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Abstract: Rehabilitation of gait function in post-stroke hemiplegic patients is critical for
improving mobility and quality of life, requiring a comprehensive understanding of in-
dividual gait patterns. Previous studies on gait analysis using unsupervised clustering
often involve manual feature extraction, which introduces limitations such as low accuracy,
low consistency, and potential bias due to human intervention. This cross-sectional study
aimed to identify and cluster gait patterns using an end-to-end deep learning approach that
autonomously extracts features from joint angle trajectories for a gait cycle, minimizing
human intervention. A total of 74 sub-acute post-stroke hemiplegic patients with lower
limb impairments were included in the analysis. The dataset comprised 219 sagittal plane
joint angle and angular velocity trajectories from the hip, knee, and ankle joints during gait
cycles. Deep temporal clustering was employed to cluster them in an end-to-end manner by
simultaneously optimizing feature extraction and clustering, with hyperparameter tuning
tailored for kinematic gait cycle data. Through this method, six optimal clusters were
selected with a silhouette score of 0.2831, which is a relatively higher value compared to
other clustering algorithms. To clarify the characteristics of the selected groups, in-depth
statistics of spatiotemporal, kinematic, and clinical features are presented in the results. The
results demonstrate the effectiveness of end-to-end deep learning-based clustering, yielding
significant performance improvements without the need for manual feature extraction.
While this study primarily utilizes sagittal plane data, future analysis incorporating coronal
and transverse planes as well as muscle activity and gait symmetry could provide a more
comprehensive understanding of gait patterns.

Keywords: post-stroke; hemiplegia; gait patterns; kinematic data; time-series data;
deep clustering

1. Introduction
As the number of strokes increases, the treatment of motor disorders in the lower

limbs, which are one of its after-effects, is also gaining attention [1]. The majority of
post-stroke hemiplegic patients have difficulty walking to perform daily activities, even
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if most survivors eventually recover their motor ability [2]. Effective rehabilitation of
post-stroke patients requires personalized care that takes into account different patterns of
gait impairment [3].

To identify the gait patterns that show the successive motion from stance to swing dur-
ing the time interval, machine learning (ML), which efficiently handles multi-dimensional
data, is used in gait analysis [4]. Begg and Kamruzzaman [5] explored the potential of
support vector machines (SVMs) in automatically recognizing changes in gait patterns
due to ageing. Nutakki et al. [6] reported that the extracted gait features from an ac-
celerometer could be classified by various ML-based algorithms and used to analyze motor
dysfunction. To interpret the gait patterns of post-stroke patients, Mulroy et al. [7] analyzed
temporal and kinematic parameters from post-stroke patients’ walking via non-hierarchical
clustering and classified them into four groups. Similarly, Sánchez et al. [3] used un-
supervised sparse K-means clustering to analyze spatiotemporal features and forces in
patients. Also, Kim et al. [8] classified different motor impairments based on extracted
kinematic features from time-series gait cycles of post-stroke patients by harnessing the
simultaneous clustering and classification (SCC) method [9], which alleviates the limitation
of conventional clustering.

Despite their achievements, conventional ML approaches face limitations due to
manual feature extraction [10]. This process to extract features by users is subject to human
bias, which may lead to overlooking relevant features or including irrelevant ones and
impact the model’s accuracy [11]. Additionally, it is labor-intensive, requiring significant
time and resources to manually interpret the features from big data [12]. To overcome
these constraints, deep learning (DL) offers a promising solution by reducing the need
for manual feature engineering, as it can automatically learn hierarchical representations
directly from raw data [13].

Recent advances in DL have significantly contributed to the field of gait analysis
and clinical diagnostics such as stroke rehabilitation. Rojek et al. [14] demonstrated the
efficacy of artificial neural networks (ANNs) and fuzzy logic in analyzing post-stroke
gait data, proposing an AI-based system that automates gait classification and facilitates
low-cost, rapid assessment in clinical settings. Konz et al. [15] introduced ST-DeepGait, a
spatiotemporal deep learning model that analyzes patterns in the movements of multiple
human joints to enable gait recognition. Their model employs a recurrent neural net-
work (RNN) architecture, leveraging spatiotemporal graphs that are pre-defined by users.
Additionally, Wang et al. [2] developed a deep neural network (DNN) utilizing inertial
measurement units (IMUs) to detect and classify stroke gait abnormalities, distinguishing
between different pathological gait patterns.

However, while DL has shown promise in reducing reliance on manual feature extrac-
tion, many studies still depend on pre-processed kinematic data or pre-defined spatiotempo-
ral features to analyze the patterns. For instance, Konz et al. [15] employed spatiotemporal
graphs that were manually defined to enhance the accuracy of their DL model, and Rojek
et al. [14] used an ANN with pre-processed gait features. These approaches demonstrate
the potential of DL but also reveal that fully automated, end-to-end clustering directly from
raw joint-level gait cycles remains an area for further exploration. Moreover, in real-world
clinical settings, most acquired datasets lack labels, and even when labels are present, they
are often manually assigned by humans, introducing potential biases [16]. To ensure a
more realistic and unbiased analysis, it is crucial to apply unsupervised learning methods
that utilize unlabeled data, allowing the model to identify and cluster gait patterns based
solely on their intrinsic characteristics.

The objective of this cross-sectional study aims to implement an end-to-end DL ap-
proach that directly utilizes time-series gait cycle data as model input, eliminating the
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need for manual feature extraction. An optimized set of hyperparameters is identified for
unsupervised gait pattern clustering of post-stroke hemiplegic patients. Furthermore, to
confirm the significance of the optimized clusters, statistics on various gait characteristics
for each cluster are presented as a supporting result. To our knowledge, this is the first
study to apply deep learning clustering to identify similar gait patterns directly using
joint-level gait cycle data from hemiplegic post-stroke patients in an end-to-end manner.

The rest of this paper is organized as follows: Section 2 describes the dataset, prepro-
cessing method, and DL-based framework used for analysis. Section 3 presents the process
of hyperparameter optimization and the clustering outcomes, including the characteristics
of selected gait groups. Section 4 discusses the implications of the results, comparing them
to previous studies and highlighting the potential clinical applications. Finally, Section 5
concludes the paper by summarizing key contributions.

2. Materials and Methods
2.1. Data Collection

To develop a deep learning model, this study used the data from our previous study [8].
The data, collected at Samsung Medical Center (SMC) in South Korea from May 2017 to
August 2022, mainly consisted of time-normalized joint angle trajectories, motion-captured
during independent gaits of post-stroke hemiplegic patients. In addition, the spatiotem-
poral, kinematic, and clinical assessment data were collected. All measurements were
performed with the consent of each patient and approved by the SMC Institutional Review
Board (SMC 2017-11-081). There were 74 sub-acute hemiplegic post-stroke patients aged
from 23 to 86. Among the patients, 42 were male and 32 were female. In addition, 51 pa-
tients had a diagnosis of ischemic strokes and 23 of hemorrhagic strokes. The average age,
height, and weight with a standard deviation of total patients were 59.66 (±15.26) years,
164.13 (±8.69) cm, and 65.67 (±10.80) kg, respectively.

Using eight cameras at a 60 Hz sample rate via the Motion Analysis Corporation’s
motion capture system, marker trajectory data were collected during walking along a ten-
meter track. The guideline of the Helen-Hayes marker set [17] was applied to the patient’s
lower limb to ensure consistent placement and accurate tracking of anatomical landmarks.
Raw marker trajectories, representing the 3D positions of reflective markers, were processed
using Orthotrak software 6.6.4 [18] to compute joint angles and velocities [19]. This process
involved applying inverse kinematics to the marker data, allowing for the estimation of hip,
knee, and ankle joint angles throughout the gait cycle [20]. The software utilizes predefined
anatomical models and calibrations to accurately derive joint kinematics from the spatial
displacement of markers [21]. Considering that gait recovery rates gradually decrease over
time [22], the raw kinematic data and gait characteristics were collected at 2, 3, 4, 6, 8, 10,
12, and 24 weeks after onset for each patient.

2.2. Preprocess

As input data for the deep learning, we used joint angles and angular velocity trajecto-
ries in the sagittal plane measured at specific weeks after onset as an instance. Kinematic
data were not measured for all patients over the eight week points after onset due to
inability to walk independently, early discharge, or refusal to participate. As a result,
219 instances were formed by excluding non-existent data and collecting measured ones
regardless of patients and weeks. Table 1 summarizes the number of instances of kinematic
data after onset.

In deep learning, a tensor is a tool for representing high-dimensional data within
machine learning and deep learning frameworks [23]. The joint angle trajectories were
converted into a tensor, which is directly used in the DL model, minimizing the interference
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by human in end-to-end gait pattern analysis. For this study, the tensor had a dimension
of 219 instances and 600 features representing the concatenated joint angle and angular
velocity trajectories from the hip, knee, and ankle.

Table 1. The number of instances of kinematic data after onset.

Weeks Patients Instances

2 4 4
3 5 10
4 4 12
6 5 20
8 9 45

10 5 30
12 6 42
24 7 56

Total 219

2.3. Deep Temporal Clustering for Gait Pattern

For gait pattern analysis, we introduce Deep Temporal Clustering for Gait Pattern
(DTCGP), which is based on the existing Deep Temporal Clustering algorithm (DTC) by
Madiraju et al. DTC is used for unsupervised learning of time-series data in an end-to-
end manner [24]. It is largely composed of two parts, feature extraction and a clustering
layer, which are jointly linked to optimize the resulting clusters. Feature extraction for
dimensionality reduction curtails the high-dimensional kinematic information onto a latent
space, which includes a meaningful representation [25]. This set of meaningful features
goes to a temporal clustering layer with a specific similarity metric. In order to select an
optimal number of clusters suitable for gait pattern analysis, a measure that evaluates
clustering performance, such as silhouette score, is derived for each recursive process as the
number of clusters changes. Figure 1 represents the overall architecture of DTCGP, which
includes the DTC with gait cycle data.

Figure 1. The architecture of deep temporal clustering for gait patterns.
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2.3.1. Feature Extraction

Unlike traditional ML pipelines, feature extraction from raw temporal input proceeds
automatically via feature vectors on the latent space. This latent representation is achieved
using Temporal AutoEncoder (TAE), which differs from existing encoders due to its intrinsic
LSTM layers.

Before the main clustering, TAE was pretrained to initialize the centroids of each
cluster for meaningful values. Initially, the input xi, where i indicates the instance, moves
to the encoder of TAE, which consists of a single one-dimensional (1D) convolution layer
followed by two Bidirectional LSTMs (Bi-LSTMs). The 1D convolution layer with a kernel
size of 10 and stride of 1 has a Leaky ReLU for the activation function and downsamples the
data through max pooling with a selected pooling size. Subsequently, two Bi-LSTMs learn
the temporal property of xi in both the forward and backward directions [24]. The resultant
latent feature z is used for the main temporal clustering of the gait cycles. Throughout
the decoder of TAE, which upsamples the latent features via the deconvolution layer, the
encoded data are reconstructed as x̂i. Note that the upsampling layer has a same pooling
size as the max pooling and a transposed convolution layer with a kernel size of 10, and
a stride of 1 is used for deconvolution.To optimize TAE, the Mean Squared Error (MSE)
value with the original input xi is computed, reconstructed as x̂i with the total number of
instances N, as follows:

JMSE =
1
N

N

∑
i=1

(xi − x̂i)
2 (1)

2.3.2. Clustering

Throughout the clustering layer, the latent features of the gait cycles extracted from
TAE were used to update the centroids of the clusters. First, the centroids of each cluster are
initialized using the results of a pre-trained TAE and agglomerative clustering with com-
plete linkage. Subsequently, the similarity between the latent feature z and the initialized
centroid c is calculated based on Pearson’s correlation ρz,c as follows [26]:

similarity(z, c) =
√

2(1 − ρz,c) (2)

In this case, the formula for Pearson’s correlation is

ρz,c =
cov(z, c)

σzσc
=

E[(z − µz)(c − µc)]

σzσc
(3)

where cov denotes covariance, σ denotes the standard deviation, E denotes the expectation,
and µ denotes the mean.

The similarity is then converted into a soft assignment probability qij using Student’s t
distribution [27], as shown below:

qij =
(1 + similarity(zi, cj))

−1

∑K
j=1(1 + similarity(zi, cj))−1

(4)

Here, qij represents the likelihood of assigning sample i to cluster j and K is the total
number of clusters.
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To enhance the clustering performance and emphasize high-confidence assignments,
an auxiliary target distribution pij that amplifies well-clustered points while reducing the
impact of ambiguous data is defined by the square of qij and f j:

pij =

q2
ij
f j

∑K
j=1

q2
ij
f j

(5)

where f j = ∑K
i=1 qij represents the cluster frequency. This target distribution is designed to

focus the centroid update process on points that are more confidently assigned to clusters,
thereby minimizing the influence of low-confidence assignments [28].

The clustering objective is formulated by minimizing the Kullback–Leibler (KL) diver-
gence between the target distribution Pi and the current soft assignment Qi. Note that Pi

and Qi indicate the collections of the probability distributions pi and qi, respectively.

JKL =
N

∑
i=1

KL(Pi||Qi) =
N

∑
i=1

K

∑
j=1

pij log
pij

qij
(6)

Minimizing JKL encourages the cluster centroids to shift towards regions where data
points with higher confidence are located, iteratively refining the cluster boundaries.

2.3.3. Simultaneous Optimization

The two resulting losses from TAE and the clustering layer are both considered to
train the DTC network. To optimize the weights for TAE, which eventually generates the
latent features for clustering with Stochastic Gradient Descent (SGD), MSE loss and KL
divergence loss are added. The total cost function Jtotal obtained using Equations (1) and (6)
is expressed as follows:

Jtotal = JMSE + JKL (7)

The two sequential steps of feature extraction and clustering affect each other, and it is
clear that unsupervised clustering with time-series joint-level gait cycles is performed in a
fully end-to-end manner.

3. Results
3.1. Hyperparameter Tuning

To achieve a certain level of clustering performance, the DTC model was fine-tuned
during training. The resulting hyperparameters are listed in Table 2. The grid search
method was used to select the corresponding values. The searching ranges for each
hyperparameter are shown in square brackets, and the tuned values are shown in bold.
The TAE was pre-trained over 10 epochs optimizing via Adam [29] before clustering. The
overall training procedure was run for 600 epochs, which guaranteed convergence of the
training loss. Because the TAE and temporal clustering layer are jointly optimized, two
distinct learning rates for each optimizer are required. The pooling size determines the
dimension of the latent features, and the hidden sizes of the two Bi-LSTMs at the encoder
are fixed to 50 and 1, respectively, which are commonly selected parameters for DTC
because it is difficult to cope with specific tuning in unsupervised learning [24].
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Table 2. Hyperparameters for grid search.

Hyperparameter Value

epochs (Pre-train) 10
epochs 600

batch size [32, 64, 128]
learning rate (TAE) [0.01, 0.001, 0.0001]

learning rate (Cluster) [10−4, 10−5, 10−6]
pooling size [8, 10, 12]

hidden size (Bi-LSTM 1) 50
hidden size (Bi-LSTM 2) 1

The optimal values are highlighted in bold.

3.2. Clustering of Gait Groups

To select the optimal number of clusters, the silhouette score (SS) is used, which is
an internal validation criterion for the unknown underlying structure of the dataset [30].
By calculating the Euclidean distance between each data point and its surroundings, SS
shows how well certain data are gathered within a cluster. Assuming that i is an individual
sample point, silhouette score SS is represented as follows:

SS =
1
N

N

∑
i=1

b(i)− a(i)
max(a(i), b(i))

(8)

where a(i) is the average distance between point i and other points in the same cluster, and
b(i) is the minimum average distance between point i and other points outside the cluster.
A score of 1 implies that the datum is in the proper cluster, and −1 indicates that it is not
clustered well.

By varying the number of target clusters, the number of the optimal clusters was
determined based on SS values. In general, the silhouette score tends to decrease as the
number of clusters increases [31]. It is desirable to obtain fine-grained clusters to understand
the different gait patterns of patients. Therefore, the case with the largest possible number
of clusters and a high silhouette score is preferable.

Figure 2 shows the overall silhouette scores for the number of clusters between 3 and
15. The peak values are shown at 3, 7, 11, and 13. In order to improve clarity in the analysis,
clusters with a single member were treated as outliers and excluded from the result and
further analysis [32]. Thus, even after excluding the noise clusters, we aimed to maintain a
high silhouette score while maximizing the number of clusters at the same time. As a result,
after removing one cluster with a single instance from the number of clusters of seven with
the silhouette score of 0.2831, which satisfies both conditions, we finalized six clusters as
the optimal number of clusters for gait analysis. Figure 3 shows the loss curve at optimal
clusters during 10 pre-training and 600 training epochs using the DTC model.
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Figure 2. Silhouette score per number of clusters.

Figure 3. Loss curve for the optimal 7 clusters representing both pre-training and training.

3.3. Characteristics of Selected Gait Groups

To understand the characteristics of the six selected groups, the statistics of gait features
in spatiotemporal, kinematic, and clinical aspects are shown in Table 3. Note that SLS as a
spatiotemporal feature refers to single limb support, and the total instances are 218 due to
the dropout of the one cluster with a single member.

Specifically, among spatiotemporal features, Group D has the highest averaged velocity
of 85.26 cm/s (±16.21) and Group B has the lowest one of 33.13 cm/s (±14.83). In the
averaged cadence, Group D shows the highest value of 96.13 steps/m (±10.06) and Group B
of 63.90 steps/m (±13.76) shows the lowest value. The remaining features can be observed
in the table. Considering kinematic features, Group A has the highest averaged peak hip
flexion of 47.08 deg (±9.30) and Group C has the lowest one of 28.99 deg (±9.17). In the
averaged peak hip extension, Group B represents the highest value of 16.31 deg (±8.11) and
Group C of −8.61 deg (±5.59) represents the lowest value. As clinical features, the motor
function of post-stroke patients was evaluated using the motor sub-scale of the Fugl–Meyer
Assessment (FMA) [33] and Functional Ambulation Categories (FAC) [34]. The averaged
FMA score is the highest for Group F of 86.33 (±16.16), and Group B’s score of 57.12
(±24.05) is the lowest. In the averaged FAC score, Group D shows the highest value of 4.56
(±0.67) and Group B shows the lowest value of 3.38 (±1.19). Note that the characteristics
of the remaining clusters can be interpreted differently from the desired perspective.
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To determine if the selected gait groups were clinically significant, an analysis of
variance (ANOVA) test was performed with the gait features in Table 3. Using Python’s
statsmodels [35], one-way ANOVA was applied to spatiotemporal, kinematic, and clinical
features. Table 4 represents the result of an ANOVA test which includes F-values and
p-values for all gait features. The p-values for all tests are less than 0.05, demonstrating that
the six selected gait groups are statistically significant and clinically meaningful [36].

The gait abilities of the selected groups were evaluated by comparing them to a control
group. The control group data were sourced from the default dataset provided by the
Orthotrak motion capture system [18], representing the average joint trajectory values
for healthy European adults. Despite the use of European reference data, the kinematic
similarities between Korean and European populations render this comparison valid for
gait analysis [37]. No control data were used during the clustering or model training phases.
This control dataset was used exclusively for post hoc analysis to assess the clustering
results. Specifically, the control data were applied to visualize gait differences and compute
the Root Mean Square Error (RMSE) of joint angle trajectories, providing a quantitative
measure of deviation from normative gait patterns. The RMSE score is calculated using
Equation (9), where N is the total number of gait cycle points across hip, knee, and ankle
joints, yi is the joint angle from the patient, and ŷi is the joint angle from the control group.

RMSE =

√
∑N

i=1(yi − ŷi)2

N
(9)

Therefore, if a particular group follows the normal gait trajectory, the RMSE value is
low; if not, the RMSE value is high.

Figure 4 depicts the average joint angle trajectories on the affected side of the hip, knee,
and ankle for each cluster, alongside the corresponding trajectories from the control group,
and Table 5 lists the RMSE scores for the six groups. The control group is marked with
a dotted line in order to be distinguished from the optimal clusters, and only the group
averages are displayed as curves without their standard deviations to enhance visibility.
In examining the gait patterns at hip, knee, and ankle joints across the six groups, distinct
differences emerge in relation to the control group’s trajectories. Group A shows a trajectory
at the knee joint closely aligned with the control but exhibits reduced peak dorsiflexion in
the ankle and generally higher hip joint angles. Group B has the largest RMSE value of
17.6484, indicating the greatest deviation from the control group, with minimal differences
in peak flexion and extension across the hip, knee, and ankle, resulting in the worst walking
ability among six groups. Group C presents hip and knee joint trajectories that resemble
the control, though the ankle shows reduced peak dorsiflexion. Group D displays the
smallest RMSE value at 4.7918, indicating that its joint angle trajectories across all joints
were closest to the control. Group E features a relatively large peak extension in the hip
joint and reduced peak dorsiflexion in the ankle. Lastly, Group F lacks a loading response
in the knee during the stance phase and shows reduced peak dorsiflexion in the ankle.
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Table 3. Spatiotemporal, kinematic, and clinical characteristics of optimal gait groups. Aff. and unaff. refer to affected and unaffected side, respectively.

Features Unit Total Group A Group B Group C Group D Group E Group F
(218) (113) (8) (26) (50) (15) (6)

Spatiotemporal
Velocity cm/s 69.03 ± 25.48 65.97 ± 25.34 33.13 ± 14.83 70.37 ± 24.68 85.26 ± 16.21 56.55 ± 27.93 64.69 ± 16.25
Cadence steps/m 89.86 ± 17.54 90.61 ± 17.46 63.90 ± 13.76 87.52 ± 19.59 96.13 ± 10.06 86.87 ± 22.69 75.62 ± 11.47

Stride length cm 90.30 ± 23.68 85.40 ± 23.50 61.11 ± 18.38 95.50 ± 20.13 106.12 ± 15.08 76.22 ± 25.53 102.25 ± 9.98
Step length (aff.) cm 46.06 ± 11.46 43.92 ± 11.10 37.00 ± 9.29 47.36 ± 11.38 53.48 ± 7.20 37.43 ± 14.18 52.55 ± 5.99

SLS (aff.) % 31.52 ± 6.52 31.09 ± 6.77 20.58 ± 5.07 32.39 ± 4.53 34.64 ± 4.15 29.91 ± 8.11 28.49 ± 3.21
Stance (aff.) % 65.29 ± 4.43 65.75 ± 4.52 60.51 ± 4.91 65.43 ± 4.09 64.11 ± 2.58 68.69 ± 6.13 63.82 ± 4.05
Step length

(unaff.) cm 44.15 ± 13.36 41.27 ± 13.56 24.88 ± 11.87 47.97 ± 9.46 52.59 ± 8.68 38.83 ± 13.80 50.28 ± 3.65

SLS (unaff.) % 34.71 ± 4.43 34.25 ± 4.52 39.49 ± 4.91 34.57 ± 4.09 35.89 ± 2.58 31.31 ± 6.13 36.18 ± 4.05
Stance (unaff.) % 68.48 ± 6.52 68.91 ± 6.77 79.42 ± 5.07 67.61 ± 4.53 65.36 ± 4.15 70.09 ± 8.11 71.51 ± 3.21

Kinematic
Peak hip flexion deg 41.20 ± 10.90 47.08 ± 9.30 39.41 ± 10.25 28.99 ± 9.17 36.65 ± 6.53 37.39 ± 10.38 33.26 ± 6.91

Peak hip
extension deg 6.12 ± 12.13 13.44 ± 10.22 16.31 ± 8.11 −8.61 ± 5.59 −2.88 ± 4.37 6.33 ± 4.85 −7.18 ± 3.97

Peak knee flexion
(stance) deg 17.08 ± 8.67 20.41 ± 6.53 −1.39 ± 4.63 12.30 ± 6.65 14.81 ± 6.39 24.70 ± 6.40 −0.52 ± 5.21

Peak knee
extension (stance) deg 8.69 ± 8.87 12.01 ± 7.85 −8.37 ± 4.55 4.28 ± 5.97 5.83 ± 5.94 16.43 ± 4.77 −7.54 ± 4.61

Peak knee flexion
(swing) deg 58.93 ± 13.13 59.04 ± 12.54 28.85 ± 14.46 60.54 ± 8.85 64.15 ± 7.49 58.19 ± 15.19 48.28 ± 14.50

Peak knee
extension (swing) deg 8.94 ± 8.50 11.62 ± 6.68 −0.58 ± 6.05 4.30 ± 6.30 5.02 ± 5.80 19.49 ± 12.39 −2.36 ± 8.22

Peak plantar
flexion deg 20.12 ± 7.71 18.73 ± 7.38 13.97 ± 15.56 23.18 ± 5.64 23.03 ± 5.96 19.98 ± 8.58 17.27 ± 7.79

Peak dorsiflexion deg 8.67 ± 5.16 7.66 ± 5.04 8.30 ± 6.25 9.31 ± 3.72 10.90 ± 5.58 8.50 ± 4.96 7.32 ± 3.45

Clinical
FMA 79.50 ± 19.32 78.02 ± 21.36 57.12 ± 24.05 80.85 ± 16.34 85.98 ± 11.62 75.87 ± 17.66 86.33 ± 16.16
FAC 4.09 ± 1.00 4.01 ± 1.02 3.38 ± 1.19 4.15 ± 0.83 4.56 ± 0.67 3.40 ± 1.18 4.17 ± 1.33
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Table 4. ANOVA results for all gait features.

ANOVA Result

F-Value p-Value

Velocity 10.0742 <0.0001
Cadence 6.5343 <0.0001

Stride length 11.8456 <0.0001
Step length (affected) 9.7703 <0.0001

SLS (affected) 8.7701 <0.0001
Stance (affected) 5.1544 0.0002

Step length (unaffected) 11.9162 <0.0001
SLS (unaffected) 5.1544 0.0002

Stance (unaffected) 8.7699 <0.0001

Peak hip flexion 24.4284 <0.0001
Peak hip extension 52.3391 <0.0001

Peak knee flexion (stance) 36.6886 <0.0001
Peak knee extension (stance) 29.2463 <0.0001

Peak knee flexion (swing) 14.1336 <0.0001
Peak knee extension (swing) 21.6299 <0.0001

Peak plantar flexion 4.5054 0.0006
Peak dorsiflexion 3.0462 0.0112

FMA 3.9357 0.0019
FAC 5.0359 0.0002

Table 5. Gait performance of each group compared to the control group.

Group RMSE

A 9.3454
B 17.6484
C 6.3147
D 4.7918
E 6.6170
F 13.3559

(a)

(b)

Figure 4. Cont.
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(c)

Figure 4. Average joint-level angular trajectories for each cluster on the affected side. (a) Hip, (b) Knee,
(c) Ankle.

3.4. Comparison of Joint Angle Trajectories on Affected and Unaffected Sides

The averaged joint angle trajectories for Group B with the worst gait ability on the
affected and unaffected sides are presented in Figure 5. In the figure, the trajectories for
affected and unaffected sides are shown with different colors as solid lines and the standard
deviation (1SD) as a shaded area. In the trajectories of the hip, the peak hip flexion of
the unaffected side had a much larger angle value than the affected side. On the other
hand, the peak hip extension was smaller on the unaffected than the affected side. This
indicates that the arc containing extension and flexion was collapsed on the affected side of
the hip. In addition, the starting angle of the hip joint was higher than that of the affected
side and followed the angle of the normal control group. For knee kinematics, peak knee
extension was not observed clearly at the stance phase of the affected; therefore, the loading
response was poorly performed. In addition, in the swing phase, the angle of peak knee
flexion from the unaffected side was larger than that of the affected side. At the ankle
joint, the overall angle values of the unaffected were much larger than those of the affected
side. Specifically, in the case of the affected side, the arc was collapsed; thus, the values of
dorsiflexion and plantar flexion became very small compared with those of the unaffected
side. Furthermore, on the affected side, dorsiflexion was poorly formed as the affected
ankle joint could not reach the peak. Group B with the worst walking ability shows severe
gait asymmetry between the affected and unaffected side.

(a)

Figure 5. Cont.
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(b)

(c)

Figure 5. Averaged joint angle trajectories for Group B on both affected and unaffected sides. (a) Hip,
(b) Knee, (c) Ankle.

4. Discussion
To illustrate the performance of DTCGP, Table 6 compares the silhouette scores of

DTCGP to those of other machine learning-based methods, i.e, k-Means clustering, k-
Shape [38], and simultaneous clustering and classification (SCC) [8]. Each row represented
the silhouette scores at a different number of clusters. The k-Means clustering and k-Shape
methods were implemented using tslearn [39] and the same trajectory data in this study.
For the k-Means clustering method, three types of distance metrics were used to derive
specific features from time-series data. Not only the clustering with the Euclidean (eucli.)
distance [40], but also with dynamic time warping (dtw), which extracts the similarity by
finding the optimal alignment between each sample, allowing stretching or compressing of
the time axis [41], were considered. Moreover, clustering with soft dtw (softdtw), which
enhances the dtw approach by introducing a differentiable variant of the DTW distance
measure [42], was also used for comparison. The results of SCC were directly referenced
from [8]. The DTCGP model’s performance benefits from the simultaneous optimization
of both the reconstruction accuracy of the autoencoder and the cluster quality based on
probabilistic similarity [43]. As a result, the DTCGP outperformed the others in most cases
and achieved the highest silhouette values, except in a few cases.
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Table 6. Comparison of clustering performance between DTCGP and other methods.

No. of Clusters

3 4 5 6 7 8 9 10 11 12 13 14 15

k-Means (eucli.) 0.1913 0.1577 0.1287 0.1395 0.1263 0.1136 0.1520 0.1246 0.1303 0.1301 0.1249 0.1109 0.1194

k-Means (dtw) 0.1062 0.1566 0.1400 0.1012 0.0990 0.0982 0.0854 0.0627 0.0420 0.0382 0.0449 0.0377 0.0312

k-Means (softdtw) 0.2121 0.1530 0.1277 0.1218 0.1331 0.0970 0.0879 0.0939 0.0942 0.0769 0.0760 0.0887 0.0941

k-Shape 0.1950 0.1449 0.1533 0.1368 0.1252 0.1050 0.1127 0.1083 0.1126 0.0996 0.0981 0.0923 0.0857

SCC 0.2235 0.1517 0.1604 0.1765 0.1426 0.1312 0.1447 0.1710 0.1371 0.1443 0.1563 0.1715 0.1572

DTCGP 0.4174 0.2806 0.2249 0.2136 0.2831 0.1898 0.1593 0.1423 0.2068 0.1767 0.1933 0.1662 0.1536

The largest silhouette scores per number of clusters are highlighted in bold.

While the silhouette score of 0.2831 from DTCGP, representing the value for the
selected optimal cluster, may appear modest, it is important to note that SS is a relative
clustering validity index [44,45]. The selection of this cluster reflects the relative quality of
clustering in this study, highlighting that even moderate SS values can provide meaningful
insights when balancing high SS with maximizing the number of clusters. Furthermore,
when comparing SS across various clustering algorithms, the selected model consistently
outperformed alternative methods, reinforcing the validity of the clustering results.

Among several studies using DL on rehabilitation, [2] has the same purpose as DTCGP,
which is to establish a personalized treatment strategy for post-stroke patients based on
their gait patterns. They utilized a model with multiple layers for computational benefits,
which consisted of a detection part for judging abnormal gaits and a classification part for
dividing the gaits of eight stroke patients into four specific types of impairment. Compared
to the case of simply using a fully connected layer, DTCGP has convolutional and Bi-LSTM
layers, which have advantages in extracting latent features and interpreting the temporal
relationship between these features [24]. Also, they classify stroke gait patterns into four
fixed labels, which are drop foot, circulation, hip hiking, and back knee. On the other hand,
DTCGP can change the number of clusters based on performance evaluation, allowing the
pattern to be analyzed more flexibly in various situations.

Kim et al. [8] applied simultaneous clustering and classification (SCC) to identify gait
patterns in post-stroke hemiplegic patients using kinematic data for a gait cycle. While both
approaches, DTCGP and SCC, effectively clustered gait data, the key distinction lies in the
preprocessing stage. SCC involves manual intervention through the extraction of kinematic
features, while DTCGP applies end-to-end deep learning without human involvement,
enhancing accuracy, consistency, and reducing potential bias [10,11,13]. Moreover, the
DTCGP model consistently achieved higher silhouette scores compared to SCC, as pre-
sented in Table 6, indicating improved cluster separation and overall performance. This
trend highlights the model’s ability to capture diverse gait patterns, potentially identify-
ing asymmetrical gait characteristics that may be less distinguishable through traditional
methods like SCC.

Furthermore, the proposed method using DTC has the potential to significantly impact
clinical practice. The method technically demonstrates the significance in leveraging
unsupervised learning to identify clinically meaningful clusters, especially in medical
analysis where clinical ground truth is often unavailable. This approach can be applied to
monitoring and diagnosing irregular patterns by directly utilizing raw time-series data,
such as detecting anomalies in arrhythmias using ECG time series data [46,47]. Also, the
gait characteristics of the selected groups derived from the proposed method can be applied
to personalized treatments, aligning with each patient’s unique recovery tendency.
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This study has limitations that should be addressed in the next phase. To fully reflect
the complex characteristics of walking, it is necessary to analyze data from all anatomical
planes. Since only joint angles and angular velocity trajectories in the sagittal plane were
used in this study, incorporating data in the coronal and transverse planes would improve
the clustering. Additionally, the use of muscle activity and gait symmetry will allow for
more accurate gait analysis. Because cross-sectional studies cannot explain the causal
relationship between motor function and clinical duration [48], further research is needed
that considers the long-term perspective of motor function recovery.

Future studies could analyze a broader range of gait patterns by including gait data
from chronic patients or healthy individuals in addition to sub-acute patient data. Addition-
ally, DL-based techniques can be used to study longitudinal recovery patterns over a longer
period of time, given the six months of clinical data available for each patient. Further-
more, the longitudinal recovery pattern analysis results can aid in developing personalized
treatment strategies that complement various rehabilitation treatment methods.

5. Conclusions
This study presents a deep learning approach for clustering gait patterns of post-

stroke hemiplegic patients from a cross-sectional perspective. The main contributions
of this study are clarified as follows. First, the complex joint angle and angular velocity
trajectory data of hemiplegic post-stroke patient gaits were directly processed using the
deep temporal clustering method in an end-to-end manner minimizing human intervention.
This approach not only improves accuracy, but also improves efficiency by reducing the
amount of work required to analyze complex gait patterns. Second, in this study, we
presented a DTC model optimized for clustering gait patterns of post-stroke hemiplegic
patients. Third, the selected gait groups were confirmed to be clinically significant by an
ANOVA test with clinical factors in patients’ gaits.
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