neuromuscular coordination.
Thus, differences in velocity may be attributed more to natural aging than to hemiparetic
impairment [24,25]. Likewise, single-limb support line (+), derived from the trajectory of
the center of pressure (COP), reflects the stability and duration of stance [26,27]. This feature
is inherently sensitive to age-related decline in postural control, potentially confounding its
interpretation as a group-specific gait deviation [28].

Foot rotation (+) indicates the degree of forefoot external rotation during gait. While
such rotation is often seen in stroke-related compensatory movements, similar patterns
can also emerge due to joint stiffness and muscular adaptations associated with aging,
especially at the hip and ankle joints [29]. Step length (+), closely tied to stride mechanics,
also decreases with age, as older adults typically exhibit reduced propulsion and joint
range of motion. In this study, the absence of a significant difference in step length after
adjusting for age supports this interpretation [30].

Importantly, all age-dependent gait variables identified in this study were derived
from the unaffected side. While the unaffected side may exhibit more biomechanically sta-
ble patterns, it primarily reflects compensatory mechanisms rather than direct neurological
impairments [31,32]. In contrast, the affected side provides richer pathological information,
including asymmetry, altered timing, and deficits in force generation—features that are
essential for distinguishing true hemiplegic gait from mimicked patterns [33]. Healthy indi-
viduals attempting to imitate hemiplegic gait are generally unable to replicate these subtle
dysfunctions, making affected-side features especially valuable for classification. From
a machine learning perspective, using predominantly affected-side parameters enhances
discriminative power in differentiating neurologically impaired gait from cognitively gen-
erated imitation.

Secondly, a machine learning-based classification model was developed using
unaffected-side gait features that were not significantly influenced by age. Feature impor-
tance analysis identified the top 10 features that most contributed to model performance.
These features primarily comprised temporal gait features, phase-specific time ratios, and
force timing characteristics, all of which captured essential distinctions between HG and
MHG group.

Notably, features such as stance phase (—), single-limb support (+), swing phase (—),
and step time (—) ranked among the most important. Among the top-ranked features
identified in this study, stance phase (—), single-limb support (+), swing phase (—), and
step time (—) reflect key spatiotemporal characteristics of hemiplegic gait. A reduced
stance phase on the affected side indicates instability and diminished weight-bearing
capacity, while increased single-limb support on the unaffected side reflects compensatory
load-bearing strategies [31]. Shortened or delayed swing phase is commonly associated
with impaired motor control and muscle weakness, and irregularities in step time reflect
disrupted gait thythm and temporal asymmetry [33]. These features capture pathological
aspects of gait that are difficult for healthy individuals to replicate through mimicked
hemiplegic gait, thus providing high discriminative power for classification. Although
Rezgui et al. (2013) investigated the imitation of cerebral palsy gait rather than stroke-
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related hemiplegic gait, their findings support the notion that pathological gait patterns
exhibit neuromechanical complexities that are difficult for healthy individuals to replicate
accurately, thereby providing a relevant basis for our interpretation [34]. Their consistent
emergence as important predictors in machine learning models highlights both their clinical
relevance and their robustness in differentiating true hemiplegic gait from cognitively
generated imitation. Furthermore, time-based kinetic features such as time_max_ratio
and load response timing emerged as critical indicators. These features represent subtle
shifts in the timing of ground reaction forces and suggest that temporal irregularities in
neuromuscular response may serve as objective markers of pathological gait. Such micro-
level deviations are unlikely to be perceived through visual inspection alone, underscoring
the potential utility of data-driven metrics in clinical gait assessment.

Interestingly, the selected top features align well with those highlighted in previous
clinical gait studies involving stroke patients. This convergence lends further support to
their validity and highlights the importance of kinetic over kinematic features in distin-
guishing pathological gait. While kinematic features such as joint angles or step speed can
be consciously manipulated by mimicry, kinetic features typically reflect involuntary motor
output, offering greater diagnostic specificity.

In summary, the top 10 features identified in this study appear to capture fundamental
biomechanical markers of true hemiplegic gait that are resistant to voluntary imitation.
These findings suggest that carefully selected unaffected-side features—particularly those
capturing temporal dynamics and weight transfer mechanisms—may serve as reliable
components in objective gait classification systems. The results further support the use
of explainable machine learning approaches to extract clinically relevant insights from
quantitative gait analysis.

Thirdly, All three machine learning classification models developed in this study—
Random Forest, Support Vector Machine (SVM), and Logistic Regression—demonstrated
high performance in distinguishing hemiplegic gait (HG) from mimicked hemiplegic gait
(MHG), supporting the feasibility of quantitative, data-driven gait classification. Among
them, the SVM exhibited the highest discriminative power, achieving a perfect AUC (1.000)
when trained on the full feature set and maintaining robust performance even when using
only the top 10 features. This suggests that the SVM’s ability to capture nonlinear decision
boundaries may be particularly well-suited for modeling the complex patterns observed in
hemiplegic gait.

The Random Forest model also achieved high accuracy and provided the added benefit
of interpretability through feature importance scores. These importance scores were used
to guide dimensionality reduction and contributed to maintaining model performance with
fewer features. Logistic Regression, although slightly lower in AUC compared to the other
models, offers advantages in transparency and clinical interpretability. In clinical settings
where decision-making must be explainable, such simplicity is often valued despite minor
performance trade-offs.

Importantly, models trained on only the top 10 most important features yielded com-
parable performance to models trained on the full feature set. This highlights the potential
for efficient and lightweight gait assessment systems that minimize data collection burden
without sacrificing diagnostic power. Such models may be more easily deployed in real-
world settings, including wearable devices or bedside evaluation tools, and may support
functional evaluations for rehabilitation planning, insurance verification, and return-to-
work decisions. these models provide clinically meaningful insights into gait asymmetry
and compensatory strategies. For example, the observed alterations in stance and swing
phases correspond to well-known biomechanical consequences of muscle weakness and
postural instability. Importantly, we found that models trained on only the top 10 most
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important features yielded comparable performance to those trained on the full feature
set. This highlights the feasibility of developing efficient and lightweight gait assessment
systems that minimize data collection burden without compromising diagnostic power.
Such systems could be particularly advantageous for deployment in real-world clinical
environments, including wearable devices or bedside evaluation tools, to support func-
tional assessments for rehabilitation planning, insurance verification, and return-to-work
decisions. Moreover, it should be acknowledged that the laterality of motor deficits may
exert a significant influence on gait characteristics. Patients with left-sided hemiparesis
often present with spatial neglect, which can exacerbate asymmetry and impair motor
control, whereas right-sided hemiparesis may follow distinct compensatory mechanisms.
Although our dataset did not allow for stratified analysis by side of involvement, future
studies with larger cohorts should investigate laterality-specific gait alterations and their
implications for personalized rehabilitation strategies. In addition, external validation
using larger, multi-center datasets will be crucial to establish the robustness and generaliz-
ability of such lightweight models. Future research should also explore the integration of
advanced algorithms, including deep learning and ensemble methods, to further enhance
predictive performance while maintaining clinical interpretability.

Even when the analysis was restricted to variables showing no significant differences
between groups (p > 0.05), Random Forest and SVM maintained high classification perfor-
mance (ROC AUC = 0.97 and 0.95, respectively; Accuracy = 87.5%), demonstrating that
the models learned complex multivariate patterns rather than exploiting obvious contrasts
between groups. In contrast, Logistic Regression achieved substantially lower performance
(ROC AUC = 0.58; Accuracy = 62.5%). This discrepancy can be attributed to the linear
nature of Logistic Regression, which cannot adequately capture nonlinear relationships
and higher-order interactions likely present in the selected variables. Moreover, poten-
tial multicollinearity among gait features and the limited sample size may have further
reduced its performance. These findings collectively highlight the importance of nonlinear
classification models in capturing complex gait patterns, particularly when apparent group
differences are removed.

Several limitations of the present study should be acknowledged.

First, the training methodology for the MHG group poses concerns regarding ecologi-
cal validity. Although participants were instructed using videos of actual stroke patients
and demonstrations by doctors and were asked to reproduce characteristic hemiplegic
gait patterns (hip extension and internal rotation, knee extension, ankle plantarflexion and
inversion, hip hiking, and circumduction), no objective criteria or agreement scale was
applied to confirm accurate imitation. Gait analysis was conducted only when physicians
judged the mimicry to be sufficient, and treadmill speed was standardized at 0.7 km/h to
minimize variability. Nevertheless, reliance on subjective assessment may have introduced
uncontrolled variability, potentially compromising comparability with the HG group and
leading to overestimation of the model’s discriminatory capacity.

Second, the relatively small sample size (N = 79) limited the statistical power of the
study. While sensitivity analysis confirmed that medium-to-large effects could be reliably
detected, smaller effects might have been overlooked. According to Cohen’s conventional
thresholds for multiple regression (f2 = 0.02 for small, f* = 0.15 for medium, and > = 0.35 for
large effects), our calculated f* = 0.2 corresponds to a medium-sized effect. This suggests that
although the independent variables included in the model influence the dependent variable,
the magnitude of this influence may not be substantial. Nevertheless, even very small effects
can have considerable practical or clinical importance if they affect a large population.

Third, the machine learning models were trained and tested on a single-center dataset,
raising concerns about external validity. To mitigate this, we applied cross-validation and
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developed a reduced model using only the top 10 key features identified through feature
importance analysis, which showed comparable performance to the full model. However,
such approaches cannot fundamentally resolve the limitation. We are therefore preparing
additional patient recruitment and multi-center collaborative studies, and future work will focus
on external validation with larger datasets to strengthen the generalizability of the model.

Fourth, although our models demonstrated high classification accuracy, it must be
acknowledged that several gait features exhibited significant group differences between HG
and MHG. This may have biased the classification results, favoring automatic discrimina-
tion and potentially inflating model performance beyond what might be expected in more
ecologically valid conditions. Lastly, while we employed three widely used algorithms
(Random Forest, SVM, Logistic Regression), future studies may benefit from exploring
deep learning architectures, ensemble approaches, and refined threshold-tuning strategies
to further enhance predictive accuracy and clinical applicability.

5. Conclusions

This study demonstrated that machine learning models can effectively distinguish
hemiplegic gait from mimicked hemiplegic gait using quantitative gait features. By apply-
ing Random Forest, Support Vector Machine (SVM), and Logistic Regression classifiers,
high classification performance was achieved even with a limited dataset, with SVM
showing the highest AUC values. Feature importance analysis revealed that temporal
asymmetries, such as altered stance and swing phases, along with force timing differences
and spatial instability, were key discriminators. Notably, models trained using only the
top 10 most informative features achieved comparable performance to those using the
full feature set, suggesting that lightweight and interpretable models may be sufficient for
clinical application. These findings support the potential of machine learning-based gait
analysis as an objective tool for identifying pathological gait characteristics and contribute
to the development of data-driven neurorehabilitation strategies. Further validation using
external datasets and integration of additional physiological signals is recommended to
enhance clinical utility and generalizability.
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