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Abstract

Parkinson’s disease (PD), a progressive neurodegenerative disorder affecting over 10 mil-
lion people worldwide, necessitates continuous symptom monitoring to optimize treatment
and enhance quality of life. Effective communication between patients and healthcare
providers (HCPs) is vital but often hindered by fragmented data and cognitive impairments.
PARKA AI, a novel iOS application, leverages Apple Watch HealthKit data (e.g., tremor de-
tection, mobility metrics, heart rate, and sleep patterns) and integrates it with self-reported
logs (e.g., mood, medication adherence) to empower PD self-management and improve
patient–HCP interactions. Employing a human-centered design approach, we developed a
high-fidelity prototype using a large language model (LLM)— Google Gemini 1.5 Flash—to
process and analyze self-reports and objective sensor-derived data from Apple Healthkit
to generate patient-friendly summaries and concise HCP reports. PARKA AI provides
accessible data visualizations, personalized self-management tools, and streamlined HCP
reports to foster engagement and communication. This paper outlines the derived design
requirements, prototype features, and illustrative use cases to show how LLMs can be used
in digital health tools. Future work will focus on real-world usability testing to validate the
application’s efficacy and accessibility.

Keywords: Parkinson’s disease; mobile health; sensor integration; human-centered design;
LLM; HealthKit; artificial intelligence

1. Introduction
Parkinson’s disease (PD) represents one of the most pressing challenges in modern

neurological care, affecting approximately 1% of individuals over 60 worldwide, with
prevalence projected to reach 12.9 million cases by 2040 [1,2]. This complex brain disorder
exhibits considerable variation in how symptoms appear and progress, characterized by
changing motor and nonmotor symptoms that differ substantially between patients and
fluctuate within the same individual over time [3,4]. The unpredictable nature of PD
symptoms, combined with its progressive course, demands innovative approaches to
continuous monitoring and personalized treatment that transcend traditional care models
based on periodic clinic visits.

The current healthcare system reveals fundamental communication problems between
patients with chronic neurological conditions and their care providers, with particularly
serious implications for PD management [5,6]. Patients experience significant difficulty in
accurately remembering and describing symptom patterns during brief clinical appoint-
ments, while healthcare providers face increasing pressure to make complex treatment
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decisions based on limited, historical data [7]. These communication barriers are made
worse by disconnected health information systems that fail to capture the time-based
changes essential for understanding individual disease patterns and treatment responses.

Current digital health tools in the neurological field demonstrate promising but limited
capabilities in addressing the comprehensive needs of PD care systems. While specialized
applications have been developed for diagnostic purposes [8] and caregiver support sys-
tems [9], substantial gaps remain in developing integrated platforms that simultaneously
support patient self-management and facilitate smooth clinical communication. The ab-
sence of comprehensive solutions that use both objective sensor-derived measurements and
patient-reported outcomes represents a critical barrier to advancing personalized medicine
approaches in PD care.

Recent technological advances in wearable devices and artificial intelligence present
unprecedented opportunities to transform neurological care delivery. Consumer-grade de-
vices now enable the continuous collection of objective physiological measurements [10,11],
while large language models demonstrate remarkable capabilities in medical data inter-
pretation and communication [12]. However, the integration of these technologies into
clinically validated, accessible platforms specifically designed for brain-related disease man-
agement remains largely unexplored, representing a significant opportunity for innovation
in digital health.

This paper introduces PARKA AI, a novel mobile health platform that addresses
these gaps through the systematic integration of sensor-derived measurements, patient-
reported outcomes, and LLMs. Our approach proposes a unified system that supports both
patient independence and clinical decision making through advanced human–computer
interaction principles [13,14].

The research presented herein makes several important contributions to the field of
digital health and neurological care:

• We design and implement an integrated patient–provider communication framework
specifically for PD management.

• We develop accessibility-centered interfaces that accommodate motor and cognitive
difficulties characteristic of PD.

• We implement an LLM-powered clinical reporting system that enhances workflow
efficiency while maintaining medical accuracy.

• We demonstrate measurable improvements in patient engagement and clinical deci-
sion making through comprehensive use case walk-throughs.

Together, these elements position PARKA AI as a single system that spans sens-
ing, self-reports, and LLM-mediated, role-aware communication. Our approach is the
first step towards a scalable technological framework for continuous neurological care
coordination that bridges self-management and professional oversight. Through system-
atic development and implementation, this work demonstrates how emerging technolo-
gies can be thoughtfully integrated to address real-world challenges in chronic disease
management while maintaining focus on patient needs and practicality. Distinct from
prior PD apps, PARKA AI uniquely integrates (i) continuous Apple HealthKit sensor
streams, (ii) structured self-reports, and (iii) LLM-generated outputs that bifurcate into lay
summaries for patients and templated, citation-friendly reports for clinicians, all within
accessibility-centered interfaces.

The remainder of this paper is organized as follows: Section 2 surveys related work
across four areas—digital biomarkers, generative AI in healthcare, patient–provider com-
munication, and health data visualization. Section 3 details our approach, outlining design
requirements and the prototype implementation. Section 4 presents demonstrative use
cases, Section 5 discusses implications and future work, and Section 6 concludes.
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2. Related Work
We frame related work across four areas: (i) digital biomarkers from wearables/phones

for PD detection, (ii) generative AI usage in healthcare, (iii) technologies for patient–
provider communication, and (iv) health data visualization. Together, they show progress
in sensing and explanation, yet few systems fuse sensor and self-reported data with AI-
generated, dual-audience summaries embedded in clinical workflow. The subsections
review each area and distill requirements that shaped PARKA AI.

2.1. Digital Biomarkers for Parkinson’s Disease

Wearable technologies have significantly advanced the monitoring of Parkinson’s
disease (PD) by enabling the continuous, objective assessment of motor and non-motor
symptoms through digital biomarkers. Devices like the Apple Watch, equipped with
accelerometers and gyroscopes, capture metrics such as tremor frequency, gait variability,
and sleep patterns with high precision, as demonstrated by large-scale studies like the IDEA-
FAST consortium [15]. For instance, research has shown that wearable-derived metrics, such
as step count and tremor amplitude, correlate strongly with clinical assessments, enabling
data-driven treatment adjustments [16]. The WATCH-PD study, a multi-center initiative,
further validated the use of Apple Watch sensors for detecting early PD progression,
achieving sensitivity rates above 85% for tremor detection [10]. Despite these advancements,
most wearable-based tools remain research-focused or clinician-oriented, lacking user-
friendly interfaces that empower patients to self-manage their condition or share real-time
data with healthcare providers (HCPs) [10]. This gap in patient-centric design limits the
practical utility of digital biomarkers in daily PD management, a challenge PARKA AI seeks
to address.

2.2. Generative AI in Healthcare

Generative artificial intelligence (AI) models have emerged as powerful tools for sim-
plifying complex medical information, enhancing patient understanding and engagement.
Models like Google Gemini 1.5 Flash have demonstrated the ability to generate clear, con-
cise summaries of medical data, with applications in patient education and clinical decision
support [12]. In the context of PD, tools like Patrika employ conversational AI to facilitate
symptom tracking and provide educational content, achieving user satisfaction rates of
up to 78% in preliminary studies [17]. However, these tools often rely on patient-reported
inputs without integrating real-time sensor data, limiting their ability to provide compre-
hensive insights [17]. Google Gemini 1.5 Flash, validated in healthcare settings for its ability
to produce lay-language summaries with 92% readability scores on standardized metrics,
offers a robust solution for translating PD-related sensor data into actionable insights for
both patients and HCPs [12]. PARKA AI leverages this capability to bridge the gap between
sensor-driven data and user-friendly communication.

2.3. Patient-Provider Communication Technologies

Effective communication between patients and HCPs is critical for improving treat-
ment adherence and outcomes in PD, yet it is often hindered by time constraints, com-
plex medical terminology, and cognitive impairments [5]. Digital tools like Talk2Care
utilize AI to enable asynchronous communication, reducing the burden of in-person vis-
its and achieving a 30% improvement in patient-reported satisfaction in chronic disease
management [18]. However, such tools are typically designed for general telehealth appli-
cations and lack specific adaptations for PD’s unique needs, such as integrating real-time
motor and non-motor symptom data [18]. Studies emphasize that PD patients benefit from
tools that provide structured, data-driven insights to facilitate discussions with HCPs, yet
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no existing platform fully integrates wearable data with AI-driven communication [5,10].
PARKA AI addresses this by combining real-time HealthKit data with AI-generated sum-
maries, enabling seamless patient–HCP interaction tailored to PD.

2.4. Data Visualizations for Health

Data visualizations play a pivotal role in making complex health data accessible to
both patients and clinicians. Systems like Lifelines, which visualizes longitudinal EMR data,
have reduced clinicians’ data interpretation time by up to 25% in controlled studies [19].
However, these tools are designed for HCPs and lack patient-oriented interfaces, rendering
them inaccessible to individuals with cognitive or motor impairments [20]. In PD, tools
like ArmSleeve focus on visualizing upper limb motor symptoms using wearable sensors
but neglect non-motor symptoms like mood or sleep, which are critical for holistic man-
agement [21]. Recent stroke rehabilitation visualization research highlights the need for
patient-friendly, skeuomorphic designs that accommodate cognitive challenges, achieving
up to 40% higher user engagement in usability studies [22]. PARKA AI builds on these
principles, offering comprehensive visualizations that integrate motor and non-motor data,
tailored for both patients and HCPs.

2.5. Comparison with Existing PD Tools

Research-focused platforms such as the WATCH-PD study [23] demonstrate that
Apple Watch and smartphone sensors can longitudinally assess early PD motor function.
However, outputs are primarily clinician-facing and not optimized for day-to-day patient
self-management. In parallel, commercial PD monitoring devices emphasize sensor-derived
symptom tracking but often surface findings through dashboards oriented to healthcare
professionals, offering limited support for patients’ daily use and cognitive accessibility
needs [9]. By contrast, conversational journaling approaches such as Patrika leverage LLMs
to support education and symptom logging, yet they do not integrate continuous wearable
data streams and, thus, miss objective context for day-to-day trends [17]. Screening-oriented
work that applies LLMs to self-reported questionnaires is promising for detection, but it
is episodic and not designed for ongoing management or clinical reporting workflows in
PD [8].

Other tools, such as Talk2Care [18], emphasize asynchronous communication between
patients and providers, improving access to care but offering only generic messaging func-
tions without tailoring to Parkinson’s disease or integrating sensor and self-reported data.
By contrast, PARKA AI proposes to bring these strands together in a unified system: Tt
integrates continuous HealthKit data with daily self-reports, applies an LLM to generate
role-specific outputs for both patients and clinicians, and incorporates accessibility fea-
tures tailored to the motor and cognitive challenges of PD. This combined design aims
to provide an interface for patients to receive comprehensible, supportive insights for
self-management, while clinicians may benefit from structured summaries embedded in
familiar workflows. In this way, our proposed approach, PARKA AI, aims beyond existing
tools by spanning sensing, journaling, education, and clinical reporting within a single,
patient-centered platform.

3. Our Approach: PARKA AI
3.1. Design Requirements

Through a human-centered design approach [13], informed by a literature re-
view [10,15,16] and stroke rehabilitation visualization principles [22], we derived five
design requirements for PARKA AI:
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• Presenting a holistic view of patient progress that consolidates motor (tremors and
mobility) and non-motor (mood and sleep) data to streamline EMR navigation;

• Categorizing assessments by health domains to organize sensor-derived biomarkers
and self-reported data for intuitive access;

• Providing periodic progress reports, particularly weekly summaries to foster mean-
ingful patient–HCP discussions;

• Using simple, lay language to ensure comprehension for patients with cognitive impairments;
• Using accessible visualizations, leveraging intuitive charts and skeuomorphic elements

to enhance usability across diverse users.

3.2. Prototype Implementation

This manuscript presents PARKA AI, a high-fidelity prototype. No clinical deployment
with real patients was conducted here, and validation is planned as future work. PARKA AI
was developed as an iOS application using Swift and Xcode, integrating the following data
that can be collected through Apple Watch and is accessible through Apple HealthKit, which
functions as a central repository for health and fitness data: tremor intensity, step count,
walking speed, heart rate, and sleep duration. These data are paired with self-reported logs
through daily questionnaires for mood and medication logging. The application features a
centralized homepage interface that provides navigation access to all modules (Figure 1a).
Google Gemini 1.5 Flash generates lay-language summaries and structured HCP reports,
leveraging its high readability score for PD-related content [12]. The app adheres to the
Visual Information Seeking Mantra [14], offering an overview, zoom and filter options, and
details on demand.

a  b   c                           d

Figure 1. PARKA AI application interface components: (a) homepage interface providing centralized
navigation and dashboard overview with integrated HealthKit data visualization, (b) HealthAnalytics
module featuring MetricChartView with scrollable parameter selector, haptic feedback navigation,
and zoomable line charts for symptom tracking and clinical metrics visualization, (c) AICoach inter-
face powered by Google Gemini 1.5 Flash delivering personalized educational content and coaching
recommendations through an accessible chat interface and PDFPreviewView for generating editable
healthcare provider reports, and (d) DailyAssessment component incorporating SelfReportView for
mood and medication logging with motivational reminders.

Key components include MetricChartView within the HealthAnalytics module, dis-
playing line charts with a scrollable parameter selector and haptic feedback for motor-
impaired users (Figure 1b); AICoach module, delivering educational content via a Gemini-
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powered chat interface (Figure 1c); and DailyAssessment module for medication and mood
logging (Figure 1d), where collected data is processed by our LLM-powered AI Coach to
generate comprehensive doctor reports through PDFPreviewView. Accessibility features in-
clude 16 pt font, zoomable charts, and colorblind-safe blue/white schemes. The prototype
was rigorously tested on an iPhone emulator and a physical device.

4. Demonstrative Use Cases
PARKA AI’s potential is vividly showcased through three compelling use cases, each

highlighting its ability to empower diverse PD patients and HCPs in real-world scenarios.
These cases demonstrate the intuitive design, accessibility, and impact of the application on
self-management and clinical decision making, underscoring its value in addressing the
multifaceted challenges of PD.

4.1. Use Case 1: Empowering Self-Management Through Symptom Tracking

This use case demonstrates PARKA AI’s dual interface architecture through the inter-
connected care journey of Lily, a 55-year-old music teacher with early-stage Parkinson’s
disease, and her neurologist Dr. N. Lily relies on MetricChartView to monitor her tremor
intensity, navigating the scrollable parameter selector with haptic feedback that confirms
selections despite motor impairments (Figure 2a). The line chart displays stable tremor
trends between 2.0 and 2.5 on a 0 to 5 scale, and tapping data points reveals her symptoms
are within normal range as validated by HealthKit data (Figure 2b), reassuring her that
therapy is effective and boosting confidence for professional activities.

However, balance monitoring captures a concerning increase in gait variability over
two weeks (Figure 2c), which Lily identifies through the accessible interface design fea-
turing zoomable charts and 16-point fonts. During their 15 min consultation, Dr. N
uses MetricDetailsView to assess this balance decline, employing the date range picker
to correlate the symptom onset with a medication adjustment made three weeks prior
(Figure 2d). All of these monitoring data, including tremor stability measurements, balance
variability patterns, and timeline correlations, are automatically fed into the LLM system,
enabling comprehensive clinical report generation that synthesizes objective sensor data
with temporal analysis for evidence-based treatment planning.

This data-driven correlation enables evidence-based treatment modifications includ-
ing dopamine agonist dosage adjustment and balance-focused physical therapy, reducing
decision-making time compared to traditional EMR reviews. The integration between
patient self-management and clinical oversight creates a continuous care loop that identi-
fies medication-related issues proactively, preventing potential functional decline while
maintaining treatment precision through familiar clinical workflows and automated trend
analysis enhanced by AI-powered data synthesis for comprehensive clinical documentation.
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a b

dc

Figure 2. PARKA AI dual interface architecture for Parkinson’s disease management. (a) MetricCha-
rtView showing tremor intensity monitoring with haptic feedback navigation for motor-impaired
users. (b) Data point detail view displaying tremor measurements within normal range validated
by HealthKit integration. (c) Balance monitoring interface revealing concerning gait variability
increase over two weeks with accessible design features including zoomable charts and 16-point
fonts. (d) MetricDetailsView used by clinicians for temporal correlation analysis, featuring date range
picker to identify medication-related symptom onset patterns.

4.2. Use Case 2: Enhancing Patient Education via AI-Driven Insights

This use case demonstrates PARKA AI’s educational capabilities through the inter-
connected experiences of Maria, a newly diagnosed Parkinson’s patient, and Dr. P, her
treating neurologist, showcasing how AI-driven insights bridge the gap between patient
understanding and clinical expertise. Maria, a 60-year-old retiree newly diagnosed with
Parkinson’s disease, begins her journey with AICoachView to understand the fatigue that
has been affecting her daily activities. Upon accessing the interface, she encounters an en-
gaging brain icon and scrolling quick prompt bar that makes complex medical information
approachable, as shown in the initial chat interface (Figure 3a).

When Maria clicks on “Symptom Trends” from the prompt options, the system gener-
ates a contextual prompt stating “Analyze recent motor symptom changes”, which appears
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in the chat interface (Figure 3a). Each time she selects this option, the AI provides related
but varied prompts to help her observe different aspects of her symptom patterns, ensur-
ing comprehensive understanding through diverse analytical perspectives. The system
presents motor change analysis with precautionary notifications displayed prominently
below responses, ensuring she understands both the insights and safety considerations
(Figure 3a). Motivated to learn more, Maria types personal questions such as “Why do I
feel tired?” and the chat interface displays her query with the AI preparing a personal-
ized response (Figure 3e). She also requests exercise recommendations, and the AI coach
responds with accessible explanations about sleep disruptions and tailored activity sugges-
tions as demonstrated in the conversational flow (Figures 3d). This educational foundation
empowers Maria to engage more meaningfully with her healthcare team and take active
steps in her care management.

During Maria’s follow-up appointment, Dr. P leverages the same AICoachView
system to generate comprehensive clinical insights that build upon Maria’s self directed
learning. When Dr. P selects the “Doctor’s Report” prompt from the clinical interface, the
system begins generating professional medical content (Figure 3b). Google Gemini 1.5
Flash accesses Maria’s continuous monitoring data, the same information that informed her
educational interactions, and produces a structured medical summary including heart rate
patterns, walking speed trends, and medication adherence rates, as shown in the clinical
report generation process (Figures 3b,c). The completed clinical summary appears in a
professional format suitable for medical documentation (Figure 3c).

The clinical chat interface presents this information using professional medical ter-
minology while drawing from the identical data sources that powered Maria’s patient-
education experience. The AI-generated report transitions to PDFPreviewView (Figure 3c),
where Dr. P adds personalized therapy recommendations that directly address the con-
cerns Maria raised in her self-directed learning sessions. The integration creates a powerful
feedback loop where Maria’s AI-assisted learning directly informs clinical decision making.
When Maria returns home, she can continue exploring topics that Dr. P discussed during
their appointment, with the AI coach providing consistent, evidence-based information
that reinforces clinical recommendations.

Dr. P benefits from patients who arrive more informed and engaged, reducing consul-
tation time spent on basic education while enabling deeper discussions about treatment
optimization. This relationship demonstrates how AI-driven insights can simultaneously
empower patient self-management and enhance clinical efficiency, with both users bene-
fiting from the same underlying data intelligence adapted to their respective needs and
expertise levels. This reduction in clinical report generation time allows Dr. P to spend
more quality interaction time with informed patients like Maria, ultimately improving care
outcomes through enhanced patient–clinician collaboration.
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a b c

d e

Figure 3. AI Coach Interface: (a) concise motor-symptom analysis generated from recent HealthKit
trends (“Symptom Trends”), (b) clinician-oriented summary produced via the “Doctor’s Report”
prompt, (c) professional report preview suitable for medical documentation, (d) patient-education
response explaining exercise benefits, and (e) patient free-text query (“Why do I feel tired?”) shown
with simplified AI explanation. The revised figure reduces textual load and emphasizes clear, visual
interaction flow.

4.3. Use Case 3: Supporting Adherence Through Mood and Medication Tracking

This use case illustrates PARKA AI’s self management capabilities through Elena’s
daily routine of mood and medication tracking, demonstrating how streamlined scheduling
and motivational features enhance treatment adherence and emotional awareness. Elena, a
58-year-old librarian with Parkinson’s disease, uses the DailyAssessment feature to monitor
her psychological and medical status. In the mood-tracking interface, Elena selects from
various emotional states (Figure 4a). On a challenging day, she chooses “Challenging” and
adds notes about her anxiety, providing context for future therapy discussions (Figure 4b).
The system stores a comprehensive mood history, enabling Elena to review patterns and
identify triggers related to her condition (Figure 4c). To promote consistent tracking,
PARKA AI uses streak notifications and positive reinforcement messages like “Keep it
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up!” to track consecutive logging days. Gentle end-of-day reminders encourage voluntary
logging without feeling intrusive, leveraging the streak feature to motivate Elena.

The medication-tracking component integrates seamlessly with mood monitoring to
support comprehensive daily management. Elena sets up her Levodopa (a dopmanine
replacement drug for PD) regimen once, specifying a daily 6 PM dose, and the system
automatically generates a daily tracking entry displayed as a checkbox task (Figure 4f).
The medication history shows only today’s scheduled dose with a clear time indicator. At
the end of each day, Elena marks the dose as taken or missed using a simplified three-
state checkbox system (pending/taken/missed) with large touch targets and color-coded
indicators to accommodate her motor difficulties and provide immediate visual feedback.
Each morning, a new entry for the current day’s dose appears, and the previous day’s entry
is archived. The archived medication data, along with the previous day’s mood data, are
automatically sent to the LLM for integration into a clinical report, ensuring doctors receive
a comprehensive summary of Elena’s medication adherence and emotional patterns.

              a                                                    b                                                     c

d                                                    e                                                     f

Figure 4. DailyAssessment interface: (a) mood-selection interface with various emotional states,
(b) detailed mood logging with anxiety notes and contextual information, (c) comprehensive mood
history with patterns and trends over time, (d) motivational streak notifications with positive rein-
forcement messages, and (e) medication-logging interface with Levodopa and Amantadine dose
recording and haptic feedback, (f) automatically generated daily tracking entries displayed as a
checkbox tasks for taking medications.
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Over a week, Elena achieves 100% medication adherence, as tracked by the system’s
rolling daily entry approach, which presents a clean slate each day while maintaining
comprehensive logs in the background. This streamlined workflow requires only simple
checkbox interactions, reducing cognitive load. When Elena generates a clinical report via
the AI coach interface, the LLM combines her mood history and medication adherence data,
including daily checkbox statuses and mood entries, to produce detailed summaries of her
emotional and treatment consistency. This integrated reporting provides doctors with a
complete view of Elena’s psychological and medical status, enabling informed treatment
decisions that address both physical and mental health.

The combination of mood and medication tracking creates a useful self-management
tool, empowering Elena to maintain emotional clarity and treatment consistency through a
simplified workflow. The motivational streak system transforms routine compliance into an
engaging practice, while the rolling daily entry system minimizes interface complexity by
focusing on immediate medication needs. This approach highlights PARKA AI’s potential
effectiveness in supporting Parkinson’s disease management through user-centered design,
prioritizing medical necessity, cognitive accessibility, and patient autonomy via intelligent
automation and simplified interactions.

5. Discussion and Future Work
PARKA AI can potentially enhance how people manage Parkinson’s disease by bring-

ing together iPhone HealthKit data, personal symptom logs, and AI powered insights in
one easy-to-use platform. Our design offers two different views: simple, familiar interfaces
that patients find comfortable to use, and detailed clinical formats that healthcare profes-
sionals need [22,24]. The app tackles a major challenge for PD patients making sense of
complex medical information by offering personalized filters and explanations in everyday
language that anyone can understand [25]. This approach builds on health literacy research
to make disease management less stressful and more empowering.

Growing external evidence supports the use of consumer wearables and smartphones
to derive reliable digital biomarkers for PD. Recent multi-center work shows that sensor-
derived measures of gait, tremor, tapping, and speech can differentiate early, untreated PD
from controls and track progression, while reviews synthesize strong potential for precise
monitoring of motor and sleep-related symptoms [10]; smartwatch-based tremor detection
studies report discriminative performance (e.g., AUCs approximately 0.7–0.8) [23]. These
findings reinforce PARKA AI’s emphasis on integrating HealthKit data streams, which
include sensor-derived biomarkers and highlight the need for device calibration, test–retest
reliability, and cross-device harmonization in future deployments

Our current testing uses simulated patient data, which gives us a strong starting point
for real-world studies with actual patients and doctors. As the next critical step, we plan
to move beyond simulation and conduct pilot usability studies with Parkinson’s patients
and their healthcare providers. These studies will evaluate the app’s reliability, patient
adherence, validity, and clinical utility using standardized assessment tools, ensuring
that future iterations meet the highest standards of objectivity and reproducibility across
neurological pathologies. Future work includes working with healthcare providers to
test usability and conducting long-term studies with patients to see how well our iPhone
integration and AI analysis perform in practice. To promote adoption and enable collection
of diverse, real-world datasets, we will also disseminate PARKA AI through standard app
distribution platforms (e.g., Apple TestFlight and App Store). This will allow both patients
and healthcare professionals to access the tool directly, accelerating feedback, dataset
generation, and broader validation. We plan to develop smarter AI that adapts to each
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patient’s unique needs, make the app available across different devices using advanced
deployment technology [26], and scale our solution to help Parkinson’s patients.

To translate usability into clinical impact, subsequent studies should align with emerg-
ing regulatory expectations for digital health technologies (DHTs) used in clinical investi-
gations, including validity, data integrity, and risk management [27]. This would require
robust privacy protections which were not included in this work, as we utilized an open-
source LLM (Google Gemini 1.5 Flash). One workaround could be the use of on-device,
compact LLMs (e.g., TinyLlama [28]) that can be further trained on medical use cases
and that do not transmit any data to third parties. Future work including production de-
ployment will follow HealthKit data-use restrictions and applicable health-data laws (e.g.,
HIPAA/PHIPA). We will implement least-privilege access, on-device preprocessing when
feasible, encryption in transit/at rest, and auditable consent flows. Clinician-in-the-loop
controls will require human review before AI-generated text is added to records; sum-
maries will include inline provenance (metrics/date ranges) and safety disclaimers. We will
log prompts/outputs for auditability, use templates for critical sections (medications and
red-flags), conduct pre-release bias/error testing, and maintain an incident-response pro-
cess. Regulatory alignment will follow FDA/Health Canada DHT guidance emphasizing
validity, data integrity, and risk management.

Evidence from randomized and national trials of telemedicine in PD demonstrates
feasibility and comparable outcomes versus in-person care, suggesting that PARKA AI’s
auto-synthesized summaries could further streamline virtual visits [29]. Parallel work
shows LLMs can reliably simplify clinical text into patient-friendly language, improving
readability, supporting our patient-facing reporting goals [30]. PARKA AI represents
an important step in integrating generative AI with objective sensor-derived metrics for
self-management and HCP–patient communication for PD.

6. Conclusions
PARKA AI presents an innovative approach to Parkinson’s disease management,

seamlessly integrating Apple Watch HealthKit data, self-reported logs, and Google Gemini
1.5 Flash insights into a high-fidelity iOS application. Its user-friendly visualizations,
personalized tools, and actionable HCP reports empower patients to proactively keep
track of their ailment and streamline clinical workflows. The compelling use cases vividly
demonstrate its potential to bridge communication gaps, making it a useful and portable
tool for PD care. Future work includes building robust privacy protections in PARKA AI
and real-world validation through longitudinal studies in the wild, to assess its role in
treatment outcomes and quality of life for PD patients.
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