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Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that significantly
affects motor functions, including speech production. Voice analysis offers a less invasive,
faster and more cost-effective approach for diagnosing and monitoring PD over time. This
research introduces an automated system to distinguish between PD and non-PD individu-
als based on speech signals using state-of-the-art signal processing and machine learning
(ML) methods. A publicly available voice dataset (Dataset 1, 81 samples) containing speech
recordings from PD patients and non-PD individuals was used for model training and
evaluation. Additionally, a small supplementary dataset (Dataset 2, 15 samples) was cre-
ated although excluded from experiment, to illustrate potential future extensions of this
work. Features such as Mel-frequency cepstral coefficients (MFCCs), spectrograms, Mel
spectrograms and waveform representations were extracted to capture key vocal impair-
ments related to PD, including diminished vocal range, weak harmonics, elevated spectral
entropy and impaired formant structures. These extracted features were used to train
and evaluate several ML models, including support vector machine (SVM), XGBoost and
logistic regression, as well as deep learning (DL)architectures such as deep neural networks
(DNN), convolutional neural networks (CNN) combined with long short-term memory
(LSTM), CNN + gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM). Experimen-
tal results show that DL models, particularly BILSTM, outperform traditional ML models,
achieving 97% accuracy and an AUC of 0.95. The comprehensive feature extraction from
both datasets enabled robust classification of PD and non-PD speech signals. These findings
highlight the potential of integrating acoustic features with DL methods for early diagnosis
and monitoring of Parkinson’s Disease.

Keywords: Parkinson’s disease; speech processing; ML; BiLSTM; DL; CNN

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder mainly affecting
motor functions. The disorder was first extensively described in 1817 by the British physi-
cian James Parkinson in his book “An Essay on the Shaking Palsy” [1]. Parkinson described
the key symptoms such as resting tremor, bradykinesia (slowness of movement), rigidity
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and postural instability. Though his description was groundbreaking, the disease was
poorly understood for decades. The French neurologist Jean-Martin Charcot broadened
clinical knowledge of the disease in the late 19th and early 20th centuries, distinguishing
it from other types of motor disorders [2]. In modern times, PD research has aimed to
understand its complex etiology and create disease-modifying treatments. As most of
the PD cases are classified as idiopathic, pathogenic genetic factors have been recognized
in 10-15% of PD cases. Mutations of genes like LRRK2, PINK1, PARK? and SNCA are
associated with familial Parkinson’s. Today’s research examines the interaction between
genetics and environment, where factors like pesticide exposure or heavy metals come
into play. Recent developments in self-supervised learning (SSL) have introduced pow-
erful speech models such as Wav2Vec 2.0 and HuBERT (Hidden unit BERT) [3]. These
models learn general representations of speech from large-scale unlabeled data and have
demonstrated state-of-the-art performance in tasks such as speech recognition, speaker
identification, and clinical voice analysis. Unlike traditional handcrafted features such as
MEFCCs, jitter, and shimmer, SSL models capture both acoustic and contextual information
directly from raw waveforms, reducing the need for manual feature engineering. Their
successful application in health-related domains suggests strong potential for detecting
PD and related speech impairments, motivating their inclusion in future research direc-
tions. Voice and speech impairment is among the earliest non-motor symptoms of PD,
often manifesting as hypokinetic dysarthria, a cluster of speech abnormalities including
reduced vocal loudness, monotonic pitch, breathiness, imprecise articulation, and irregular
speech rate [4]. Hypokinetic dysarthria is a cluster of speech features typical of the disorder
including a decrease in vocal loudness, difficulty modulating pitch (monotonous), breathy
voice quality, poorly articulated sounds (dysarthria) and irregular speech rate. For this
reason, voice analysis has emerged as a valuable, innocuous tool for the early diagnosis
and follow-up of PD.

In recent years, several new trends in the use of artificial intelligence (AI), ML and DL
techniques are reported for Parkinson’s recognition through observed changes of speech
patterns and vocal features [5]. Acoustic features like jitter, shimmer, harmonics-to-noise
ratio (HNR), MFCCs, formant frequencies and vowel space area can be extracted alongside
the speech recordings by researchers. These features are then used to feed ML /DL models
such as SVM, random forests, CNNs and RNNSs to classify PD subjects against non-PDs.

A new wave of technologies including mobile health apps and wearable gadgets are
beginning to integrate voice analysis tools [6]. These systems allow for constant, real-
time monitoring of patients in the real-world environment, enhancing accessibility while
reducing the need for hospital visits.

Explainable AI (XAI) is another trend in PD voice detection that is on the upswing.
Techniques such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable
Model-Agnostic Explanations) aid in understanding the contribution of various vocal
features to the classification decision, enhancing the transparency and reliability of these
models [7]. PD is a coin with a long history from the name itself, through the first clinical
descriptions, to cutting-edge research today. Among them, voice analysis appears as a
useful and effective simple technique for Parkinson’s disorder screening and monitoring.
Innovations such as Al, DL, mobile technology and explainable models are paving the way
for a better future for PD patients [8]. Providing a better way to understand it, a better way
to measure it, a better way to overcome the obstacles to diagnosis and a better way to live
with hope.

ML is the branch of artificial intelligence that allows computers to learn from specific
training data and create analysis models without relying on predetermined formulas.
Unlike traditional programming, ML algorithms identify patterns in data and improve
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their accuracy as more data becomes available. The main types of ML include monitored
learning, which uses classified data for classification and return tasks; noteworthy learning,
which discovers hidden patterns in unclassified data through techniques such as clusters;
and strengthening learning, which helps to understand decisions with experiences and
interactions with an environment.

ML has many applications, including healthcare, financial services and cyber security.
With the right lessons on amazing amounts of data, machine learning models can find
problems and solve them quickly. Deep learning is another way of machine training. This
is also the way of teaching advanced methods, but it focuses on using artificial neural
networks. These networks are similar to neurons in the human head.

Despite these advances, challenges remain in generalization across datasets, inter-
pretability of models, and deployment in real-world scenarios. Our work builds on these
foundations by combining spectrogram-based features with recurrent deep learning archi-
tectures, aiming to provide a more comprehensive evaluation and robust performance in
PD voice classification.

2. Organization of the Paper

The structure of this paper is outlined as follows:

2.1. Introduction

Background of Parkinson’s disease and the motivation for using voice analysis.

2.2. Related Work

Summarizes previous studies in a comparative table including datasets, models,
performance metrics, limitations and contributions.

2.3. Research Design

This study relies on secondary data obtained from datasets available on Figshare. The
data was pre-processed to remove noise and normalize the recordings. Feature Extraction:
Speech samples were converted into spectrograms and analyzed for features such as
MECC, jitter, shimmer and RPDE. Classification: The audio/visual samples were classified
using CNN+LSTM, CNN+GRU, BiLSTM, deep neural networks (DNNs) and traditional
ML methods.

2.4. Results and Discussion

Presents the experimental findings: BiLSTM achieved 97% accuracy, CNN + GRU
94%, CNN + LSTM 91% and DNN 81%. Traditional ML methods (SVM, XGBoost, logistic
regression) achieved approximately 44-55% accuracy. Figures and tables comparing deep
learning and machine learning approaches are provided.

2.5. Conclusions

Summarizes the contributions of this study, emphasizing the effectiveness of
spectrogram-based features combined with deep learning models for early PD detection
and notes directions for future research.

3. Related Work

Costantini et al. [9] compared voice assessments for patients with Parkinson’s disease
both off and on L-Dopa treatments. This revealed that the traditional ML models showed
ascertained the expectations, even though the CNNs were used in the state-of-the-art systems,
especially in the binary classification. The study used vocal recordings to identify Parkinson’s
disease and found that features like pitch and prosody-based elements could be effective
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biomarkers. The CFS method was used to select the most relevant features, improving system
accuracy. Overall, the study indicated that ML models such as k-nearest neighbors (KNN)
and SVM with greater-specific data work better than deep learning methods.

Yadav et al. [10] suggested an Al-based model for the diagnosis of Parkinson’s
disease using feature selection strategies such as Chi-square (y?), extra trees and correlation
matrix, combined with many supervised classifiers. Their study showed that decision
trees achieved maximum accuracy (94.87%) with strong ROC performance (AUC = 98.7%),
emphasizing the opportunity to approach based on ML for a reliable and quantitative
PD diagnosis.

Ali et al. [11] highlighted that speech analysis provides non-invasive and promising
methods for diagnosing Parkinson’s disease, where acoustic properties such as tone, jitter,
shimmer and formant are used for ML and DL classification. Their review focuses on
supporting neurologists, especially showing strength in identifying PD with timely and
accurate help. Nijhawan et al. [12] proposed a new transformer-based approach for the
detection of Parkinson’s disease using dysphonia measurements from voice recordings.
Unlike typical models based on providing decisions, their neural network framework
supports continuous learning and multimodal integration, which advances state-of-the-art
performance. The model achieved superior results compared to gradient-boosted decision
trees (GBDTs), with at least 1% improvement in AUC and increased accuracy and recall.
In addition, they introduced an XGBoost-based feature selection strategy and showed the
strength of the transformer over simple MLP in learning complex vocal features.

Pradeep Reddy et al. [13] conducted a comprehensive study on Parkinson’s disease
with Al-based diagnosis using voice measurements from the Oxford PD dataset. They
evaluated 26 machine learning algorithms, including logistic regression, mapping trees,
SVM, random forest, boosting techniques and neural networks. Among them, multi-layer
perceptron (MLP) achieved the best performance with 95% accuracy, 94% precision, 100%
sensitivity, F1 score 97% and AUC 98%. Their findings emphasize the strong ability of MLP
to distinguish between PD patients from healthy people and show the importance of Alin
clinical decisions and early interventions. Hoq et al. [14] proposed two hybrid models to
classify vocal features for the detection of Parkinson’s disease. The models included PCA-
SVM and SAE-SVM. Among the two, the model with superior performance was the one
that used sparse autoencoder (SAE) for feature compression followed by SVM classification.
The hybrid SAE-SVM model achieved the highest accuracy of 93.5%. Along with that,
it provided an Fl-score of 0.951 and MCC of 0.788. The model also outperformed other
standard classifiers such as MLP, XGBoost, KNN and RF. The study effectively addressed
data imbalance using SMOTE in vocal datasets. This study concluded that the hybrid
SAE-SVM model provides a highly effective and reliable solution for the early diagnosis of
PD based on vocal impairments.

Karaman et al. developed [15] deep CNN models for automatic detection of Parkin-
son’s disease using voice signals developed from the mPower database. They obtained
DenseNet161 as the most effective model by applying fine adjustment with transfer growth
on SqueezeNet 1_1, ResNet101 and DenseNet161. The accuracy achieved was 89.75%,
sensitivity was 91.50% and precision was 88.40%. This research suggests that CNN-based
techniques can exceed traditional methods for Parkinson’s diagnosis. This approach also
provides opportunities to integrate smart devices, which can help patients obtain clinical
support quickly before diagnosis. Bukhari et al. [16] proposed an ensemble machine
learning framework for the diagnosis of Parkinson’s disease using speech signals and
emphasized the effectiveness of computational methods compared to traditional diagnos-
tic methods. The model made a classifier AdaBoost and trained on the UCI PD dataset,
including different vocal features such as MFFC, wavelet changes and quality of shaking
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waveform. The system achieved strong performance with AUC 0.99, accuracy of 0.96 and a
strong flexibility recall balance. The study shows that combined ML techniques can provide
reliable and constant early PD diagnosis.

Kiran Reddy et al. [17] presented and examined an exemplary based sparse repre-
sentation (SR) approach for the detection of Parkinson’s disease from speech. The SR
method for acute disease avoids the complex training required in conventional ML models
and tunes hyperparameters, which makes it a simpler alternative. This approach also
provides stability against noise and redundancy in data. The study used L1-accounting
least squares (L1-LS) and non-negative least squares (NNLS) to implement a class-specific
vocabulary structure designed to increase the decomposition of superficial structures. It
helps improve accuracy. Results showed that the SR approach based on NNLS revealed
higher performance compared to conventional ML methods, both in PC-Gita and mobile
voice datasets. This study emphasizes the potential of SR approaches in creating reliable
and non-invasive PD screening tools.

Kavita Bhatt et al. [18] proposed a framework for the detection of Parkinson’s disease
based on deep neural networks (DNN), using spectrograms produced by superlet transforma-
tion (SLT). SLT effectively used 1-D speech signals in 2-D spectrograms, which were classified
using InceptionResNetV2, VGG-16 and Resnet50v2. Their experiments with the PC-GITA
and Italianpvs datasets showed excellent performance, with VGG-16 achieved 92% accuracy
higher than expected on measured vowels and 96% on Italianpvs. The study emphasized that
the short technique-based approach achieved more than traditional methods such as Hilbert
spectrum, Emd, Cwt and Stft for PD speech detection.

Madhu Yagnavajjula et al. [19] proposed system uses the Saarbruecken voice disorder
database, where the WST-based features combined with SVM and neural network classifiers
achieved superior performance in both binary and multi-class classification tasks. This study
showcased that WST-based features outperformed conventional approaches, providing a
reliable framework for detecting neurological voice disorders. A method for automatic
classification of voice disorders based on wavelet scattering transform (WST) features has
been developed. System WST relies on the ability to generate waves that allow scale-based
localisation of frequency changes that help in identifying dysphonic voices. WST prepares
very robust representations by means of convolution, modulus and averaging in the wave
forms that protect variations intra-class while increasing class separability.

Below Table 1 summarizes the techniques used, dataset details and limitations of the
related works.

Table 1. Summary of related works on Parkinson’s disease (PD) detection using voice data.

Study Dataset Techniques/Models Performance/Limitations
Pitch/prosody biomarkers;
Costistl oy YOSt (Dol ML SV, NN, ML e Y
classification
Decision tree: 94.87%
Yadav et al. (2023) [10] Clinical PD dataset Chi-square, extra trees, accuracy, AUC 98.7%;

correlation + ML classifiers dependent on careful

feature selection

Ali et al. (2024) [11]

Non-invasive biomarkers;
review only, lacks
experimental results

Acoustic features (tone,
jitter, shimmer, formants),
ML/DL

Review of speech-based
PD works
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Table 1. Cont.

Study Dataset Techniques/Models Performance/Limitations
Transformer, XGBoost AUC +1% over GBDT,;
Nijhawan et al. (2023) [12] Dysphonia dataset feature selection, GBDT higher recall; high
comparison computational cost
. o, O,
Pradeep Reddy et al. (2024) 26 ML models (LR, SVM,  MLP:95% accuracy, 100%
Oxford PD dataset . sensitivity, AUC 98%;
[13] RF, boosting, MLP) . S
limited external validation
_ . A
Vocal dataset (SMOTE Hybrid PCA-SVM, SAE-SVM: 93.5% accuracy,
Hoq et al. (2021) [14] F1=0.951; needs balancing;
balanced) SAE-SVM . .
hybrid adds complexity
CNNis (DenseNet161, DenseNet161: 89.75%
Karaman et al. (2021) [15] mPower dataset ResNet101, SqueezeNet, accuracy, 91.5% sensitivity;
TL) generalization limited

Ensemble ML (AdaBoost) +

Accuracy 96%, AUC 0.99;

Bukhari et al. (2024) [16] UCI PD dataset MFCC, wavelets, tremor relies on handcrafted
features features
Outperformed ML

Kiran Reddy et al. (2023)

PC-GITA + Mobile Voice

Sparse representation

baselines; robust to noise;

[17] dataset (NNLS, L1-LS) less scalable
Kavita Bhatt et al. (2023) PC-GITA + Italianpvs DNNs on SLT Accuracy 92-96%; needs
[18] datasets spectrograms (VGG-16, cross-database validation
InceptionResNetV2)
Outperformed
Madhu Yagnavajjula et al. Saarbruecken voice WST features + SVM, NN conventional methods;

(2024) [19]

disorder DB

broader neurological
disorders, not PD-specific

4. Material and Method
4.1. Dataset of Parkinson Disease

The primary audio dataset was collected from the publicly available repository on
Figshare. It is a collection of the recordings of 81 individuals which includes 41 non-PDs
(Hc) and 40 people with PD (PwPD). The participants’ ages vary from 18 years to 85 years
with a mean age of 57.26 years. The dataset contains males and females,with females
being the majority with a mean age of 44 years. The voice recordings were stored in .wav
format and records participants holding the pronunciation of the vowel /a/. The phonic
recordings were captured via participants’ own telephones distanced across thousands
of miles from each other facilitating access and participation. At the time of the data
acquisition, the audiometric data subjects were requested to extend the vocal vowel /a/
for as long as possible and with a similar tone and amplitude. The approach is common
in speech analysis studies to identify vocal variations related to neurological vocalization
diseases, including PD.

Second dataset consists of 15 participants (5 PD and 10 non-PD) from Mizoram, India,
aged 20-60 years (10 men and 5 women). Registration was done using the mobile phone
microphone in a quiet, controlled environment, with equipment located approximately
10-15 cm from the speaker’s mouth. Each participant performed a task on the words by
pronouncing the words of the alphabet. The signals were stored in .wav format with a
frequency of 44.1 kHz, 16-bit resolution and mono channel. The dataset summary is shown
in Table 2.
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Table 2. Summary of patient information for the two datasets used in this study.

Dataset No. of Participants Sex (M/F) Age Range (Years) Mean Age (Years) Locatl(]))r;ltlzsislcs ording
Remote telephone

Dataset 1 (Used) 81 (41 Non-PD, Mixed (Majority 18-85 5726 recordings; sustained
(Figshare) 40 PD) Female, 44) ’ vowel /a/ in .wav

format
Controlled
Dataset 2 (Non-used) environment;
(Mizoram, India) 15 (10 Non-PD, 5 PD) 10 Male/5 Female 20-60 - 44.1 kHz, 16-bit;

alphabetical words

This dataset is considered a pilot feasibility collection only. Due to its limited size,
Dataset 2 was not included in the training or testing of models in this study. Instead, it
demonstrates the practicality of mobile-based data collection. Removing Dataset 2 entirely
was considered but retained only because it provides contextual and future value and will
be expanded in future work.

4.2. Dataset Description and Preprocessing

e Dataset 1: The recordings were obtained with a sampling frequency of 8 kHz
(telephone-quality). An effective anti-aliasing cutoff was applied at approximately
4 kHz, and subsequent analysis was limited to the 0—4 kHz frequency range, which is
typically investigated in PD speech studies.

e Dataset 2: The recordings were sampled at 44.1 kHz with 16-bit resolution, providing
higher fidelity for spectral feature extraction.

*  Sequence duration: Since the recordings were of varying lengths, fixed-length segmen-
tation/padding of 3 s was applied to ensure uniform input across all samples during
model training.

All methods were carried out according to the relevant guidelines and regulations. The
voice analysis experimental protocols were conducted by the ethical standards of Mizoram
University and approved by the Institutional Review Board (MZU/CE/PHD IRB 005).
Informed verbal consent was also obtained from all participants before their engagement
in the study.

4.3. Attributes for Voice Detection in Parkinsons Disease

The extracted features represent [20] several voice attributes used to detect and cat-
egorize speech impairments caused by PD using audio analysis. These features can be
grouped into temporal, spectral, cepstral and nonlinear properties. The summary of speech
attributes are shown in Table 3.

Table 3. Summary of speech attributes with their descriptions and mathematical definitions.

Attribute

Zero crossing rate (ZCR)

Spectral centroid

Description Mathematical Definition

Rate at which the signal changes sign (positive to

negative or vice versa); reflects voiced vs. unvoiced ZCR = ﬁ ZnNz’ll L afn]x[n—1)<0}
speech.

“Center of mass” of the spectrum; corresponds to C = LefelX0)

perceived brightness of the speech signal. =L X

Indicates spread of energy around the spectral

Spectral bandwidth centroid; measures variability in frequency B— /Zk (fe=C)2-|X (k)|
distribution. \ Lk (X
- - - - UK
Spectral flatness Ratio betwegn'geor'netrlc and arlthmetlc mean of sFo (K, 1X®))
spectrum; distinguishes tonal vs. noisy sound. = ATK xml
K k=1

Spectral contrast

Difference between spectral peaks and valleys in

— 1yB —
sub-bands; captures formant-related strength. §C = 5 Yo (Peak, — Valleys)
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Table 3. Cont.

Attribute

Description Mathematical Definition

Fundamental frequency (Fy)

Average pitch derived from autocorrelation; reduced

Lok . . Fy= 1
variation in PD indicates monotonic speech. 0

arg maxt Rxx (T)

Jitter

Cycle-to-cycle variation in pitch period; higher in PD

e 1 vN-1 | Ti=Tial
due to unstable vocal fold vibrations. Jitter = g7 Yo T

Shimmer

Cycle-to-cycle variation in amplitude; PD patients

2 : N-1 |4 Ay
show greater amplitude fluctuations. A

; _ 1
Shimmer = 5 Y5, I

Harmonics-to-noise ratio (HNR)

Ratio of harmonic energy to noise energy; lower in

Py :
PD, indicating breathy /hoarse voice quality. HNR = 10log,, ( gronic )

Proise

Formant frequencies (F1-F3)

Resonant frequencies of the vocal tract; blurred in PD

i . — P —k
due to articulatory imprecision. Estimated from LPC: roots of A(z) =1+ Y, a;z

MEFCCs

Cepstral coefficients representing vocal tract features

_yM (m—0.5)
in Mel scale; widely used for speech modeling. MFCCln] = L=y 10g(Em) COS( " )

Delta & delta-delta MFCCs

Temporal derivatives of MFCCs; capture dynamics of N ler —c
¢ € Acs — Yooq Metn—ct—n)
speech, which are often reduced in PD. €= TN 12
n=

4.3.1. Time Domain (Temporal) Features

e Jitter: Quantized changes in pitch (irregularity in vocal folds).
e Shimmer: Assesses the change in amplitude, which indicates voice tremor and instability.

4.3.2. Frequency-Domain Features

*  Fundamental frequency (F0)/Pitch: Shows the speed at which the vocal cords vibrate.
In patients with Parkinson’s disease, this can be unstable.

*  Harmonics-to-noise ratio (HNR): Evaluates the ratio of harmonic expression to noise
in speech, often reduced in PD.

4.3.3. Frequency-Domain (Spectral) Features
To extract features, the first one from the time domain is [21]:

*  Mel-frequency cepstral coefficients (MFCCs): Captures the speech spectrum and is
widely used in ML models.

*  Spectral centroid: Decline in PD spectrum causes a shift in the center of mass of
the spectrum.

*  Spectral bandwidth: The spread of the spectrum, generally lower in PD patients.

*  Spectral contrast: Distinguishes between peaks and valleys in speech signals, helpful
in detecting PD-related voice changes.

4.3.4. Cepstral Features

*  Cepstral peak prominence (CPP): Measures the strength of the periodic component
in speech.

¢ Linear predictive coding (LPC): Assists in modeling the vocal tract and identifying
articulation impairments.

4.3.5. Non-Linear Features (Voice Stability, Complexity)

*  Recurrence quantification analysis (RQA): Quantifies complexity and stability of
vocalization patterns [22].

* Lyapunov exponents—Measures the chaotic behavior of speech, proportional to the
extent of aberrant vocal fold vibration.

*  Glottal-to-noise excitation ratio (GNE): Explains how noisy the glottal source
signal is.
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4.4. Proposed Methodology

Voice datasets for PD detection were utilized in this study. The first dataset was
obtained from Figshare [23], containing voices of 81 subjects made up of 41 non-PDs (Hc)
and 40 subjects with PwPD where individuals pronounced the vowel /a/. The second
dataset consists of recordings from 15 participants in Mizoram, India, including 10 non-PDs
and 5 PD patients recorded in a controlled environment pronouncing alphabetical words.
Figure 1 shows the work process of the proposed framework. Dataset 1 includes continuous
vowel /A/ pronunciation, while Dataset 2 contains alphabetic word recording. Recorded
voice samples are stored in datasets for further processing. Preprocessing is the next step of
the analysis where background noise is separated from speech signals, which is important
because background noise makes the features extraction process noisy as well as the model
accuracy. After removing the noise, several features are extracted from the speech samples
such, as the spectrogram, jitter, the RPDE (recurrence period density entropy) and the
MEFCC. These features include spectrograms, which show how much speech energy was
presented to a speaker, compared to jitter, which measures frequency differences between
vocal fold cycles; in patients with PD, jitter is heightened due to unstable voicing. RPDE
is used to analyse phonation stability and MFCC models the essential characteristics of
the vocal tract. All quantitative results reported in this paper are based exclusively on
Dataset 1. Dataset 2 was not analyzed due to its small sample size and is presented here
solely as a pilot dataset.

ML models used feature extraction and selection through manual techniques that used
specific attributes of data, for example using MFCCs, spectral and phonation features etc.
DL models rely on end-to-end learning, which means they automatically learn relevant
features without the need for manual selection or preprocessing. This is done by using
DL models that directly process raw audio waveforms or spectrogram inputs. Once the
features are extracted and selected on mutual information gain and RFE, duplicate or
certain insignificant features are removed to be used for classification. The dataset is then
split into training and testing sets and we carry out hyperparameter tuning based on the
optimum hyperparameters using grid search CV, since we have not trained the model
yet. Various state-of-the-art and DL models used for classification include CNN for deep
feature extraction, BILSTM networks for capturing temporal dependencies in speech and
DNN for learning complex patterns. Besides these, classical ML algorithms such as logistic
regression, SVM, and XGBoost are used to discriminate between PD and non-PD patients
as well.

Lastly, in the post-processing of training and evaluation models, the classification
results will specify and classify whether a patient will have PD according to the data they
provided or if they would be a non-PD. The results suggest that spectrogram-based features
and MFCC are significant to classify PD patients and DL models like CNN and BiLSTM
usually have better performance than traditional ML methods. Techniques such as RFE
and mutual information gain aid in minimizing computational complexity and increasing
accuracy. Using grid search CV allows us to fine-tune hyperparameters to yield a model
with better generalization. Figure 1 provides a comprehensive illustration of the proposed
methodology, outlining its key components and workflow.
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Figure 1. Proposed methodology.

4.4.1. Noise Reduction in Audio Signals Using Spectral Gating

Noise reduction in audio signals using spectral gating is designed to reduce back-
ground noise while retaining the speech or desired signal [24]. This method first estimates
the noise power spectrum before applying a gain function that tries to attenuate frequencies
dominated by noise. And is commonly used for speech enhancement, hearing aids and
audio preprocessing for ML tasks. Researchers have also developed advanced Algorithm 1
to improve background noise removal, enhancing the clarity and intelligibility of the
desired signal.

Waveform comparison of the original (blue) and denoised (orange) signals was done.
This original waveform shows in Figure 2 large variation in amplitude between (—1.0
and 1.0) because of the background noise and irregularities. In comparison, the denoised
signal has a more consistent amplitude with smaller variations, particularly within silence
periods. The output of guided denoising is a clean representation of those key speech com-
ponents, devoid of any unnecessary noise. Its importance in enhancing feature extraction
and increasing classification accuracy in the detection of Parkinson’s disease cannot be
over-emphasized.
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Figure 2. Comparison of original and denoised audio waveforms for the sustained vowel /a/

(“alphabetical voice’) recorded at a sampling rate of 44.1 kHz.

Alg

orithm 1 Audio Denoising Algorithm

LI RS B S

10:

11:

: Input: Noisy audio file input_audio.wav
: Output: Denoised audio file output_denoised.wav

Load the input audio file and sampling rate f; = 44.1 kHz

: Normalize the audio data to the range [—1,1]
: Compute the short-time fourier transform (STFT):

X(t,f) =) x(n)w(n— t)e 12mfn

: Estimate noise power spectrum from the first T = 10 silent frames:

1 T
P(f) = 3 LIXC AP

Compute noise threshold:

T(f) =kPu(f), k=15

Apply spectral gating using gain function:

Filter the STFT coefficients:

X'(t,f) = G(f) - X(t )

Perform inverse STFT to reconstruct the denoised signal:

*(n) =Y X'(t, /e "w(n —t)
f

Normalize and save the denoised audio as output_denoised.wav

4.4.2. Summary Table of Features (PD s. Non-PD)

non:

Table 4 presents the most discriminative speech features used to distinguish PD from
-PD. Speech from PD patients is characterized by:

Higher instability in zero crossing rate (ZCR), spectral bandwidth, jitter and shimmer
Poorer formant structure and lower harmonic-to-noise ratio (HNR)

Distorted Mel spectrogram and MFCC patterns

Relatively slower speech rate
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These characteristics assist in the automatic diagnosis and classification of speech
patterns associated with PD [25].

Table 4. Summary of discriminative speech features between PD and non-PD.

Feature Value Range Parkinson’s (PD) Non-PD (HC)

Zero crossing rate (ZCR) Oto1l Higher (unstable speech) gggzsi)(more voiced
Lower (confused

Spectral centroid Hz high-frequency Higher (clearer speech)
components)

Spectral bandwidth Hz High (speech instability) Low (stable speech)

Spectral contrast Formant-related Lower (weaker formants) Higher (stronger formants)

Spectral flatness Otol Higher (bregthy of Lower (clearer voice)
unstable voice)

MEFCCs —30to +30dB Altered vocal tract features Normal patterns

Mel spectrogram Visual pattern Dlstorteq, weak high Clear, strong patterns
frequencies

Fundamental frequency
(FO)
Jitter

Shimmer

Harmonics-to-noise ratio
(HNR)

Formant frequencies (F1,
F2, F3)

Delta & delta-delta MFCCs
Speech rate

Hz Less variation (monotonic) More variation
% Higher (voice instability) Lower (stable phonation)
4B Higher (amphtude Lower
fluctuations)
dB Low (noisy/airy voice) ngh (clear harmonic
voice)
Hz Blurred /modified Well-defined formants
formants
Dynamic MFCCs Lower dynamics Normal variation
Words/s Slower (60% of normal) Normal speed

4.5. Zero Crossing Rate (ZCR)

*  Description : Computes the rate of sign changes in a waveform, which may indicate
vocal tremors.
*  Value Range: From 0 to 1 (higher for unvoiced or noisy sounds)

4.6. Spectral Centroid

*  Description: Represents the “center of mass” of the spectrum. A lower centroid
suggests fewer high-frequency components [26].
*  Value Range: Frequency in Hz (higher for sharp or bright sounds)

4.7. Spectral Bandwidth

*  Description: Measures frequency spread around the spectral centroid. Larger values
may reflect speech irregularities.
*  Value Range: Frequency in Hz

4.8. Spectral Contrast

¢ Description: Calculates the contrast between peaks and valleys across frequency
sub-bands.
* Interpretation: Higher values indicate stronger formant structure and clearer speech.

4.9. Spectral Flatness

*  Description: Measures how noise-like the sound is. Parkinson’s patients may show
more flatness due to a breathy or unstable voice.
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* Range: 0 (pure tone) to 1 (white noise)

4.10. MFCCs (Mel-Frequency Cepstral Coefficients)

*  Description: Represent the short-term power spectrum of a sound, based on the Mel
scale. MFCC patterns change in PD speech.
*  Value Range: Approximately —30 to +-30 dB

4.11. Mel Spectrogram

e Description: A time—frequency representation showing how energy is distributed
over the Mel scale. Suitable for input to DL models.
e  Type: Colored log-power spectrogram

4.12. Classification Models
4.12.1. Bidirectional Long Short-Term Memory

Detecting PD using only CNNs isn’t ideal because they mainly focus on spatial
patterns in spectrograms but fail to capture the changes in speech over time. To address
this, researchers combine CNNs with BiLSTMs. CNNs handle feature extraction, while
BiLSTMs track speech variations, leading to better accuracy. To prevent overfitting, they
use techniques like adding background noise, shifting pitch and stretching time in audio
samples. Other methods include dropout, L2 regularisation, early stopping and fine-
tuning parameters like learning rate and batch size. This combined approach makes
PD detection from voice recordings more reliable. BILSTM networks are widely used in
audio classification to capture the temporal context of audio signals from both past and
future. In contrast, traditional LSTMs deal with only one directional sequence, forward;
whereas [27], a BILSTM model employs two LSTM layers, the first one reads the input
time-series sequence in the forward direction and the second in the backward direction,
which makes smoother audio context understanding. A forward hidden state given an
input sequence of extracted features, such as MFCCs or a spectrogram Equation (1):

It = LSTM(x;, Iy 1) (1)

Similarly, the backward hidden state is defined in Equation (2):

(_
Wi = LSTM(x, iy 11) @)
The combined hidden state is obtained by concatenating both forward and backward
states, as shown in Equation (3):
—
AN (3)

Finally, the output prediction is computed through a Softmax layer (Equation (4)):

y = Softmax(Wh; + b) (4)

BiLSTM units observe both past and future audio frames, making them quite effective
in specific tasks like speech recognition, music genre recognition and environmental sound
classification, where accuracy is mainly improved by joint training, because it allows the
model to learn from the complete temporal context.

4.12.2. Deep Neural Networks (DNNs)

DNNs [28] have demonstrated their significant potential for PD detection from an
audio signal, particularly by analyzing speech impairments that are more common in the
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early stages of the disease. Aspects of speech associated with Parkinsonism, including
monotonous tone, dysphonia, articulation difficulties and tremors, can be successfully
represented by MFCCs, spectrograms and jitter /shimmer features.

A fully connected network with several layers is then applied to these features, which
learns representations that are either informative for classifying non-PD individuals or
those with PD. The input feature vector is given by:

Deep neural networks exhibit a performance gain over conventionally trained ML
approaches for speech-based detection of PD due to their ability to learn complex non-
linear relationships in the gathering of voice impairments. Such an MRI-based approach
is especially useful for early diagnosis and progressive monitoring of the PD course for
remote and non-invasive diagnosis.

4.12.3. Combining Convolutional Neural Networks (CNNs) with Gated Recurrent
Units (GRUs)

Combining CNNs with gated recurrent units (GRUs) for detecting PD from audio
signals has received increasing attention. This is because CNNs are suitable for capturing
local features of input data (like speech signals), while GRUs have been shown to provide
good performance for problems that require long-term dependency modeling . Therefore,
the combination of such neural networks is a particularly interesting approach for analyzing
voice impairments associated with PD.

GRUs are preferred over standard recurrent units as they reduce overfitting by con-
trolling redundant information flow, requiring fewer parameters than LSTMs. To further
prevent overfitting, techniques like dropout, L2 regularization, data augmentation (noise
addition, pitch shifting, time stretching) and hyperparameter tuning are applied, ensuring
a more robust and accurate classification. The process starts with feature extraction from
the speech data in the form of MFCCs, spectrograms, or wavelet transforms, for example.
These features are then provided to CNN layers for spatial pattern detection on the input
(in the case of a 2D matrix). The CNN operation is represented in Equation (5):

F=0(W:xX+b) (5)

where W, denotes convolutional filters, * signifies the convolution operation and ¢ is an
activation function such as ReLU [29]. Then, the high-level features are fed into a GRU
layer that captures temporal dependencies as shown in Equation (6):

]’lt = (1—Zt)0ht,1 +Zt0flt (6)

where z; is the update gate controlling information flow and /; is the candidate activation.
The resulting feature representation is classified via a softmax function (Equation (7)):

y = Softmax(Woht + b,) (7)

This CNN-GRU design helps discover vocal markers of PD manifestations such as
tremors, dysphonia, or articulation issues, enabling a fast and non-invasive diagnostic
method for the early detection of PD.

4.12.4. Combination of CNN and LSTM Networks

In analyzing audio signals used in PD detection, a combination of CNN and LSTM
networks outperformed state-of-the-art methods used for this type of task. Since CNNs [30]
are good at capturing the local spatial patterns in speech data and LSTMs can capture
long-term dependencies, this architecture is an appropriate choice for modeling speech
disabilities of PD patients. The process starts by extracting features from the speech
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recordings using MFCCs, spectrograms, or wavelet transforms. The CNN layers process
these extracted features to identify meaningful representations. This technique exploits the
ability of the CNN-LSTM model to detect voice markers of PD, e.g., monotone voice, tremor
and dysarthria, thus presenting a powerful and non-invasive method for early diagnosis.

4.12.5. SVM Model for Parkinson Disease

SVM is a supervised type of learning algorithm that can classify PD and non-PD
using voice features such as jitter, shimmer and MFCCs. It is also known as support vector
machine (SVM), as it uses support vectors to separate the different classes. The SVM
supervised learning algorithm is extensively used to classify PD and non-PD based on
voice features like jitter, shimmer and MFCCs. This process aims to separate two different
classes from each other and it does it by maximizing the margin between them to find the
optimal hyperplane, which is perfect for detecting PD with audio signals.

4.12.6. Extreme Gradient Boosting (XGBoost for Parkinson Disease)

The extreme gradient boosting (XGBoost) is one of the state-of-the-art ML algorithms
to classify PD and non-PDs from voice features that could be jitter, shimmer, MFCCs, etc.
XGBoost constructs an ensemble of decision trees, where trees are sequentially added to
reduce the errors of its predecessors by optimizing a regularized objective function.

The model output is basically the sum of outputs from K trees as shown in Equation (8):

K
Ji =Y fr(xi) (8)

A loss function [ is part of the objective function, which represents the difference
between the predicted §J; and the true label y;, along with a regularization term Q( fi) for
managing the complexity of the model as shown in Equation (9):

L :Zl(]/iryi)+;0(fk) ©)

However, this makes XGBoost very effective in processing complex patterns as well as
preventing overfitting when dealing with Parkinson’s voice detections.

4.12.7. Logistic Regression for Parkinson Disease

Logistic regression is one of the simplest, but powerful statistical models that can help
to classify data into two discrete classes. For example, identifying whether the data belongs
to PD patients and non-PD subjects. This model predicts the probability that a sample
belongs to a specific class (PD or Non PD) given voice features like jitter, shimmer and
MFCCs. To translate the linear combination of features into a probability that falls between
0 and 1, the model applies a sigmoid function as shown in Equation (10):

1

P(]/:1|x):m

(10)

Logistic regression optimizes parameters by minimizing a log-loss function. It is
interpretable and performs reasonably if the relationship is approximately linear between
features and the outcome.
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Amplitude

5. Result
5.1. Waveform Comparison Non PD vs. Parkinson’s Voice

The audio snippet corresponds to the audio of a non-PD (Hc) subject. This Figure 3
shows that the waveform is symmetric to zero, meaning that it does not have a DC offset.
The beginning has the largest amplitude, indicating [31] a strong onset, which is a charac-
teristic of normal speech. Note that the peak amplitude is about +1.0; this means that the
signal has been normalized to ensure consistency for the analysis. Also, notice how the
density of the waveform tapers off towards the end, which naturally represents a smooth
speech fade-out.

Waveform: Healthy Control Waveform: Parkinson’s Disease

Amplitude
o
5
8

-0.50

-0.75

-1.00

1 15 [ 05 1 15 2 25 3 35 4
Time (s) Time (s)

(a) Waveform of a healthy control (HC) subject. (b) Waveform of a PD patient.

Figure 3. Comparison of waveforms: (a) Healthy control subject and (b) PD patient.

The waveform of a sample voice of PD shows in Figure 3 a large discontinuity in
amplitude, reflecting instability of intensity during speech. As opposed to a normal non-PD
(Hc) waveform, which has a smooth and stable pattern, the PD waveform exhibits irregular
fluctuations and instability, particularly between 0.5 s to 4 s, where there is clear interruption
and variation. These findings indicate more variation, where jitter (frequency instability)
and shimmer (amplitude instability), both hallmarks of dysphonia in PD patients, are
concerned. On the other hand, sudden drops in amplitude correspond to unintentional
voice breaks, a typical symptom of PD, as patients find it difficult to maintain phonation.
As a consequence, this frequently gives rise to diminished fluency of speech and reduced
phonation time [32]. The fast-paced amplitude fluctuations additionally indicate that high-
frequency tremors are present and influence the modulation of voice. Patients with PD
tend to have a greater degree of jitter (normal < 0.5%, PD 3-5% vs. >0.5%) in addition to
lower HNR (< 7 dB vs. >10 dB). These cause a quavery, weak and monotonous tone of
voice, commonly seen in PD speech.

5.2. Spectrogram Analysis of Non PD and PD Speech

The non-PD voice sample spectrogram gives a time-frequency representation in
Figure 4 of the audio signal as the time evolution of a component is shown on the
x-axis and the frequency of the component can be seen on the y-axis, displaying the
intensity (dB level) of various frequency components at a given time [33]. The frequency is
up to about 2048 Hz and is sufficient to catch the essential information of speech. Small
horizontal bands at different frequencies are an indication of strong harmonics and the
formation frequencies that are important for vowel production and clarity of speech.
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(a) Spectrogram of a non-PD (HC) subject, showing stable (b) Spectrogram of a PD subject, showing unstable frequency

harmonics and frequency components. components and amplitude variations.

Figure 4. Comparison of spectrograms: (a) Non-PD (HC) subject and (b) PD subject.

In this spectrogram:

*  The brighter colors (dB closer to 0) are indicative of the high-energy frequency compo-
nents in these spectra, largely situated around 128 Hz, 256 Hz, 512 Hz and 1024 Hz,
which correlate with basic speech formats.

*  Regions (below —60 dB) are lower-energy or silent sections, demonstrating a clear
distinction between voiced and unvoiced speech segments.

*  The faintness of the mid-frequency components indicates a constant voice without
many trembling or irregular modifications through time.

In the spectrogram output [34] of the PD voice sample, as shown in Figure 4b there
is a higher concentration of energy at lower frequencies (less than 500 Hz) and weak
harmonics at higher frequencies (>1000 Hz); this indicates a reduced vocal range.
Compared to non-PDs (Hc), speech in PD demonstrates an increased spectral entropy,
indicating increased instability and noise in the voice. The periodic narrowing of the
bandwidth and the uneven gaps between frequency bands indicate problems with
articulation, which is closely associated with motor control of the vocal cords. The
HNR of the non-PD is higher (over 10 dB) than that of the PD patients (under 7 dB),
showing a breathy voice quality. Furthermore, weakened formant structures indicate
less transparent speech, an important part of the PD dysphonia symptom repertoire.

5.3. MFCC Visualization of Non-PD and PD Voices

In Figure 5a shows the MFCC visualization of a non-PD (Hc) indicates a more equal
distribution of spectral features and MFCC values ranging from around —150 to +60 [35].
The strong light red and beige tones throughout the mid-range frequencies also suggest a
stable resonant filter for his vocal tract and the result is clear articulation and minimal vocal
tremor. The lower MFCC coefficients (dark red at the bottom) are all consistent, indicative
of strong low-frequency phonation. The light blue areas in the top part indicate natural
variability in speech but do not show excessive instability as would be seen in a person
having PD.

The MFCCs visualization of the PD voice in Figure 5b shows differs greatly from
that of a non-PD voice. The MFCC values range from approximately —150 to 110, with
more blue tones in the mid-to-high-frequency regions. This implies increased instability
of vocal resonance, a feature of Parkinson’s-induced dysarthria. The lower-frequency
bands (bottom red region) remain prominent, but the emergence of blue patches in the
upper bands indicates reduced speech clarity and increased breathlessness. By definition,
the more disorganized signal overall suggests reduced articulation control and irregular
phonation, which are often observed in PD patients.
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(a) MFCC visualization of a non-PD (HC) subject. The stable  (b) MFCC visualization of a PD subject. The distribution
distribution of spectral features indicates clear articulation. reveals irregular phonation and tremors.

Figure 5. Comparison of MFCC visualizations: (a) Non-PD (HC) subject and (b) PD subject.

5.4. Comparison of Mel-Spectrograms for Non PD and PD Patients

Mel-spectrogram for a non-PD, demonstrating well-defined harmonic structures in
Figure 6a with the mention of the high-energy bands extending from 512 Hz to around
2048 Hz, which suggest stable phonation. The intensity ranges from 0 dB (bright yellow) to
around —60 dB (very dark purple) which corresponds to bright and loud sounds to the
lack of distribution of vocal power. The uniform harmonic bands suggest smooth vocal
cord vibrations, which are necessary for normal speech. In addition, the absence of too
much spectral noise indicates good articulation and stable voice.

The Figure 6b illustrates a Mel-spectrogram where PD” represents the frequency
content of a signal over time. The x-axis shows walking time from 0 to 3.5 s, while the
y-axis represents frequency from 0 to 2048 Hz, with key divisions at 512 Hz, 1024 Hz and
2048 Hz. The intensity of color, ranging from dark purple (—60 dB) to bright yellow (0 dB),
represents the amplitude of the frequencies, with brighter colors indicating greater energy.
The auditory spectrogram of the consonants is produced in a reversed signal, with a slight
upward trend due to the inclination of the signal. Consistent banding with moderate
amplitude shifts (—20 to —40 dB) may reflect regularities or tremors common in PD speech.

Mel-Spectrogram: Healthy Control Mel-Spectrogram: Parkinson’s Disease

(a) Mel-spectrogram of a non-PD subject. The spectrogram (b) Mel-spectrogram of a PD patient. The spectrogram reveals
demonstrates well-defined harmonic structures, with high-energy  disrupted harmonic structures and increased spectral noise,
bands extending from 512 Hz to around 2048 Hz, indicating suggesting unstable phonation and impaired articulation.
stable phonation.

Figure 6. Comparison of Mel-spectrograms: (a) Non-PD subject and (b) PD patient.

The illustration below shows in Figure 7a three important graphical presentations of
the speech signal, corresponding to the file 050600101 , which may be from either a PD or
non-PD sample. The plots significantly highlight the features of the voice signal that may
help distinguish PD patients from non-PD subjects.

The signal is interrupted [36] by bursts of speech (high-amplitude parts) at fixed intervals
of 2 to 5 s, interspersed with low-amplitude sections. The regularity of such energy distribution
can reveal speech impairments, as both are known to occur in PD patients who experience
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dysarthria (difficulty in articulating words and weakness in speaking). Areas with gaps or weak
passages can indicate poor voice stability, which is a frequent complaint in PD.
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(a) Waveform, Mel-spectrogram and MFCC (b) Mel-spectrogram of a non-PD (HC) sample. The spectrogram shows

representation of the speech signal. strong formant bands in the mid-range (512-3000 Hz), indicating stable

speech production and well-maintained harmonics.

Figure 7. Comparison of speech feature representations: (a) Waveform, Mel-spectrogram and MFCC;
(b) Mel-spectrogram of a non-PD (HC) sample.

5.5. Mel-Spectrogram Features

The Mel-spectrograms exhibit distinct patterns between non-PD and PD speech sam-
ples. Asillustrated in Figure 6a, the non-PD subject shows well-defined harmonic structures,
particularly in the mid-frequency bands (5122048 Hz), indicating stable phonation and
clear articulation.

In contrast, Figure 6b shows the spectrogram of a PD subject, where disrupted har-
monic structures and increased spectral noise are clearly visible. The intensity is con-
centrated in lower frequency ranges (<500 Hz), and high-frequency harmonics are weak
or missing. These observations correlate with common PD symptoms such as unstable
phonation, breathiness, and tremors.

The irregular vertical banding patterns in PD spectrograms suggest frequent breaks in
phonation, while the relatively uniform and strong formants in non-PD samples support
their use as a baseline for healthy vocal production.

5.6. MFCC (Mel-Frequency Cepstral Coefficients) Analysis

The MFCC representations further highlight differences in articulation between non-
PD and PD speech [37]. Figure 5a depicts the MFCC pattern of a non-PD (HC) subject, show-
ing a well-structured distribution of spectral features with consistent low-frequency bands
and balanced mid-to-high frequency components. This reflects stable vocal tract dynamics.

In contrast, Figure 5b shows the MFCCs of a PD subject, with irregular distribution
and dominance of lower frequencies (dark blue regions). The scattered high-frequency
regions and lack of clear patterns suggest reduced articulatory control, a hallmark of
Parkinsonian dysarthria.

These visual differences support the use of MFCC-based features for distinguishing
PD speech, reinforcing the findings observed in the model’s classification accuracy.

5.7. Mel Spectrogram of a Non-PD (Hc) Sample

The non-PD (Hc) sample Mel spectrogram shows in Figure 7b a observable structure that is
expected for normal speech production (more stable). Time (s) is shown [38] on the x-axis (this is
approximately 6.5 s in duration), while the y-axis is frequency (Hz) ranging from [0 to 8192 Hz].
Frequent, evenly-spaced, strong formant bands in the mid-range (512-3000 Hz) indicate good
separation of formants and overall well-maintained harmonics [39]. Color darkness corresponds
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to amplitude; bright yellow areas (eg, 0 dB) correspond to very high-energy phonemes (usually
to the phonemes of vowels), while purple/darker black areas (—80 dB) correspond to silence or
consonants with weaker energy.

In contrast to a common PD spectrogram [40], which may show less intact formants,
more spectral noise and less stable phonation, this non-PD spectrogram shows more tempo-
ral correlation and harmonics stability. Possible explanation more controlled and sustained
vocalization since we have clear, repeating formants here and strong spectral contrast.

Algorithm 2 presents a DL-based method for detecting PD using voice recordings.
It involves preprocessing audio data, training and prediction using models like CNN or
LSTM and evaluating performance via F1-score, accuracy, sensitivity and specificity.

Algorithm 2 PD Detection using DL

: Input: Patient data (voice recordings), Trained DL model

: Output: Predicted class label (PD/Healthy), Confidence score

: procedure PREPROCESSING

Format raw audio data (e.g., WAV format at 44.1 kHz)

Remove background noise using spectral gating or adaptive filtering

Normalize audio amplitude to range [—1,1]

Segment speech into frames and extract relevant features (e.g., MFCC, pitch, jitter)
: end procedure

: procedure DISEASE DETECTION

10: Perform 10-fold cross-validation to mitigate class imbalance

11:  Split dataset into training and test sets

12: Train DL model (e.g., CNN, LSTM, Transformer) on extracted features
13: Predict labels: PD or HC

14: end procedure

15: procedure EVALUATION
16: Evaluate using metrics: F1-score, accuracy, sensitivity, specificity
17: Compare performance across different datasets (e.g., multiple voice recordings)

=
o]

: end procedure

The Parkinson’s disease detection system consists of several components, beginning
with data collection where users are asked to vocalize specific alphabetical words. They
then use mobile devices to audio-record their voices, generating two datasets of raw
recordings, each detrended and sampled from both non-PDs and persons with Parkinson’s
Disease. After recording, voice data is pre-processed by filtering out unnecessary sounds,
such as background noise. Then we get various vocal features, like Jitter, RPDE, MFCC,
spectrograms, etc. Afterward, the features are chosen and their relevance is evaluated
through mutual information gain and recursive feature elimination (RFE) to determine the
features that are of great importance. Use of a grid search cross-validation (CV) approach
is made to adjust the parameters of the models and select the best subset of features.

This step involves applying ML [41] and DL algorithms on the cleaned-up data after
feature selection. We employ a variety of off-the-shelf ML algorithms (logistic regression,
SVM and XGBoost) and DL architectures CNN, DNN and BiLSTM). The evaluation of
these models is done with metrics including accuracy, precision, recall and Fl-score.

Figure 8a shows the training accuracy and loss over 50 epochs for our CNN + LSTM
model, respectively, indicating that the model is learning and generalizing well. Training
accuracy: As we can see from the accuracy plot above, the training accuracy has an upward
trend over time and eventually reaches 100%. We can see the validation accuracy remains
stable throughout the different epochs, indicating that the model was able to memorize
some important patterns from the data and also generalize well.
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Figure 8. Comparison of deep learning model performance across training and validation:
(a) CNN+LSTM, (b) BiLSTM, (c¢) CNN+GRU and (d) DNN. Accuracy and loss trends highlight
the differences in learning behavior and generalization ability.

This is even further confirmed by the above loss plot, indicating that the model is definitely
learning. Training loss: In the course of training the model to predict the outcome from the
training data, we see a gradual decline in training loss over the period and by the time the
training reaches the final epochs, the loss is near zero which is an indication of the model being
able to minimize the errors on the training data. The validation loss keeps a repeated trend
similar to training loss, which indicates the model can overfit the validation data.

These metrics show that the CNN + LSTM model achieves high accuracy and learns ef-
fectively across epochs, indicating it is a good choice for predicting PD based on voice data.

This study developed a hybrid DL model integrating CNN and long short-term
memory (LSTM) networks, to classify subjects with Parkinson’s disease (PD) and non-
PD based on features extracted from their voice data. The first stage of the architecture
comprises CNN layers to extract local spatial features from the spectrogram-like input data,
consisting of two consecutive convolutional layers with 32 and 64 filters and associated
down-sampling with max-pooling. The output is then flattened and reshaped from spatial
features to the sequential data needed for obtaining temporal features. Next, we build on
top of that with two LSTM layers, the first with 64 and the second with 32 units, which will
understand time dependencies and long-range time patterns within the features. Definitely
this enables the model to learn local feature representations and sequential dynamics
efficiently [42]. Two fully connected (dense) layers come after the LSTM layers, consisting
of 64 neurons with a ReLU activation function and a dropout layer (0.5) were added
to help reduce overfitting since the model is complex. The model output is then passed
through to the final sigmoid activation layer neuron, rendering the model suitable for binary
classification between non-PD and PD. We compiled the model with the Adam optimizer
with a learning rate of 0.001 and used binary cross-entropy loss. The model was trained
for 50 epochs with a batch size of 16 and an 80-20 split between training and validation
data. As you can see from the training history, convergence seems relatively steady, with
improvements seen in both training as well as validation accuracy as you move between
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epochs. Overall evaluation of the model led to an accuracy score of 91%,showing the ability
of the model in capturing both the spatio-temporal characteristics of the voice data.

5.8. Performance Metrics

To assess the performance of the proposed model, several standard classification
metrics were used to measure the model [43]. These included accuracy, precision, recall,
specificity, F1-score, Matthews correlation coefficient (MCC), and area under the curve
(AUC). These give statistics a complete evaluation by balancing general correctness, class
-wise discrimination and robustness against class imbalance in detailed Table 5.

Table 5. Classification Performance Metrics.

Metric Formula
Accuracy TP+ TN
TP+ TN+ FP+ FN
Precision T
TP + FP
Recall (Sensitivity, TPR) TP
TP+ FN
Specificity (TNR) _IN
TN+ FP
F1-Score 2 - Precision - Recall
Precision + Recall
Matthews corr. coefficient (MCC) TP-TN—FP-FN

\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Multiple DL architectures, such as BILSTM, CNN + GRU, CNN + LSTM, and a
fully connected DNN, were used to evaluate the Parkinson’s disease detection system.
The performance and convergence behavior of each model were evaluated over a series
of epochs.

Below in Figure 9a is a simple bar chart summarizing the final model accuracies that
shows us how BiLSTM is better than the others, followed by CNN + GRU, CNN + LSTM,
and DNN respectively. All of the models were able to learn, as exemplified by the accuracy
going up and the loss going down by epoch. All of these DL and ML methods are thus
capable of accurately detecting Parkinson’s disease given voice data.

For the BiLSTM model shown in Figure 8b witnessed some level of improvement
in both training as well as validation accuracy over 20 epochs. Its training accuracy
progressively improved to nearly 100% and by the final epoch, its validation accuracy
approached about 88%. The corresponding loss curves showed a declining trend in both
training and validation loss, suggesting that the architecture was effectively learning and
not overfitting. According to the results, the BILSTM model achieved a final accuracy of
97%, indubitably the highest among all models.

The performance of CNN + GRU was consistent over 20 epochs. In Figure 8c, the
training accuracy kept increasing with a value over 95% and the validation accuracy
achieved a stable value of 72%. The training and validation loss curves were steadily
decreasing, with training loss reaching below 0.3 by the final epoch. It successfully learned
the spatial and sequential features of voice, with a final accuracy of 94%. In Figure 8d, fully
connected DNN performed quite well and at least some learning was observable after just
20 epochs. Training accuracy kept increasing, reaching about 85%, while validation accuracy
ranged from 55% to 60%. As a result, the training loss dropped to much lower values
(less than 10) and validation loss followed the same trend, indicating effective learning.
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Although it has a more basic architecture, the DNN model reached a final accuracy of 81%,
confirming it as a good baseline.

Model Accuracy Comparison

Final Model Accuracy Comparison Lo
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0.8
0.8 4
- 0.6
~
> 06 &
o =
l]— [¥)
g g 0.4
0.4+
0.2+
0.2+
i 0.0 - . — "
: BILSTM DNN CNN + GRU CNN + LSTM SVM XGBoost Logistic Regression
Models Model
(a) Final model accuracy comparison between different DL (b) Accuracy comparison of classical ML models.

architectures.

Figure 9. Comparison of classification accuracies: (a) Deep learning architectures, where BilL-
STM outperformed other models; (b) Classical machine learning models, where XGBoost showed
the best performance.

SVM, XGBoost and logistic regression show significantly lower performance than
DL approaches. As illustrated in Figure 9b, all three ML models achieved AUCs below
0.60. While SVM and XGBoost produced an AUC of 0.56, logistic regression produced
the lowest AUC at 0.53. In Figure 10, values suggest weak discriminative power for the
PD vs. non-PD cases. The ROC curves are close to the diagonal line, indicating that
these models are only slightly better than random classification. The poor performance of
these conventional ML algorithms in PDVPC can be further explained by their inability to
successfully model the non-linear and spatio-temporal dependencies hidden in the vocal
features of PD participants. Conversely, DL-based models, such as BILSTM and CNN-based
hybrid models, demonstrate significantly better accuracy and AUC scores, indicating their
appropriateness for medical phenotype detection approaches for PD.

ROC Curve Comparison

1.0 { — SVM (AUC = 0.56)
XGBoost (AUC = 0.56)
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Figure 10. Comparison of ML classifiers on ROC Curve. The SVM and XGBoost models scored 0.56
in AUC and the logistic regression model managed to reach only to 0.53. Results show a very low
discriminative ability for the ML classifiers trained on the PD detection task, achieving performances
close to random classification.

To ensure transparency and reproducibility, the architecture of all deep models used in
this study is explicitly described. Each model has been designed to capture both spatial and
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temporal patterns in speech signals, with convolution layers serving as feature extractors
and recurrent layers (CNN-LSTM, CNN-GRU, DNN, and BiLSTM) modeling dependencies.
Complete connected thick layers with ReLU activation have been used for classification
and dropout has been included to reduce the speed of overshoot. All models used the
Adam optimizer (learning rate = 0.001) with a binary cross entropy loss. The architectural
specifications of CNN-LSTM, CNN-GRU, fully connected DNN and BiLSTM models are
summarized in Table 6.

Table 6. Summary of deep learning architectures used for PD detection.

Model Architecture Details

CNN-LSTM

Conv2D (32 filters, 3 x 3, ReLU, same) — MaxPooling (2 x 2) — Conv2D (64 filters, 3 x 3, ReLU, same) — MaxPooling (2 x 2) — Flatten —
Reshape (40 timesteps) — LSTM (64 units, return_sequences) — LSTM (32 units) — Dense (64, ReLU) + Dropout (0.5) — Dense (1, sigmoid)

CNN-GRU

Conv2D (32 filters, 2 x 3, ReLU, same) — MaxPooling (2 x 2) — Conv2D (64 filters, 3 x 3, ReLU, same) — MaxPooling (2 x 2) — Flatten —
Reshape (40 timesteps) — GRU (64 units, return_sequences) — GRU (32 units) — Dense (64, ReLU) + Dropout (0.5) — Dense (1, sigmoid)

DNN (Fully connected)

Flatten input (40 x 128) — Dense (256, ReLU) + Dropout (0.5) — Dense (128, ReLU) + Dropout (0.5) — Dense (64, ReLU) — Dense
(1, sigmoid)

Conv2D (32 filters, 3 x 3, ReLU, same) — MaxPooling (2 x 2) — Conv2D (64 filters, 2 x 3, ReLU, same) — MaxPooling (2 x 2) — Flatten —
BiLSTM Reshape (40 timesteps) — BiLSTM (64 units, return_sequences) — BiLSTM (32 units) — Dense (64, ReLU) + Dropout (0.5) — Dense

(1, sigmoid)

Table 7 provides a detailed performance comparison between ML and DL models for
PD classification. For the ML models, XGBoost obtained the highest accuracy (55%) and
F1-score (0.60) but presented a moderate overall AUC of 0.56. DL models, in comparison,
vastly outperformed their ML equivalents. The BILSTM model outperformed all other
models, achieving an accuracy of 97%, an area under curve(AUC) of 0.95 and an Fl-score
of 0.97, confirming that its predictions were highly reliable. CNN-based architectures,
like CNN + GRU and CNN + LSTM, performed very well, with accuracy of 94% and
91% respectively. The performance of DNN was 81%, which was significantly better than
ML models, but still lower than recurrent DL models. The effectiveness of DL methods,
especially the BiLSTM for PD detection, is highlighted by these results as they can model
complex temporal relationships over voice data. A comparative summary of prior studies
using the same dataset is provided in Table 8, which highlights how earlier works mainly
relied on spectrogram-based CNN transfer learning, whereas our study systematically
investigates multiple representation levels with deep learning classifiers, establishing the
BiLSTM as the most effective approach.

Table 7. Performance comparison of ML and DL models for PD classification.

Model Accuracy (%) Area Under Curve (AUC) Precision Recall F1-Score
ML Models

Support vector machine (SVM) 44.00 0.56 0.45 0.56 0.50

XGBoost 55.00 0.56 0.54 0.67 0.60

Logistic regression 53.00 0.53 0.53 0.67 0.59
DL Models

BiLSTM 97.00 0.95 0.96 0.98 0.97

CNN + GRU 94.00 0.97 0.93 0.95 0.94

CNN + LSTM 91.00 0.95 0.90 0.92 091

DNN 81.00 0.85 0.78 0.83 0.80
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Table 8. Comparison of studies on PD detection using the same dataset.

Study

Dataset

Methods

Key Results

Novelty/Focus

Iyer et al., 2023 (Sci Rep, [23])

UAMS dataset (40 PD, 41 HC,
sustained /a/, telephone
recordings, 8 kHz)

Traditional acoustic features
(23 phonation features, jitter,
shimmer, formants) with
logistic regression, random
forest; Inception V3 CNN with
transfer

learning on spectrograms

RF: AUC = 0.72; CNN on
spectrograms: AUC = 0.97
(color), 0.96 (grayscale)

Demonstrated feasibility of
using low-quality telephone
recordings and
spectrogram-based CNN
transfer learning for

PD detection

Rahmatallah et al., 2025 (Sci
Rep, [44])

UAMS (40 PD, 41 HC) +
mPower subset (188 PD, 210
HC, smartphone recordings,
44.1 kHz)

Acoustic + spectral features
(MFCC, LPCC, LPC, LAR)
with logistic regression,
random forest; CNN
(Inception V3 transfer
learning) on linear vs.

Mel spectrograms

CNN: UAMS AUC =~ 0.95
(linear), 0.97 (Mel); mPower
AUC ~ 0.92 (linear), 0.95 (mel)

Showed Mel-spectrograms
outperform linear
spectrograms; validated CNN
transfer learning across
datasets and

recording platforms

Our study

Same primary dataset (PD vs.
HC speech, raw
audio recordings)

Direct comparison of raw
waveform, MFCC,
Mel-spectrogram and
standard spectrogram; deep
learning classifiers (CNN,

ML baselines poor (AUC
~0.53-0.56); DL models
strong: BILSTM accuracy 97%,
CNN+GRU 94%, CNN+LSTM

Systematic
representation-level
comparison (raw audio vs.
MEFCC vs. spectral vs.
Mel-spectral), unlike earlier
works focusing only on

BiLSTM, CNN+LSTM, 91%

CNN+GRU) spectrogram-based CNN

transfer learning

6. Discussion

While our research study focused on spectrogram and MFCC-based models using
CNN-LSTM, CNN-GRU, BiLSTM and DNN architectures, it is important to recognize the
rapid advances of the prior speech encoding. Recent work done by Wave2Vec 2.0 and
HuBERT has demonstrated that such models can overcome traditional individual features
by using large-scale pre-training and FDA on a relatively small medical dataset. Compared
to our approach, these models can improve generalizability over datasets and reduce
dependence on traditional genetic acoustic parameters. However, their integration requires
significant calculation resources and careful adaptation to the voice of pathology data. In
future work, we aim to explore and benchmark such models again our current pipeline to
weaken the validity of the automatic PDA detection system. The proposed methodology
not only achieves strong classification performance but also offers clear advantages over
existing approaches. Compared to our approach, recent pre-trained spectrogram CNN
work has shown strong performance, demonstrated robust transfer learning performance
using pre-trained CNNs on spectrograms, and noted prior spectrogram-based studies
reporting AUC values in the 0.92-0.96 range [40]. Additionally, some ML-only approaches
have reported high single-study results, [43] reported an MLP testing accuracy of 95% on
the Oxford PD voice dataset. While these prior results are encouraging, pre-trained trans-
former/CNN and large-scale fine-tuning approaches typically require increased compute
and careful domain adaptation for pathological-voice data; we plan to benchmark such
models against our pipeline in future work. Beyond accuracy, the framework reduces
reliance on handcrafted acoustic features by leveraging spectrograms and MFCCs as inputs
to deep models, enabling end-to-end learning of relevant vocal patterns. This makes the
pipeline more reproducible and easier to adapt across datasets, since preprocessing involves
only standard speech transformations. The use of widely available architectures, including
BiLSTM, CNN+GRU, and CNN+LSTM, further enhances accessibility, as these models can
be readily implemented with common deep learning frameworks. Moreover, the system
requires only short phonation tasks, such as sustained vowel /a/ recordings, which can be
collected using mobile devices and integrated into tele-medicine platforms. Taken together,
these characteristics demonstrate not only the effectiveness but also the practicality and
scalability of the proposed approach, while the systematic comparison of multiple methods
provides prospective readers with clear evidence on the benefits of recurrent deep learning
models for PD voice analysis. Our findings align with prior research, emphasizing the role
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of dysarthria-related features in early PD detection. As highlighted in previous works, the
diagnostic utility of pitch, jitter, shimmer, and prosody-based biomarkers, though their
methods relied heavily on handcrafted feature selection. By contrast, our spectrogram
+ BiLSTM framework captures both spectral and temporal dynamics, offering improved
robustness and reducing reliance on manual feature engineering. The superior accuracy
(97%) obtained here compared to studies such as VGG-16 spectrogram models (92-96%)
or MLP-based classifiers (95%) suggests that recurrent DL architectures provide a more
reliable pathway for modeling dysarthric features in PD speech.

While deep learning architectures achieved consistently high performance, traditional
ML methods showed clear limitations. Logistic regression, SVM, and XGBoost produced
accuracies between 44% and 55%, with AUC values close to random classification. These un-
derperformances can be attributed to several factors. First, the handcrafted acoustic features
fed into these models captured only partial aspects of PD-related dysphonia and lacked the
richer temporal-spectral context represented in spectrograms. Second, the relatively small
sample size combined with high-dimensional features increased the risk of overfitting,
leading to weaker generalization. Third, classical ML approaches were highly sensitive to
feature scaling and hyperparameter tuning, resulting in variable performance across cross-
validation runs. Furthermore, the absence of an independent external validation dataset
may limit the ability to confirm model robustness across broader populations. Variability in
recording conditions could also have introduced minor inconsistencies, though their overall
impact is difficult to quantify. Finally, the reliance on feature selection techniques such as
recursive feature elimination (RFE) and mutual information gain made classical approaches
slower and more complex to implement compared to the end-to-end DL pipelines. These
findings underscore why non-deep-learning methods, although included for complete-
ness, are less reliable for PD detection and further highlight the advantages of recurrent
deep learning architectures in capturing the non-linear, time-varying characteristics of
pathological speech.

7. Conclusions

In this research, we investigated and compared the effectiveness of traditional ML
classifiers to DL architectures in the detection of PD through voice signal analysis. The ML
models SVM, XGBoost and logistic regression performed poorly in terms of classification
performance with AUC of 0.56, 0.56 and 0.53 for the respective models. The fact that
conventional ML algorithms often are based on hand-crafted features (as is typical for
conventional ML applications) proves to be a important limitation, as PD speech data
contain rich structure, including complex, non-linear, temporal patterns.

In contrast, the existing DL models demonstrated much better accuracy and robustness.
Among the proposed models, the BILSTM model outperformed with a classification accu-
racy of 97%, while CNN+GRU and CNN+LSTM models achieved accuracies of 94% and
91%, respectively. These models utilize spatial and temporal data to provide an in-depth
depiction of the vocal disabilities related to PD.

An in-house pilot dataset (Dataset 2) was also collected to demonstrate feasibility of
local speech acquisition. Although not analyzed here due to its small size, this dataset
is being expanded, and future work will include LOOCV and detailed error analysis to
validate robustness on this local dataset. In addition, we aim to explore modern self-
supervised models like Wav2Vec 2.0 and HuBERT, and ultimately validate our approach in
real clinical settings to ensure its practical usefulness.
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Abbreviations

The following abbreviations are used in this manuscript:

AUC area under the curve
BiLSTM  bidirectional long short-term memory

CNN convolutional neural network
DL deep learning

DNN deep neural network

EMD empirical mode decomposition
FFT fast fourier transform

GRU gated recurrent unit

HC healthy control

LSTM long short-term memory

MEFCC Mel-frequency cepstral coefficients
ML machine learning

PD Parkinson’s disease

RPDE recurrence period density entropy

SVM support vector machine
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