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Abstract

A 9.4T brain MRI is the highest resolution MRI scanner in the public market. It offers
submillimeter brain imaging with exceptional anatomical detail, making it one of the most
powerful tools for detecting subtle structural changes associated with neurological condi-
tions. Current segmentation models are optimized for lower-field MRI (1.5T–3T), and they
struggle to perform well on 9.4T data. In this study, we present the GA-MS-UNet++, the
world’s first deep learning-based model specifically designed for 9.4T brain MRI segmenta-
tion. Our model integrates multi-scale residual blocks, gated skip connections, and spatial
channel attention mechanisms to improve both local and global feature extraction. The
model was trained and evaluated on 12 patients in the UltraCortex 9.4T dataset and bench-
marked against four leading segmentation models (Attention U-Net, Nested U-Net, VDSR,
and R2UNet). The GA-MS-UNet++ achieved a state-of-the-art performance across both
evaluation sets. When tested against manual, radiologist-reviewed ground truth masks, the
model achieved a Dice score of 0.93. On a separate test set using SynthSeg-generated masks
as the ground truth, the Dice score was 0.89. Across both evaluations, the model achieved an
overall accuracy of 97.29%, precision of 90.02%, and recall of 94.00%. Statistical validation
using the Wilcoxon signed-rank test (p < 1 × 10−5) and Kruskal–Wallis test (H = 26,281.98,
p < 1 × 10−5) confirmed the significance of these results. Qualitative comparisons also
showed a near-exact alignment with ground truth masks, particularly in areas such as the
ventricles and gray–white matter interfaces. Volumetric validation further demonstrated a
high correlation (R2 = 0.90) between the predicted and ground truth brain volumes. Despite
the limited annotated data, the GA-MS-UNet++ maintained a strong performance and
has the potential for clinical use. This algorithm represents the first publicly available
segmentation model for 9.4T imaging, providing a powerful tool for high-resolution brain
segmentation and driving progress in automated neuroimaging analysis.

Keywords: magnetic resonance imaging (MRI); GA-MS-UNet++ (Gated Attention, Multi-
Scale Residual U-Net++); deep learning (DL); machine learning (ML)

1. Introduction
Magnetic resonance imaging is a critical tool for characterizing brain anatomy and

pathology. It offers important insight into the structural and functional aspects of several
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neurological conditions [1]. Accurate segmentation of the brain structures in MRI helps
physicians gain critical insights into pathological changes associated with severe neurolog-
ical conditions. Historically, there have been two leading players in the MRI space: 1.5T
and 3T [2]. Large public databases, such as the Human Connectome Project, focus solely
on these two sequence types, leading researchers to concentrate on creating algorithms
for just those two [3]. Recently, however, ultra-high-field MRI scanners, particularly those
operating at 7T and above, have revolutionized the field of brain imaging. They offer
significantly better signal-to-noise ratio (SNR) and intensity contrasts, as well as improved
visualization of fine anatomical details and better detection of small abnormalities and
lesions, such as those seen in multiple sclerosis [4,5]. Unfortunately, high-field scanners are
prohibitively costly, and as such, very few hospitals in the United States have been able
to deploy 9.4T MRI scanners [6]. These scanners, however, offer unprecedented spatial
resolutions down to submillimeter levels (0.6–0.8 mm isotropic) and improve tissue con-
trast. Existing segmentation models struggle to cope with the 9.4T data because they were
trained on lower resolution imaging [7].

1.1. Existing Deep Learning Frameworks

Current state-of-the-art deep learning models include the U-Net, Attention U-Net,
Very Deep Super Resolution model (VDSR), R2UNet, and Nested U-Net architecture. The
U-Net was the first breakthrough architecture in biomedical segmentation. Proposed by
Ronneberger et al., this approach employed a symmetrical encoder and decoder structure
with skip connections, preserving spatial information from previous layers [8]. Variations
such as the 3D U-Net extend this basic architecture into three dimensions but struggle with
GPU efficiency [9]. The Attention U-Net is a good example of how components of the
original U-Net can be enhanced to better address specific tasks. Researchers dynamically
weighted different regions of the image and focused their computational resources on
contrast and anatomical structures [10]. This approach significantly improved the model’s
ability to delineate subtle boundaries. The Very Deep Super Resolution (VDSR) model
was proposed by Kim et al., and it introduced a deep convolutional architecture for single-
image super resolution that uses residual learning to help improve training and accuracy.
Its feature extraction power has inspired the use of it for segmentation purposes [11].
The R2UNet architecture, proposed by Alom et al., combines the strengths of both recur-
rent residual convolutional layers with the standard U-Net architecture [12]. Integrating
residual units and recurrent connections is a powerful way the R2UNet improves feature
representation. It also promotes strong segmentation performance, especially in the cases
of complex biomedical images (such as 9.4T). The Nested U-Net, also known as UNet++,
further extends the U-Net architecture by utilizing nested and dense skip connections
between the encoder and decoder pathways, offering superior accuracy for biomedical
segmentation tasks, particularly in brain MRI segmentation [13].

1.2. Volumetry in Brain MRI

Quantitative volumetric analysis aids in the early detection of neurodegenerative
diseases. For instance, reduced hippocampal volume is a clear characteristic of Alzheimer’s
disease and can be one of the first indications prior to cognitive decline [14]. Similarly,
changes in brain volume can help differentiate between conditions such as Alzheimer’s
disease, Parkinson’s disease, and another behavioral variant of frontotemporal dementia. In
multiple sclerosis (MS) or other diseases involving white matter lesions, brain volume loss
correlates with a substantial decline in cognitive ability and disability, making volumetric
assessment crucial for evaluating treatment efficacy [15,16]. The integration of automated
volumetric analysis tools, such as NeuroQuant, has further revolutionized clinical practice
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by providing rapid and reproducible measurements, reducing inter-rater variability, and
enhancing diagnostic accuracy [17]. These advancements have made brain volumetry
a standard component in the evaluation of patients with cognitive impairments. As
mentioned previously, the ultra-high resolution provided by the 9.4T MRI enables the
detection of subtle anatomical changes that are often undetectable at lower field strengths.
This increased sensitivity enables more precise measurements of brain volumes, providing
even greater specificity in detecting neurodegenerative disorders.

Similarly, volumetric analysis plays a pivotal role in the clinical workflow for tumor
patients [18,19]. Automated segmentation pipelines using conventional MR such as T1
and T2 imaging have been used in a wide range of applications, including for primary,
metastatic, and pediatric brain tumors [20–24]. More recently, work has been performed
using less common MR modalities. For instance, a recent systematic review on computer-
aided diagnosis using hyperspectral imaging for brain cancer reported a high diagnostic
performance despite small datasets and limited external validation [25]. Finally, even
though we focus on brain MRI in this manuscript, we note that automated deep learning-
based pipelines have use in a diverse range of applications, including but not limited to
cardiac MRI, abdominal CT, retinal fundus imaging, and chest X-rays [26–29].

1.3. Clinical Importance of 9.4T

The 9.4T MRI offers ultra-high resolution in brain imaging by capturing a submillime-
ter resolution [30]. This ultra-high resolution enables clinicians and researchers to identify
subtle abnormalities that may have been missed by lower-strength scanners, such as 1.5T
and 3T. The enhanced tissue contrast has been shown to improve the detection of small
lesions, which is particularly important for the early diagnosis of conditions. Additionally,
9.4T provides stronger and more accurate mapping of white matter pathways, aiding in
the understanding of brain connectivity and neurological disorders. The increased sen-
sitivity also enables better functional imaging properties, providing clearer insights into
brain activity. Although primarily used for research purposes currently, we hope that, by
developing robust segmentation models for 9.4T data, its potential can be realized and
further applied in clinical practice. As technology advances and accessibility improves, this
tool is likely to become a key component of clinical imaging, helping to detect neurological
conditions earlier and support more targeted treatments.

2. Materials and Methods
2.1. Study Design

This study utilizes MRI data that was collected from the UltraCortex dataset [30].
It utilized brain MRI scans at ultra-high resolution, obtained at 9.4T by the Max Planck
Institute for Biological Cybernetics. A total of 78 subjects whose MRI scans were analyzed
for cortical segmentation were included, comprising data from 78 healthy adult volunteers
(28 females and 50 males, aged between 20 and 53 years). The demographic data were
collected in accordance with the guidelines and ethical standards of the institution, and all
participants provided written informed consent, which the relevant ethics committees of
the University Hospital, Tübingen, Germany, approved. Specific subjects were excluded
based on the following criteria: (1) known neurological or psychiatric diseases, (2) con-
traindications to MRI, (3) abnormal vision, and (4) severe motion artifacts or failed technical
validation of images.

2.2. Image Acquisition

The MRI scans were obtained using a whole-body 9.4T MRI scanner (produced by
Siemens Healthineers, Malvern, PA, USA) at the Department of High Field Magnetic
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Resonance in Malvern, PA. These scans employed T1-weighted MP-RAGE and MP2RAGE
sequences with spatial resolutions ranging from 0.6 to 0.8 mm, and the total dataset
comprised 86 T1-weighted images from 78 unique subjects. For each participant, multiple
acquisitions were performed to account for motion artifacts and ensure the most precise
sequence was obtained for analysis.

2.3. Dataset Preprocessing

MRI images were stored in NIfTI format, and each scan and respective mask were
accessed using the nibabel library. Out of the 78 total subjects, only 12 subjects had
associated manual segmentation masks that could be utilized for training and inference.
The segmentation masks were binary and represented delineations between white and gray
matter boundaries (not including cerebrospinal fluid). This subset was randomly split into
eight subjects for training and four subjects for testing. The image and mask paths were
stored, with each MRI scan being loaded slice by slice (in a 2D fashion) to promote efficient
memory usage. The images were normalized by subtracting the mean and dividing by the
standard deviation to ensure consistent scaling across the dataset.

To further improve the model’s robustness, data augmentation was applied during
training. Random horizontal flips and rotations were applied to both the images and the
masks to ensure that the model learned to generalize across various orientations. These
augmentations were only applied to the training set, whereas the testing set remained
unchanged to ensure valid evaluation. Each axial slice was resized to 256 × 256 pixels
using bicubic interpolation. This resizing was applied in the image (pixel) space rather
than the physical (millimeter) space. Given that the original voxel spacing ranged from
0.6 mm to 0.8 mm, the resulting voxel spacing after resizing is proportionally adjusted
relative to the original dimensions of each image volume. They were converted into
PyTorch tensors (version 2.7.1) and returned alongside their corresponding masks. This
pipeline ensured that the MRI images and masks were processed correctly and augmented,
providing high-quality data for training and testing the models.

While incorporating the complete 3D volume could potentially enhance anatomical
consistency, GPU memory limitations restricted us from inputting entire volumes into
the model. Furthermore, our goal was to develop a fast, easily deployable model tailored
explicitly for 9.4T brain MRI. Therefore, we opted to work with 2D axial slices instead. Even
though central axial slices of the brain have a more rich anatomical detail than peripheral
slices, we did not find any benefit in using a slice sampling scheme weighted towards
central slices. Thus, in our implementation, every available axial slice (including peripheral
slices with little to no ground truth segmentation present) from each subject’s T1-weighted
volume was used for training.

On the 74 patients which did not have manual segmentations, we utilize SynthSeg
to generate automatic segmentations of the target region [31]. We note that SynthSeg
only runs on 1 mm isotropic resolution data. Thus, we first downsample our ultra high-
resolution images to 1 mm isotropic to use with SynthSeg, and subsequently upsample
the output segmentations via nearest-neighbor interpolation back to the original imaging
resolution, which is between 0.6 and 0.8 mm. These outputs served as a reference point
for validating our model’s performance in the absence of extensive manual ground truth
annotations. The SynthSeg-generated ground truth labels were also produced in the same
format as the manual ground truth labels provided with the dataset, ensuring consistency in
structure and compatibility. To further validate their suitability, all generated segmentations
were subjected to a visual quality control step, during which we manually inspected the
outputs to confirm anatomical plausibility and to ensure that no gross errors or artifacts
were present.
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2.4. Neural Network Engineering

For the deep learning portion of this study, we expanded on the traditional Nested
U-Net architecture. It integrates multiple scales for multi-feature learning and has demon-
strated exceptional performance in brain MRI segmentation tasks, as it can handle both
fine-grained and large-scale anatomical details. In this paper, we introduce the Gated
Multi-Scale Nested U-Net (GA-MS-UNet++) (Figure 1). This is an improvement over the
standard UNet++ with three key innovations: (1) multi-scale residual blocks, (2) attention
mechanisms, and (3) gated skip connections. The architecture still follows the encoder–
decoder structure, where the encoder path progressively downsamples the input using
stacked Multi-Scale Blocks (MSBlocks).

Figure 1. Proposed GA-MS-UNet++ Architecture with Multi-Scale-Block and Gated Skip Connection
designs mapped out. Our novel architecture includes these components in order to bolster perfor-
mance and improve efficiency of the model. We modified the original Nested U-Net architecture by
injecting these components within the skip connections and the standard convolutions.

Each MSBlock contains two Residual Convolution Units (RCUs) and one Spatial
Channel Squeeze and Excitation (SCSE) attention mechanism. Each RCU is composed
of two convolutional layers with kernel size 3. We modify the second convolutional
layer to use a dilation value of 2, broadening the receptive field of the network without
increasing the number of trainable parameters. This multi-scale context aggregation enables
the network to capture additional fine details and global structure. We utilize group
normalization (GN) instead of BatchNorm (to stabilize training on small batches) and
Leaky ReLU activation functions. A residual connection is applied by adding the input
to the output of the convolutional sequences. If the input and output channels differ,
a 1 × 1 convolution is used to align the dimensions. Following the two RCU layers, a
Spatial Channel Squeeze and Excitation (SCSE) attention mechanism is used to recalibrate
feature maps. The channel attention part uses global average pooling to help condense each
channel into a scalar, then passes this vector through 1 × 1 convolutions with a reduction
ratio r = 4 and applies a sigmoid activation to produce channel-wise attention weights.
Mathematically, it is represented as follows:
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cSE(x) = x · σ(W2 · ReLU(W1 · GAP(x)))

Here, GAP(X) performs the global pooling average, and W1 and W2 are the learnable
weights of the convolutions. The spatial attention then applies the 1 × 1 convolution to
produce a single spatial attention map:

sSE(x) = x · σ(Ws ∗ x)

The final output of the SCSE block is the sum of the added tensors:

SCSE(x) = cSE(x) + sSE(x)

After each set of two MSBlocks per layer, downsampling in the encoder is handled
via a 2 × 2 max pooling operation. The decoder is symmetrical to the encoder, using
two MSBlocks per layer to reinforce multi-scale context for all stages of reconstruction.
Upsampling in the decoder is handled via a bilinear interpolation operation.

We leveraged the nested skip design path from the regular Nested U-Net, which
generates multiple intermediate decoder outputs. However, unlike the traditional UNet++,
which concatenates skip features, the GA-MS-UNet++ utilizes gated skip connections to
help learn how much information to retain from the encoder features versus the upsampled
decoder features. Each gate has a learnable parameter, which is initialized to zero, and the
skip connection is computed as follows:

GatedSkip(xskip, xup) = σ(α) · xskip + (1 − σ(α)) · Conv1x1(xup)

Here, σ(α) generates a per-channel attention mask that facilitates the blending of the
encoder and decoder signals. The final segmentation map is produced by applying a 1 × 1
convolution to the final decoder output.

Each skip connection pathway had a learnable gate parameter that determined how
much information to pass from the encoder feature map versus the upsampled decoder
feature. These gates were initialized to 0.5, ensuring that, at the start of training, the
contribution from the encoder and decoder pathways was balanced equally. The gate
parameters were then optimized with the rest of the network using backpropagation,
allowing the model to learn whether to favor encoder features, decoder features, or a
mixture of both.

2.5. Training Parameters

A batch size of 1 was used due to memory constraints and the large size of the input
images, with training performed for 100 epochs on a NVIDIA H100 GPU. The model was
optimized using the Adam optimizer, with a learning rate of 1 × 10−4 and a weight decay
of 1 × 10−5, minimizing binary cross-entropy loss between the predicted masks and the
ground truth. The predictions were thresholded at 0.5 to generate the binary segmentation
outputs. After training, the model’s performance was evaluated using the Dice coefficient,
precision, accuracy, recall, and Structural Similarity Index Measure (SSIM). These metrics
were computed from both the raw predictions and their binarized forms to assess both
pixel-wise accuracy and perceptual quality.

As an additional validation step, we also compared all 12 manually annotated MRI
scans against their corresponding SynthSeg-generated segmentations. This comparison
produced an average Dice coefficient of 0.9480 with a standard deviation of 0.0050, which
demonstrated a strong concordance between the automated and expert-derived labels.
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3. Results
3.1. Dice and SSIM Evaluation

The first experiment we performed was a quantitative analysis using Dice and SSIM
to determine the segmentation accuracy across the models. We evaluate our model and
baselines using 4 subjects with manual segmentations and 78 subjects with SynthSeg
segmentations. To ensure appropriate fairness and relevance, we excluded any slice with
a Dice or SSIM value of precisely 0 or 1, as these typically correspond to empty or non-
informative slices (common at the beginning or end of MRI volumes). After this filtering,
we analyzed the remaining slices for each subject. Dice and SSIM were both included in
this study, as Dice captures the overlap, whereas SSIM focuses on the entire image quality.
We split the SSIM and DICE results into two categories: manual segmentation ground truth
(Figure 2) and SynthSeg segmentation ground truth (Figure 3).

Figure 2. Dice coefficient and SSIM comparison of segmentation performance across five deep
learning models on 9.4T MRI scans using manual segmentation as ground truth. Dice scores quantify
the spatial overlap between predicted segmentation masks and ground truth annotations, with
higher values indicating better segmentation accuracy. SSIM scores were computed between pre-
dicted segmentations and ground truth masks, assessing perceptual similarity in terms of luminance.
The X notation in between each box and whisker plot represents the mean. GA-MS-UNet++ con-
sistently outperformed the baseline models—including Nested U-Net, Attention U-Net, R2UNet,
and VDSR—demonstrating the highest mean Dice score and lowest variance across evaluated
slices. These results highlight the model’s robustness in accurately delineating brain structures
at ultra-high resolution.

3.2. Whole Brain Volumetry

For the volumetry experiment, we evaluated the accuracy of whole-brain volume
predictions generated solely by the GA-MS-UNet++ across the four subjects (Figure 4) Each
subject’s binarized predicted segmentation output was calculated by counting the nonzero
pixels and converting them into cubic millimeters (mm3). These predicted volumes were
then compared to the ground truth manual segmentations. As shown in the side-by-side
bar graph, the GA-MS-UNet++ produced volumes that were close to the ground truth for
all four cases. To quantify this relationship further, we performed a regression analysis,
yielding a high correlation coefficient of 0.9092, indicating a strong agreement between the
predicted and ground truth volumes.
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Figure 3. Dice and SSIM comparison across five segmentation models using 9.4T MRI data but with
SynthSeg labels as ground truth. Models were evaluated on the remaining scans without manual
segmentation ground truth labels. The X notation in between each box and whisker plot represents
the mean.

  
(A) (B) 

Figure 4. Comparison of predicted and ground truth whole-brain volumes across four manually
segmented 9.4T MRI subjects. The left panel (A) displays a side-by-side bar graph showing the
predicted brain volumes generated by GA-MS-UNet++ and the corresponding manual segmentation
ground truth in cubic millimeters (mm3) for each subject. The right panel (B) presents a regression
analysis of predicted versus ground truth volumes, demonstrating a strong positive correlation
(R2 = 0.9092). These results confirm the volumetric accuracy and reliability of the GA-MS-UNet++
model in high-resolution brain segmentation.

3.3. Qualitative Analysis

To complement the quantitative evaluation, we display the outputs of our model on a
random test subject. Figure 5 shows the binarized prediction from all methods for a single
brain slice, illustrating that our method yields the most accurate segmentation results.
Figure 6 provides a deeper dive into the output of the GA-MS-UNet++, highlighting the
residual difference between the ground truth and the output.
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Figure 5. Qualitative comparison of brain segmentation outputs from five different models.

Figure 6. GA-MS-UNet++ segmentation compared to ground truth with residual error map visualization.

3.4. Statistical Analysis and Memory Efficiency

We evaluated segmentation performance using accuracy, precision, and recall to
provide a more comprehensive assessment among the different error types (Table 1). These
metrics were only calculated for the manually segmented images. We conducted a statistical
analysis using nonparametric methods. First, a Kruskal–Wallis rank sum test was used to
assess the overall differences in Dice scores across all the segmentation models and reference
types, making no strict assumptions about the normality of the data. We also used a
Wilcoxon signed-rank test for the pairwise comparison between our GA-MS-UNet++ model
and each baseline segmentation model, a robust test for matched differences that does
not require normal distributions (Table 2). We also reported each model’s inference time,
parameter count, memory footprint, and floating-point operations (FLOPs) to benchmark
efficiency alongside accuracy (Table 3).

Table 1. Quantitative comparison of segmentation performance across models (manual segmentation
output analysis, n = 4). Red-highlighted values represent the highest performing models in each
class, respectively.

R2UNet VDSR Nested U-Net Attention U-Net GA-MS-UNet++

Accuracy 0.8039 0.9081 0.9434 0.9305 0.9729
Precision 0.8877 0.9721 0.9692 0.9725 0.9002

Recall 0.2175 0.4406 0.6469 0.5525 0.9400
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Table 2. Wilcoxon signed t-test for paired samples (SynthSeg output dice score analysis, n = 78).

GA-MS-UNet++ p-Value

R2UNet <1 × 10−5

VDSR <1 × 10−5

Nested U-Net <1 × 10−5

Attention U-Net <1 × 10−5

Shapiro–Wilk normality test: p = 0.0000 (not normal); Kruskal–Wallis test result, H-value: 26,281.98.

Table 3. Computational efficiency comparison of segmentation across models (manual segmentation
output, n = 4).

R2UNet VDSR Nested U-Net Attention U-Net GA-MS-UNet++

Inference (ms) 105.07 93.87 97.07 98.93 119.21
Parameters (M) 39.09 0.66 9.16 34.88 14.66

FLOPs 152.70 43.56 34.62 66.46 20.83
GPU Memory (GB) 0.36 0.07 0.20 0.31 0.24

Abbreviations: floating-point operations (FLOP).

As a benchmark, we compared model outputs and SynthSeg outputs against manual
segmentations, confirming SynthSeg as a strong baseline with an overall Dice performance
of 0.9192 ± 0.1601, while our model achieved 0.9311 ± 0.1710. Per-subject results showed
consistent gains in three of four cases, supporting our hypothesis that our architectural
modifications enhance segmentation quality.

To evaluate our model’s generalization to conventional 3T MRI, we tested it on the
open-source OASIS dataset [32], where it achieved a Dice score of 0.8651 ± 0.1523 on a
set of 446 patients. These findings demonstrate that GA-MS-UNet++ not only performs
robustly on ultra-high-field 9.4T data but also transfers effectively to widely used 3T MRI.
This cross-field generalization is critical for broader clinical applicability.

4. Discussion
In this study, we introduce the GA-MS-UNet++ architecture for brain segmentation at

an ultra-high field strength and resolution (9.4T). We conducted thorough statistical testing
and rigorous comparisons against state-of-the-art algorithms to ensure our algorithm can
be effectively utilized in clinical practice.

We first evaluated our model via Dice scores and SSIM. These evaluations were
completed to ensure that the GA-MS-UNet++ performs competitively against other state-
of-the-art models in standard quantitative metrics. Our model had a higher Dice score than
any of the other four state-of-the-art models and, furthermore, had the smallest standard
deviation and spread. The inconsistency of a few of the datapoints was mainly due to
slices that were near the edges of the brain. These are challenging to produce accurate
segmentations for and are of little use to radiologists.

GA-MS-UNet++ also outperformed the other state-of-the-art algorithms when eval-
uated via SSIM, albeit with a slightly higher spread. This is expected as SSIM values are
generally constrained more. Thus, the other algorithms have a more substantial overlap
with the proposed algorithms. SynthSeg segmentation ground truth experiments were
performed in addition to the manual segmentation ground truth labels to expand the
testing set. Similar results were demonstrated here, with the GA-MS_UNet++ having a
higher average and lower spread than the other baselines for both the Dice score and SSIM.

While our model was solely trained on 2D axial slices, we recognize that using partial
3D context could help improve the spatial continuity in segmentation. The 2.5D strategies
or overlapping slab-based approaches may help better capture the inter-slice relationships
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without requiring full 3D volume processing. These methods help preserve anatomical
context across the slices and can help enhance the boundary consistency within complex
structures. However, the choice to use a 2D design was ultimately motivated by two factors:
(1) memory efficiency and faster inference speed for ultra-high-resolution 9.4T data, and
(2) clinical emphasis on deployability, where lightweight yet accurate models are favored.
Still, future work could compare the GA-MS-UNet++ with 2.5D variants to see whether the
spatial continuity gains justify the added computational complexity.

While this study focused on static 2D slices from the 9.4T MRI, the segmentation
challenges are even more pronounced in temporally dynamic or multi-modal imaging data.
Prior work on multi-modal, vision-based classification and sequence attention modeling
suggests that attention-driven architectures like Transformer-based designs are well suited
for capturing such dependencies [33]. The gated and residual mechanisms introduced in
the GA-MS-UNet++ are thought to be a foundation for extending segmentation frameworks
into these more complex domains.

As mentioned previously, brain volumetry calculations are crucial in determining
whether an algorithm can be helpful in clinical settings, specifically for diagnosing neurolog-
ical disorders. In our volumetry experiment, we aimed to compute the whole-brain volume
of the ground truth segmentation output and the respective output of the GA-MS-UNet++.
Since the algorithm outputs binary segmentation maps, the nonzero voxels were computed
in mm3. The regression results revealed an R2 correlation value of 0.90, demonstrating
strong agreement between the true volume and predicted volume for the four subjects with
manual segmentations. It is important to note that the volumetric outputs of the study
were accounted for when resizing to 256 × 256. Another key limitation of this study is the
small number of patients with a manual ground truth. Therefore, we examined individual
metrics to identify any outliers. Figure 4 shows each of the four subjects individually
with their respective volume outputs. Across all four, there were no significant differences
in volume. To ensure the reliability of our Dice score results, we conducted a paired
Wilcoxon signed-rank test between our proposed GA-MS-UNet++ model segmentation
Dice scores and those from the baseline approaches. The results clearly showed that the
GA-MS-UNet++ performed significantly better in all pairwise comparisons, with p-values
less than 1 × 10−5 (Table 2).

In our volumetric validation, GA-MS-UNet++ predictions demonstrated a strong
correlation with ground truth brain volumes (R2 = 0.90). However, this analysis was
based on only four manually segmented subjects and should therefore be interpreted with
caution. While the result provides encouraging preliminary evidence that a higher Dice
overlap translates into reliable volumetric estimates, it does not, by itself, establish clinical
applicability. To mitigate this limitation, we supplemented the analysis with two additional
evaluations: (1) large-scale comparison against SynthSeg-derived segmentations across
78 subjects, where GA-MS-UNet++ maintained strong volumetric fidelity, and (2) external
testing on the OASIS 3T dataset, which demonstrated generalization with a Dice score of
0.8651 ± 0.1523. Taken together, these complementary findings suggest that the model’s
volumetric accuracy is not limited to the small, manually annotated cohort, although
larger studies with expert annotations will be necessary to confirm its role in the clinical
monitoring of neurodegenerative disease.

Beyond just looking at technical performance numbers, we wanted to understand
how better computer accuracy helps in real medical practice. Our volume measurements
showed that GA-MS-UNet++ matched human expert measurements very closely (90%
correlation), proving that when computers become better at identifying brain structures,
the volume calculations become more trustworthy.



Bioengineering 2025, 12, 1014 12 of 15

Accurate measurements of brain volume are crucial for tracking diseases that affect
the brain. In Alzheimer’s disease, certain brain areas like the hippocampus shrink before
patients show obvious symptoms, so accurate measurements help with early detection. For
multiple sclerosis patients, doctors track both brain lesions and overall brain shrinkage to
monitor disease progression and see how well treatments are working.

Upon review, we also observed that the GA-MS-UNet++ demonstrates a slight ten-
dency towards over-segmentation. This behavior explains the higher recall but compara-
tively lower precision. The model favors including ambiguous boundary regions rather
than excluding them. Practically, this results in volumetric outputs that are marginally
larger than the ground truth. This conservative bias is likely seen to avoid missing true posi-
tives. While this feature may inflate false positives, it also reduces the likelihood of underes-
timating subtle structures, which can be clinically advantageous in early disease detection.

To test generalizations from the 9.4T to the standard 3T MRI, we evaluated GA-
MS-UNet++ on the OASIS dataset. Using SynthSeg to generate reference segmentations,
the model achieved a mean Dice score of 0.8651 ± 0.1523, indicating that it can transfer
effectively to lower-field data. To confirm that SynthSeg provided reliable pseudo-labels for
this purpose, we also compared both SynthSeg outputs and model outputs against a subset
of manually segmented cases. SynthSeg achieved a Dice score of 0.9192 ± 0.1601, while
our model achieved 0.9311 ± 0.1710, supporting that SynthSeg is a strong baseline and that
its labels are appropriate for use as the ground truth in OASIS. Together, these results show
that GA-MS-UNet++ performs robustly across different field strengths and that SynthSeg-
derived labels offer a practical way to extend evaluation to large external datasets.

Additionally, we applied the Kruskal–Wallis test to assess the differences across all
of the models. The test produced an H-Value of 26,281.98, which strongly supports our
assertion that models do not perform equally and that the GA-MS-UNet++ stands out in
terms of segmentation accuracy. Given that the Dice score is one of the most important
indicators of segmentation performance, these statistical results prove the effectiveness
of our proposed model and its superiority over other approaches. We also investigated
the computational efficiency of our model compared to other state-of-the-art models. We
reported a speed of 119.21 m/s, which falls within the range of other algorithms in terms
of the inference time to parameter ratio. The accuracy, precision, and recall scores of the
model were above 90%, with accuracy and recall being the strongest among all models,
and precision performing competitively.

Finally, we perform a qualitative assessment of the binarized segmentation masks
from the GA-MS-UNet++ against other state-of-the-art models. Across the axial views,
the GA-MS-UNet++ achieves a near-exact match with the ground truth and accurately
delineates brain structures while minimizing false positives and false negatives. In contrast,
the VDSR and R2UNet exhibit underestimation in key brain regions, such as the frontal lobe.
While the Nested U-Net and Attention U-Net offer stronger results, they still exhibit noise
and minor inaccuracies across tissue boundaries. When focusing on 9.4T segmentation
accuracy, the ventricles and gray–white matter interfaces are preserved with the highest
fidelity. The segmented output maintains sharp structural boundaries and captures the
fine-scale anatomy and broader brain contours that are characteristic of the 9.4T resolution.

Despite the promising performance of the GA-MS-UNet++ architecture in 9.4T brain
MRI segmentation, we recognize that this study has several important limitations. Firstly,
the dataset size was limited, with only 12 manually annotated subjects used for training
out of the total 86 available scans. This small sample size may compromise the model’s
generalizability, particularly when applied to a diverse population. While we tried to
incorporate data augmentation, the model’s performance should be validated on larger
and more heterogeneous datasets. Secondly, the model was trained on 2D MRI slices
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rather than on whole 3D volumes. While this reduces the computational demand for
both training and inference, it may limit the model’s ability to fully utilize the volumetric
spatial context, which is crucial for segmenting complex brain structures. Finally, the
dataset consisted of scans from a single 9.4T scanner using imaging parameters. This raises
concerns about the model’s adaptability to data from other ultra-high-resolution scanners
or even lower-resolution scanners. External validation on these datasets would improve
the model’s confidence in clinical applicability. Addressing all three of these limitations in
future research will be crucial for translating the GA-MS-UNet++ into reliable clinical tools
for ultra-high-resolution brain MRI analysis.

5. Conclusions
In this study, we introduce a new algorithm called GA-MS-UNet++, a novel deep

learning model specifically designed for high-accuracy brain MRI segmentation on ultra-
high-field 9.4T MRI data. Our architecture integrates three main components: (1) multi-scale
residual blocks, (2) gated skip connections, and (3) spatial channel attention mechanisms
to capture both fine anatomical details and larger structural patterns. The model was
ultimately evaluated on metrics such as the Dice score, accuracy, and SSIM, and consis-
tently outperformed the four state-of-the-art segmentation models. Most importantly, the
Dice scores were validated through rigorous testing and statistical analyses, including
the Wilcoxon signed-rank tests (p < 1 × 10−5) and a Kruskal–Wallis test (H = 26,281.98),
confirming that the GA-MS-UNet++ delivers statistically significant improvements in seg-
mentation accuracy. Qualitative analysis further supports these findings. Compared to
the ground truth, GA-MS-UNet++ achieved superior boundary outlining and anatomical
resolution, particularly in the ventricles and gray–white matter interfaces. This level of accu-
racy is crucial, particularly in conditions where small volumetric assessments can indicate
neurodegenerative diseases. Volumetric validation also demonstrated a high correlation
(R2 = 0.90) between the model’s predictions and the ground truth, indicating the potential
utility of this approach in monitoring neurodegenerative diseases. Despite there being only
a few labeled 9.4T scans, our model performed robustly and maintained consistency across
test subjects. Ultimately, as the 9.4T MRI becomes increasingly accessible in research and
clinical settings, we hope our model can serve as a foundational tool in enabling precise
and automated segmentation. In the future, we even hope our model will have clinical use
cases, contributing to improved diagnostic accuracy, streamlined workflows, and better
patient outcomes for ultra-high resolution neuroimaging applications.
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