bioengineering

Article

OMGMed: Advanced System for Ocular Myasthenia Gravis
Diagnosis via Eye Image Segmentation

Jianqiang Li 1, Chujie Zhu !, Mingming Zhao 2, Xi Xu 1, Linna Zhao !, Wenxiu Cheng !, Suqin Liu !, Jingchen Zou !,

Ji-Jiang Yang 3*

check for
updates

Citation: Li, J.; Zhu, C.; Zhao, M.; Xu,
X.; Zhao, L.; Cheng, W.; Liu, S.; Zou, J.;
Yang, J.-J.; Yin, J. OMGMed:
Advanced System for Ocular
Myasthenia Gravis Diagnosis via Eye
Image Segmentation. Bioengineering
2024, 11,595. https://doi.org/
10.3390/bioengineering11060595

Academic Editors: Luca Mesin and
Larbi Boubchir

Received: 31 March 2024
Revised: 23 May 2024
Accepted: 30 May 2024
Published: 11 June 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Jian Yin >*

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
2028362976@emails.bjut.edu.cn (C.Z.)

Department of Neurology, Beijing Hospital, Beijing 100730, China

Tsinghua National Laboratory for Information Science and Technology, Tsinghua University,
Beijing 100084, China

*  Correspondence: yangjijiang@tsinghua.edu.cn (J.-].Y.); m13611177824@163.com (J.Y.)

Abstract: This paper presents an eye image segmentation-based computer-aided system for automatic
diagnosis of ocular myasthenia gravis (OMG), called OMGMed. It provides great potential to effec-
tively liberate the diagnostic efficiency of expert doctors (the scarce resources) and reduces the cost of
healthcare treatment for diagnosed patients, making it possible to disseminate high-quality myas-
thenia gravis healthcare to under-developed areas. The system is composed of data pre-processing,
indicator calculation, and automatic OMG scoring. Building upon this framework, an empirical
study on the eye segmentation algorithm is conducted. It further optimizes the algorithm from the
perspectives of “network structure” and “loss function”, and experimentally verifies the effectiveness
of the hybrid loss function. The results show that the combination of “nnUNet” network structure
and “Cross-Entropy + Iou + Boundary” hybrid loss function can achieve the best segmentation
performance, and its MIOU on the public and private myasthenia gravis datasets reaches 82.1% and
83.7%, respectively. The research has been used in expert centers. The pilot study demonstrates
that our research on eye image segmentation for OMG diagnosis is very helpful in improving the
healthcare quality of expert doctors. We believe that this work can serve as an important reference for
the development of a similar auxiliary diagnosis system and contribute to the healthy development
of proactive healthcare services.

Keywords: ocular myasthenia gravis; eye image segmentation; empirical study; proactive healthcare
service

1. Introduction

Along with the development of information technology, the use of artificial intelligence
to empower the healthcare industry is a major trend nowadays. In particular, the rare
diseases computer-aided healthcare system may provide a solution in the areas where
medical resources are scarce. An example is the diagnosis and treatment of Myasthenia
Gravis (MG). According to statistics, the number of patients with myasthenia gravis is
increasing year by year globally and has reached 1.1 million in 2020. It is expected to reach
1.2 million in 2030 [1] and requires lifelong testing and treatment. However, caring for MG
is increasingly clustered in expert centers. On the one hand, many patients, especially in
under-developed areas, can hardly get a chance to receive treatment in nearby hospitals
because of the limited healthcare resources. They need to travel long distances to the
expert centers, which generates a great economic burden [2]. On the other hand, it is
time-consuming, laborious, and subjective for doctors to manually diagnose myasthenia
gravis. Therefore, it has long been a desire to develop a convenient and cost-effective
computer-aided auxiliary diagnosis system for Myasthenia Gravis, which is able to aid
doctors in rapid diagnosis and help patients in under-developed areas to monitor their
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conditions and receive treatment suggestions from doctors remotely, so as to effectively
alleviate the problem of “difficult and expensive access to healthcare”. In this paper, we
present an aided diagnosis system for MG based on eye image segmentation and conduct
an empirical study on the algorithm of eye segmentation for MG on this basis.

Myasthenia Gravis (MG) is an autoimmune disorder caused by autoantibodies acting
against the nicotinic acetylcholine receptor on the postsynaptic membrane at the neuromus-
cular junction [3], and its main symptoms are weakness and fatigability of the voluntary
muscles. Myasthenia gravis occurs regardless of race or gender. It usually affects women
under the age of 40 and older adults between the ages of 50 and 70. But in fact, it can
occur in people of all ages. Among them, the eye muscles are the main starting feature
of myasthenia gravis, According to statistics, more than 50% of MG patients present with
fatigue ptosis in the early stage of the disease [4], as shown in Figure 1, which we refer
to as Ocular Myasthenia Gravis (OMG) [5] (i.e., only eye muscle weakness but no muscle
weakness elsewhere). Without immunotherapy, 50-80% of patients will rapidly progress to
Generalized MG (GMG) within two years [6], which in turn may lead to paralysis or even
life-threatening, with a hospital mortality rate of 14.69% [7].

-

ot 2Bl

! NI 2

(a) Ptosis (b) Face Image (c) Normal
Figure 1. Diagram of ocular myasthenia gravis. (a) Right eye with ptosis. (b) Picture of patient’s face.
(c) Normal left eye.

Currently, scale scoring serves as a principal method for the clinical diagnosis of OMG.
Commonly utilized scales include the Quantitative Myasthenia Gravis scores (QMGs) and
the Absolute and Relative score of MG (ARS-MG) among others, which aim to evaluate
the severity of OMG in patients. However, the complexity of these scales combined with a
shortage of well-experienced physicians, hinders early screening and cost-effective contin-
uous monitoring of patients with OMG. This paper focuses on eye image segmentation
and fully automatic OMG diagnosis. Its goal is to reduce healthcare costs in economically
disadvantaged regions and enhance disease diagnosis efficiency, through which to enable
precise and efficient proactive healthcare.

Studies on fundus image analysis have been made for years, laying the foundation
for the development of various disease-assisted diagnostic systems specific to eye im-
ages, including diabetes mellitus [8], chronic kidney disease [9], and dry eye disease [10],
Liu et al. [11] conducted an automatic diagnosis of myasthenia gravis using eye images,
but they did not conduct in-depth empirical research on the eye segmentation algorithm.
On this basis, we further studied the eye segmentation algorithm suitable for myasthenia
gravis from two aspects of network structure and loss function, and implemented a pilot
application of proactive healthcare service in practical scenarios.

Table 1 presents the examination indices for Ocular myasthenia gravis (OMG) within
the scoring scale. Given the specific symptoms of ptosis or eye movement weakness in
patients with this condition, we can calculate clock point (or eyelid distance) and scleral
area based on the results of eye segmentation to automatically and efficiently diagnose
ocular myasthenia gravis.
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Table 1. Indices for ocular myasthenia gravis.
Grade
Test Item
0 1 2 3 4
Clock point 11~1 point 10~2 point 9~3 point 8~4 point 7~5 point
Scleral distance <2mm 3~4 mm 5~8 mm 9~12 mm >12 mm

The motivation of the paper is to develop an eyes image segment-based automatic
aided diagnosis system for OMG so that OMG patients can obtain high-quality healthcare
services conveniently, remotely, and cost-effectively, and at the same time free up the
diagnostic efficiency of doctors to a certain extent. Our contribution can be summarized as
follows: (1) a computer-aided diagnosis system for OMG based on eye image segmentation
is proposed, called OMGMed, which can effectively reduce the burden of expert doctors
(a scarce resource), as well as greatly reduce the cost of patients” access to healthcare,
and make it possible to disseminate high-quality healthcare to remote areas. (2) An in-depth
empirical analysis of eye image segmentation for myasthenia gravis, focusing on identifying
suitable eye segmentation algorithms through the evaluation of network structures and
loss functions. The empirical findings indicate that the nnUNet network structure delivers
superior performance. Additionally, a hybrid loss function incorporating boundary loss
enhances the eye segmentation performance for OMG, with the mean Intersection over
Union (MIOU) achieving 82.1% and 83.7% in two datasets, respectively. (3) A pilot study is
described for the application of the proposed system to implement proactive medical care
in a real-world usage scenario. It demonstrates that our system can effectively improve
the diagnostic accuracy of expert doctors. We believe that our pilot study can serve as
an important reference for auxiliary diagnosis systems of myasthenia gravis and even
other diseases.

The remaining parts of the paper are organized as follows. Section 2 introduces the
framework of a computer-aided auxiliary diagnosis system for OMG and then analyzes the
algorithmic optimization method for eye segmentation. Section 3 shows the results of the
algorithmic optimization method and auxiliary diagnosis. Section 4 discusses several key
issues including the results obtained and future work. Section 5 reports the case study on
the application of the proposed solution to enable proactive healthcare services. Finally,
conclusions are drawn in Section 6.

2. Methods
2.1. The Framework of OMGMed

The basic requirement of this research is to develop a convenient, cost-effective and
efficient computer-aided auxiliary diagnosis system for OMG. Firstly, OMGMed is de-
signed to aid doctors by providing diagnostic references for assessing the condition of
patients with OMG, thereby significantly alleviating the workload of well-experienced
physicians(the scarce resources) and enhancing diagnostic efficiency. Secondly, it offers
patients in remote locations timely and precise insights into their conditions, minimizing
the associated costs of traveling extensive distances to expert centers. As shown in Figure 2,
The main component of the system consists of three parts, i.e., data preprocessing, indicator
calculation, and automatic OMG diagnosis. These three parts will run on the server of a
hospital and can be integrated into its existing information systems.



Bioengineering 2024, 11, 595 40f19
Data preprocessing Indicator calculation E OMG diagnosis
|
i
F——— (- '
1 1 1 '
1 | 1 Calculate '
! 1 1 the eyelid '
: n 1 ! distance !
1 1 \
: -
1
! ! : !
1
| ! | !
: s Pre-trained 1 -: Calculate !
_’I E segmentation : | the clock —

! model \ | point 1
1 1
! ! : :
1
| ! : :
1 | 1 .
I . | i
! 1 1 Calculate .
: 1 1 the scleral :
1 ! : area !
_———— | |
1 ! i
N ) 1
1

oo ) | l (ot TTTTTTT T \

1 N N \ N\ ! 1 !

1 3 % % =] :

=Y =Y = =
Remote : —— \[CI — \Cl [ S S : Hospital
terminal 1 i\ : ' 1 internal client

’ ER '

! B : | = | 1

DL RETEEEE / il

Database

Figure 2. The framework of OMGMed.

1.

Data preprocessing module

Given the abundance of redundant features within facial images, we employed the
face key point detection model from the Dlib library to isolate the key region of the
human eye, thereby minimizing the impact of unnecessary features. Acknowledging
the diverse shapes of human eyes, we extended a part of the pixels in each of the
four directions to ensure the integrity of the eye in the cropped image. Finally, we get
the two-eye images corresponding to the face image (left eye and right eye), and the
processed two-eye images are then input into the indicator calculation module for
further analysis.

Indicator calculation module

Initially, we conducted fine-grained multi-class segmentation on the eye images.
Following the segmentation outcomes, we calculated the pixel distances (area) for
three key indicators: eyelid distance, clock point, and scleral area, with reference to
the Common Muscle Weakness Scale: Quantitative Myasthenia Gravis Score (QMGS)
and the Absolute and Relative Score of Myasthenia Gravis (ARS-MG) as depicted in
Figure 3.

Eyelid distance: Eyelid distance is the distance between the upper and lower eyelids
when the patient is in front view and maximum eyelid view.

Clock point: the cornea is regarded as a clock face, and the positions of the left and
right numerical lines of the dial were used as the basis for division into seven clock
positions, 12 o’clock, 11-1 o’clock, 10-2 o’clock, 9-3 o’clock, 8—4 o’clock, 7-5 o’clock,
and 6 o’clock, in which the patient’s upper eyelid ptoticized to the position of the
clock in the palpebral superior fatigability test.

Scleral area: It is the maximum area that the sclera is exposed in the corresponding
direction when the patient gazes to the left or to the right.
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(a) Eyelid distance (b) Clock point (c) Scleral area
Figure 3. OMG indicator illustration. (a) Eyelid distance, distance between upper and lower eyelids.
(b) Clock point. (c) Scleral area, distance between the edge of the iris and the corner of the eye.

After many discussions and communication with doctors in Beijing Hospital, we will
no longer measure the scleral distance indicator but instead measure the scleral area.
The advantages are as follows: (1) From the computer point of view, compared with a
single distance, the two-dimensional area can more accurately reflect the horizontal
movement of the patient’s eye. (2) From a clinical point of view, the doctor can
independently use the caliper or visual estimation of distance, but can not estimate
the area, therefore, measuring the scleral area can better assist the doctor in diagnosis.
3. OMG diagnosis module

With reference to QMGS and ARS-MG, and after many exchanges with doctors
specializing in myasthenia gravis in Beijing Hospital, we decided to use the key
indicator—scleral area as the basis for diagnosis. We will calculate the proportion of
the scleral area to the entire eye area, using 3% as the threshold (considering that the
segmentation results may be inaccurate). If the scleral area proportion is less than 3%,
we consider it to be normal; If the scleral area is greater than 3%, it indicates that the
subject is unable to move the eyes normally, which is a diagnosis of ocular myasthenia
gravis. From the perspective of the process, we diagnose the left eye and the right
eye respectively according to the calculated indicators, and finally comprehensively
output the comprehensive diagnosis results to the expert doctor or the patient.

The framework of the diagnostic system underscores that precise segmentation of
the eye is imperative for diagnosing myasthenia gravis. As the saying goes, “A miss is as
good as a mile”, it becomes evident that any segmentation inaccuracies can substantially
influence the indicator calculating, thereby affecting the final diagnosis’s accuracy. How-
ever, as shown in Figure 4, the performance of existing data-driven methods on multi-class
segmentation of eye images leaves to be desired [12] (especially the boundary performance).
The deeper rationale for the inaccurate segmentation potentially resides in the limited scale
of accessible ocular medical datasets [13]. However, labeling medical datasets usually
requires a high level of expertise and great labor costs [13], thus our primary emphasis
centers on the resolution of this issue within the realm of deep learning methods. Intu-
itively, we need to take into account two factors: (1) network structure, and (2) loss function.
Therefore, in the next step, we will conduct an empirical study from these two aspects
and optimize the performance of the myasthenia gravis eye image segmentation model by
combining the characteristics of both.

7 IMG GT
LN ®

Figure 4. Examples of eye segmentation results where green, red, blue, yellow and black pixels

U-Net U-Net++ SegNet

represent the pupil, iris, sclera, lacrimal caruncle and skin respectively.
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2.2. Analysis of Network Structure

First, we address the network structure, based on the infrastructure, we divide the
existing common data-driven segmentation methods into two categories: the CNN-based
network structure and the Transformer-based network structure, as shown in Table 2.

Table 2. Network structure characteristics.

Network Name Characteristic
FCN [14] Including only convolutional layers
U-Net [15] A contracting path and a symmetric

expanding path

The decoder uses pooling indices to

SegNet [16] perform non-linear upsampling

CNN-based U-Net++ [17] Nested, dense skip pathways
structure

Applying the depthwise separable con-
Deeplabv3+ [18] volution to both Atrous Spatial Pyra-
mid Pooling and decoder modules

U2-Net [19] A two-level nested U-structure

Automatically configuring preprocess-
nnUnet [20] ing, network architecture, training and
post-processing

Extending the visual transformer (ViT)

Segmenter [21] to semantic segmentation

Transformer-based
structure

Combining Transformer and U-Net

TransUNet [22] Architecture

1.  Convolutional Neural Networks (CNNs)
CNN was initially proposed by Fukushima [23] in his seminal paper on the “Neocog-
nitron”, which is one of the most classic and widely used architectures for computer
vision tasks [24]. We believe it’s also suitable for eye image segmentation. As depicted
in Figure 5, a CNN is typically structured into three key layers: (i) a convolutional
layer, where kernels (or filters) equipped with learnable weights are applied to extract
image features; (ii) a nonlinear layer, which applies an activation function to feature
maps to enable the modeling of nonlinear relationships; and (iii) a pooling layer,
which reduces the feature map resolution—and consequently, the computational
burden—by aggregating neighboring information (e.g., maxima, averages) through a
predefined rule. In the following, we will describe the CNN structure-based network.

Input Cy Py C; Py
3 235131 20 Feature maps Feature maps Feature maps Feature maps
. 280x280 140x140 100x100 50%x50

Weight layer
Weight layer

Feature extraction

8 AY
- —=* ountput
A

2x2 ——

\
%3 . Pooling 5;3\\\; 72;XZ) Fully d : N N ?
Convolution Convolution P()Olillg . connecte: N N Relu
(a) CNN (b) Residual block

Figure 5. Architecture of CNNS.
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*  FCN: Fully Convolutional Networks (FCN) is a milestone in DL-based semantic
image segmentation models. It includes only convolutional layers, which enables
it to output a segmentation map whose size is the same as that of the input image.

*  U-Net: The structure of U-Net consists of a contracting path to capture context
and a symmetric expanding path that enables precise localization, which was
initially used for efficient segmentation of biomicroscopy images, and has since
been widely used for image segmentation in other domains as well.

* SegNet: The core structure of SegNet consists of an encoder network, and a
corresponding decoder network followed by a pixel-wise classification layer.
The innovation lies in the manner in which the decoder upsamples its lower-
resolution input feature map(s). Specifically, the decoder uses pooling indices
computed in the max-pooling step of the corresponding encoder to perform
non-linear upsampling.

®  U-Net++: U-Net++ adds a series of nested, dense skip pathways to unet, with the
re-designed skip pathways aimed at reducing the semantic gap between the
feature maps of the encoder and decoder sub-networks

*  Deeplabv3+: Deeplabv3+ applies the depthwise separable convolution to both
Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and
stronger encoder-decoder network.

e UZ-Net: U2-Net is a two-level nested U-structure that is able to capture more
contextual information from different scales without significantly increasing the
computational cost. It is initially used for salient object detection(SOD).

¢ nnU-Net: nnU-Net can be considered as an adaptive version of U-Net that
automatically configures itself, including preprocessing, network architecture,
training, and post-processing for any new task in the biomedical field. With-
out manual intervention, nnU-Net surpasses most existing approaches, including
highly specialized solutions on 23 public datasets used in international biomedi-
cal segmentation competitions.

Transformers

Transformers were first proposed by [25] for machine translation and established
state-of-the-arts in many NLP tasks. Illustrated in Figure 6, its inputs and outputs
are one-dimensional sequences, based solely on attention mechanisms, dispensing
with recurrence and convolutions entirely to enhance capabilities at modeling global
contexts. This is precisely the capability required for the multi-class segmentation task
of fine-grained eye images. To extend the Transformer’s application to computer vi-
sion, Dosovitskiy et al. [26] proposed Vision Transformer (ViT) model, which achieved
state-of-the-art on ImageNet classification by directly applying Transformers with
global self-attention to full-sized images. In the following, we will briefly describe the
Transformer structure-based network.

*  Segmenter: Extending the visual transformer (ViT) to semantic segmentation,
segmenter relies on the output embeddings corresponding to image patches and
obtains class labels from these embeddings with a point-wise linear decoder or a
mask transformer decoder. The network outperforms the state-of-the-art on both
ADE20K and Pascal Context datasets and is competitive on Cityscapes.

¢  TransUNet: TransUNet merits both Transformers and U-Net, not only encoding
strong global context by treating the image features as sequences but also utiliz-
ing the low-level CNN features via a u-shaped hybrid architectural design. It
achieves superior performances to various competing methods on different med-
ical applications including multi-organ segmentation and cardiac segmentation.

Due to the boundary inaccuracy of the eye segmentation results (the accuracy of the

boundary of the segmentation results is a key factor affecting the performance [27]). We will
incorporate a boundary loss function to steer the network’s focus toward boundary pixels
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and explore how to hybrid the loss functions to further optimize segmentation performance

in our next study.
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Figure 6. Architecture of Transformer.

2.3. Analysis of Loss Function

For the general optimization of image segmentation, current loss functions can be

divided into two groups based on the scope of pixels considered by the loss function: global
loss functions and local loss functions. The global loss function calculates the loss for all
pixels, including both foreground (segmentation target) and background pixels; The local
loss function computes the loss exclusively for foreground pixels.

Cross-entropy loss [28]) (CE loss): It quantifies the disparity between the predicted
value and the actual value on a per-pixel basis, considering all pixels within the image
equally. It belongs to global loss.

Weighted cross-entropy loss [29] (WCE loss): It further adds category weights to the
cross-entropy loss, which belongs to global loss.

IOU loss [30]: It only focuses on the segmentation targets, assessing the intersection
and union ratio between true pixel values and their predicted probabilities. Belonging
to local loss.

Dice loss [31]: It only focuses on the segmentation targets, and further emphasizes
the repeated computation component based on IOU loss. Belonging to local loss.

On the one hand, though the global losses empirically exhibit a high degree of stability,

they tend to be less sensitive to small target segmentation, resulting in a training bias
toward background classes with a larger number of pixels, and they lack a specific focus
on segmentation boundaries. On the other hand, local losses concentrate exclusively on
foreground pixels (segmenting the target pixels), making them less stable, and they also do
not focus on the boundary pixels. To further improve the segmentation performance of
OMG eye images, we introduce the Boundary loss [32].
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Boundary loss: Focusing on the boundary pixels of the segmentation target, assessing
the intersection and union ratio between true boundary pixel values and their pre-
dicted probabilities. Specifically, it only pays attention to the boundary pixels of the
pupil, iris, sclera, and tear caruncle, respectively (in Figure 7), and the numerator is to
multiply the predicted probability value of each category with the true value of the tar-
get pixel by pixel and then sum it; the denominator is to add the predicted probability
value and the true value of each category pixel by pixel, and then to subtract the part
of the “repeated computation component”. This loss has the advantages of symmetry
(labels and prediction maps can be swapped without affecting computational results)
and no preference (no preference for large or small targets) [33].

Ground Truth |Gd NPyl ~
A

rea 1 Lj /\\
LB - 1 -

Prediction ~ 1G4 U Pyl N

Area
Q O D S
\_ _J

Figure 7. Boundary loss computation illustration. G; denotes Pixels from the ground truth border d

width. P; denotes denotes Pixels from the prediction border d width.

Table 3 provides a evaluation results of current global losses (CE loss and WCE loss),

local losses (IOU loss and Dice loss), and boundary loss in terms of (1) Stability: Less loss
oscillation during training. (2) Boundary Concern: Whether to focus on boundary pixels.
(3) Insensitivity: Whether insensitive to a certain type of target segmentation. We believe
that boundary loss can effectively improve the segmentation accuracy of eye images as well
as the OMG diagnosis due to its focus on boundary segmentation. However, as an auxiliary
loss, boundary loss usually suffers from instability since it considers too few pixels (The
pixels near the boundary are often only a small fraction of the overall image pixels), thus it
is more suited for supplementary roles when hybridized with other loss functions.

Table 3. Loss function evaluation results, where defined with the unified notation from Table 4.

Loss Function Definition Stability BC*  Insensitivity
CE Loss Lee = =y L Ziq (viilog (9)) high x v
Global loss -
WCE Loss Lyce = —y LN S L (wiyijlog (i) high x Vv
10U Loss L=1-2Lym, Z§V=1 Yiidhi low x —
Local loss L 1Y+ Z’T\]l Jij ~ Liza Yiidy
Dice Loss Lp=1- %Z}” 1% low x —
Zz 1Yij + Xiz1 Uij
m Z:i:l y’]yAl]

Boundary loss

Boundary Loss

Lp=1— very low Vv —

=1 5N, Ni o N
T i+ L 0 — it i

* BC means boundary concern. x and — mean the Loss does not have this attribute. / means the Loss has this

attribute.
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Table 4. Notation used in this paper.

Notion Definition

m Number of pixel classes

N Number of pixels

Yij The true value of the ith pixel on class j

ij Predicted probability of the ith pixel on class j
wj; Weight of class j

Pixel width of the boundary region

3. Experiments and Results
3.1. Datasets

The experiments were performed on the normal human eye dataset UBIRIS.V2 and
a private dataset of eye images of myasthenia gravis patients, both of which contain
multiple shots (different times, environments, and viewpoints) of the same person’s two
eyes. UBIRIS.V2 is a database of visible wavelength iris images captured on-the-move
and ata-distance [13], and the image acquisitions were captured using a Canon EOS 5D,
containing 261 people with a total of 11,102 images, of which we labeled 3289. The private
dataset is a dataset of eye images of myasthenia gravis patients that we collected from
Beijing Hospital, 76 individuals, totaling 266 facial images captured with Nikon D300S
(Nikon, Tokyo, Japan), Xiaomi Mi MAX2 (Xiaomi, Beijing, China), Redmi K60 (Xiaomi,
Beijing, China), and Redmi Notel2 Turbo (Xiaomi, Beijing, China). These images were
processed to crop the eye region, resulting in 532 labeled eye images. In total, five parts of
the eye are labeled: pupil, iris, sclera, lacrimal caruncle, and surrounding skin. The datasets
were divided into training and test sets at a ratio of 4:1. Furthermore, to augment the
dataset, the private data training set was enhanced to 850 images through image flipping.

We use Mean Intersection Over Union (MIOU), Mean Dice (MDice), Mean F1 (MF1),
Mean Precision (MPrecision), Mean Recall (MRecall), Mean Boundary Intersection Over
Union (MBIOU), Average time (avg_time) metrics to evaluate the model performance,
where the MBIOU metric proposed by Cheng et al [33] is used to evaluate the model bound-
ary segmentation performance. avg_time denotes the average model segmentation time.

3.2. Implementation Details

Our experiments are implemented by pytorch, whose hyperparameters are tuned
according to the verified performance of the grid search. During training, it is trained using
an SGD optimizer with a learning rate of 0.0001, the batch size defaults to 16, and due to
faster convergence, the epoch of nnUnet is set to 80, while the epoch of all other networks is
set to 150, and for the boundary loss, d is set to 2% of the image diagonal. All experiments
were performed using a single Nvidia RTX4090 GPU(NVIDIA, Santa Clara, CA, USA).
Since physiologically the pupil and iris are quasi-circular [34], we finally used ellipse fitting
to fit the pupil and iris in the segmentation results as quasi-circular.

3.3. Empirical Experiment of Network Structure

We applied the nine networks described in Section 2.2 to segment our public and
private datasets. The results, presented in Tables 5 and 6, indicate that nnUnet, TransUNet,
and Deeplabv3+ outperformed the others, ranking as the top three networks. The MIOU
indexes of nnUnet, TransUNet, and Deeplabv3+ reached 81.43%, 80.89%, and 75.10%,
respectively. Based on the respective characteristics of these three networks, we believe
that they can well adapt to the multi-class segmentation of eye images of myasthenia
gravis. As illustrated in Figure 8, which displays the segmentation outcomes from different
networks. In addition, we also distinguish between the segmentation results of the left
eye and the right eye. As can be seen from the Figure 8, there is no significant difference
between the segmentation results of the left eye and the right eye, which indicates that the
segmentation algorithm we adopted has high stability and consistency. It is not difficult to
speculate that although the direction of the eyes is opposite, their external morphology and
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internal structure are consistent. This also proves that our strategy of data enhancement
with horizontal flip is reasonable, and the consistency of both eyes can minimize the extra

noise introduced after flip.

In order to optimize the segmentation performance even further, Section 3.4 we
continue to explore the effect of the hybrid loss function on the multi-class segmentation of
eyes. The following experiments will be based on the nnUnet, TransUNet and Deeplabv3+

networks.

nnUnet  TransUNet Deeplabv3+ SegNet UNet Segmenter

Left eye —

UNet++

U2Net

' ﬂ?----------
Sal.c Lo Lo o o Lo e e e e

Figure 8. Eye images segmentation results of patients with different network.
Table 5. Results for UBIRIS.V2 dataset.
Network Name MIOU (%) MDice (%) MPrecision (%) MRecall (%) MF1(%) MBIOU (%) Avg_time (s)
FCN 68.40 79.27 84.96 78.03 81.35 50.39 0.0117s
U-Net 70.16 80.44 88.38 77.16 82.39 50.50 0.0142
CNN-based SegNet 74.03 83.71 88.40 81.89 85.02 55.81 0.0136
structure U-Net++ 73.69 83.48 86.78 83.15 84.93 55.10 0.0186
Deeplabv3+ 75.10 84.64 83.96 88.05 85.96 56.36 0.0259
U2-Net 73.77 82.54 83.16 83.89 83.52 53.37 0.0152
nnUnet 81.43 88.76 90.83 88.33 89.56 59.43 0.0220
Transformer-based Segmenter 72.47 81.65 87.47 79.13 83.09 47.13 0.0108
structure TransUNet 80.89 88.53 90.10 88.38 89.23 57.72 0.0173
Bold means the data with the best performance.
Table 6. Results for private dataset.
Network Name MIOU (%) MDice (%) MPrecision (%) MReca (%) MF1(%) MBIOU (%) Avg time (s)
FCN 56.33 67.98 73.82 69.70 71.70 38.04 0.0286
U-Net 71.24 80.87 85.64 80.22 82.84 50.64 0.0301
CNN-based SegNet 67.73 78.37 79.85 80.45 80.15 46.93 0.0327
structure U-Net++ 68.44 78.17 82.40 78.20 80.24 49.87 0.0332
Deeplabv3+ 72.11 81.97 80.44 87.31 83.74 49.35 0.0433
U2-Net 68.49 77.73 79.36 79.25 79.30 39.81 0.0231
nnUnet 82.67 89.44 90.01 90.63 90.32 59.81 0.0320
Transformer-based Segmenter 71.87 80.96 85.62 79.85 82.63 44.08 0.0381
structure TransUNet 81.62 88.71 89.02 89.95 89.49 57.35 0.0271

Bold means the data with the best performance.

3.4. Empirical Experiment of Hybrid Loss Function

Based on the categorization of loss functions outlined in Section 2.3, we derived three
hybrid methods, namely “G + B” (G + B is an abbreviation for Global + Boundary.), “L + B”
(L + Bis an abbreviation for Local + Boundary.), and “G + L + B” (G + L + Bis an abbreviation
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for Global + Local + Boundary.), and conducted experiments on both datasets. The optimal
results achieved using various hybrid methods for nnUnet, TransUnet, and Deeplabv3+
are given in Table 7, Table 8, and Table 9, respectively.

The experiments validate the enhanced performance of both “G + B” and “G + L + B”
hybrid modes. Specifically, In both datasets and both hybrid modes, the MBIOU of nnUnet
is improved by an average of 1.0375% and the MIOU by an average of 0.5%; the MBIOU of
TransUnet is improved by an average of 0.8625% and the MIOU by an average of 0.2875%;
the MBIOU of Deeplabv3+ is improved by an average of 1.55% and the MIOU by an average
of 0.9125%; In addition, we also conducted hybrid loss function experiments in other
networks (FCN, SegNet, U-Net, U-Net++, U?-Net, Segmenter), and averaged the results
of the above six networks, their MBIOU is improved by an average of 1.625%, and MIOU
is improved by an average of 1.3%. These results underscore the robust generalization
capability of the boundary loss in the context of eye image segmentation tasks. Concurrently,
we observed that segmentation performance with the “L + B” model may significantly
declined (an average decline of 11.625% for MBIOU and 14.52% for MIOU in two datasets
and these three networks). Figure 9 shows the loss curves of different hybrid modes.
Consequently, to leverage boundary loss for enhancing both overall segmentation quality
and boundary precision, a global loss must first exist as the foundation. Therefore, to ensure
greater stability, emphasize boundary concern, and reduce insensitivity, the hybrid loss
function should adhere to the hybrid modes of “G + L + B” or “G + B”, while trying to
avoid the “L + B” mode.

Table 7. Different hybrid loss function results for both datasets of nnUnet, where the left side and right
of / denote the performance on the UBIRIS.V2 dataset and that on the private dataset, respectively. «,
B, and <y are the weights of losses.

Loss MIOU (%) MDice (%)  MPrecision (%) MRecall (%) MF1 (%) MBIOU (%) Avg_time (s)
Lcg 81.43/82.67 88.76/89.44 90.83/90.01 88.33/90.63 89.56/90.32  59.43/59.81 0.0220/0.0320
aLcp +Lp 81.77/83.40  89.07/89.96 90.79/90.38 88.89/91.18 89.83/90.77  60.76/61.50 0.0291/0.0350
Lwce 82.08/82.38  89.28/89.19 88.55/88.48 91.75/91.85 90.12/90.13  60.04/59.31 0.0240/0.0303
aLwce + vLp 82.41/83.12 89.52/89.73 90.10/89.25 90.39/91.93 90.24/90.57 60.66/60.72 0.0312/0.0310
aLcg + BLy 81.63/82.94 88.90/89.63 91.12/90.22 88.33/90.70 89.70/90.46  59.71/59.92 0.0241/0.0360
«Lcg + BL; +vLp 82.13/83.64  89.29/90.03 91.44/90.34 88.63/91.29 90.01/90.81 60.44/61.75 0.0270/0.0320
«Lcg + BLp 82.06/83.21 89.25/89.76 91.30/90.34 88.70/90.91 89.98/90.63  60.45/60.90 0.0280/0.0310
«Lcg + BLp + yLp 82.10/83.48 89.27/89.95 91.81/90.55 88.54/90.94 89.99/90.74  60.51/61.39 0.0301/0.0360
BL; +vLp 69.16/70.75  73.79/74.66 75.02/74.37 73.29/75.57 74.14/7496  51.03/50.55 0.0350/0.0320
BLp +vLp 69.16/67.71  73.80/72.43 74.95/73.23 73.35/72.85 74.14/73.04  51.03/56.96 0.0320/0.0310

Bold means the data with the best performance.

Table 8. Different hybrid loss function results for both datasets of TransUNet, where the left side
and right of / denote the performance on the UBIRIS.V2 dataset and that on the private dataset,
respectively. a, B, and <y are the weights of losses.

Loss MIOU (%)  MDice (%)  MPrecision (%)  MRecall (%) MF1 (%) MBIOU (%) Avg_time (s)
Lcg 80.91/81.62 88.53/88.71 90.10/89.02 88.38/89.95 89.23/89.49  57.72/57.35 0.0173/0.0271
aLcg +yLp 81.03/81.98  88.64/88.90 89.41/89.17 89.27/90.15 89.34/89.66 57.80/58.34 0.0161/0.0289
Lwce 81.11/80.67  88.72/88.19 88.41/86.63 90.65/91.56 89.52/89.02  57.43/54.94 0.0178/0.0288
aLwce + vLp 81.19/81.40 88.79/88.61 88.86/87.72 90.08/91.2 89.42/89.47  58.19/56.87 0.0167/0.0293
«Lcg + BL; 80.99/81.85 88.60/88.93 89.86/88.58 88.83/90.77 89.34/89.66  57.40/57.92 0.0171/0.0284
aLcp + BLp +yLp 81.55/81.89  89.02/88.94 90.10/88.92 89.27/90.61 89.68/89.76  58.43/58.55 0.0172/0.0273
«Lcg + BLp 81.23/81.68 88.80/88.77 90.44/89.53 88.60/89.57 89.51/89.55  57.97/57.64 0.0168/0.0283
«Lcg + BLp + yLp 81.24/81.74 88.74/88.74 89.13/89.42 89.84/89.60 89.48/89.51 58.29/58.29 0.0169/0.0284
BL; + yLp 70.12/81.11  78.85/88.35 83.90/88.61 77.42/89.62 80.53/89.11  44.86/56.51 0.0174/0.0272
BLp +vLp 70.11/81.58  79.25/88.67 81.19/89.44 80.40/89.37 80.79/89.40  43.63/57.46 0.0174/0.0298

Bold means the data with the best performance.
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Table 9. Different hybrid loss function results for both datasets of Deeplabv3+, where the left side
and right of/denote the performance on the UBIRIS.V2 dataset and that on the private dataset,
respectively. a, B, and <y are the weights of losses.

Loss MIOU (%) MDice (%)  MPrecision (%) MRecall (%) MF1 (%) MBIOU (%) Avg_time (s)
Lck 75.10/72.11  84.64/81.97 83.96/80.44 88.05/87.31 85.96/83.74  56.36/49.35 0.0259/0.0433
aLcg +yLp 76.35/73.34  85.61/83.25 83.76/80.22 89.86/89.78 86.71/84.73 58.24/51.78 0.0311/0.0412
Lwce 75.80/73.88  85.20/83.52 82.41/79.96 90.73/90.51 86.37/84.91  57.14/51.30 0.0253/0.0425
aLwce +YLp 76.84/75.22  85.95/84.65 85.71/81.76 88.33/90.58 87.00/85.94 58.67/54.40 0.0253/0.0424
«Lcg + BL; 7720/76.14  86.24/85.08 86.66/85.00 87.60/87.86 87.12/86.40  58.97/56.06 0.0254/0.0365
aLcp + BLp +yLp 77.42/76.45 86.38/85.42 87.10/84.38 87.46/89.30 87.28/86.77  59.53/56.20 0.0252/0.0355
«xLcg + BLp 76.59/75.61  85.80/84.84 86.46/84.62 87.10/87.90 86.78/86.23  58.15/54.61 0.0253/0.0428
«Lcg + BLp + yLp 77.29/76.13  86.29/85.29 87.20/84.00 87.26/89.23 87.23/86.53 59.30/55.71 0.0252/0.0429
BL; + vLg 55.85/37.68  63.36/42.78 60.52/40.86 68.05/46.55 64.07/43.52  40.14/21.81 0.0250/0.0426
BLp +vLp 54.80/49.96  62.63/58.71 59.20/54.24 68.25/67.37 63.40/60.10  38.13/27.90 0.0251/0.0407
Bold means the data with the best performance.
Lwcg+Lp Lep + Liou+Llp  Lop + Lpice+Lp Lioy+Lp Lpice+Lp

I = =

nnUnet L

TransUNet :*

Deeplabv3+

Figure 9. Loss of three hybrid modes on the private dataset.

In order to maximize the performance of myasthenia gravis eye image segmentation,
we finally decided to use the “nnUNet” network structure and the “CE + Iou + Boundary”
hybrid loss function as the segmentation model of the diagnosis system by combining the
network structure and the loss function aspects of the research.The specific hybrid loss
function formula is shown in (1).

LHybrid = aLcg + BLpice + ')’LBoundary @

where « is the cross-entropy loss weight, § is the Dice loss weight, and 7 is the boundary
loss weight, we set « = § = 1 and -y goes from 0 to 1 with the number of epoch.

3.5. Accuracy of Diagnosing OMG by Doctors with the Assistance of OMGMed

We also tested the accuracy of doctors diagnosing myasthenia gravis with the help of
the system. Four senior doctors, four junior doctors, and four non-doctors were invited to
participate in the diagnosis, and senior doctors were defined as doctors who had worked
for more than ten years or as deputy director or above; Junior doctors refer to doctors who
have worked for less than ten years, and non-medical staff refers to students of other majors
in the project team. We randomly selected 20 healthy people and 26 sick people as subjects,
first let doctors and the OMGMed system independently diagnose, and then let doctors
refer to the OMGMed system for diagnosis again. Specifically, the OMGMed system will
calculate the pixel distance (area) of the three indicators of clock point, eyelid distance,
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and scleral area according to the subject’s eye image segmentation results, and then obtain
the final diagnosis according to the relative proportion of scleral area. The segmentation
results obtained by the OMGMed system, the calculation results of relevant indicators,
and the final diagnosis results obtained according to the scleral area are all output to
the doctor, and the doctor can refer to the above information to get the final diagnosis
results. Finally, we compared the results of these three diagnoses with the real label to
obtain the average sensitivity and specificity of the independent diagnosis group and the
OMGMed group. Sensitivity refers to the proportion that correctly identifies the actual
positives. Specificity refers to the proportion of actual negatives that are correctly identified.
In addition, we also measured the approximate average time spent diagnosing a subject by
various physicians in the independent and auxiliary diagnostic groups.

It can be seen from Figure 10 that the mean sensitivity and specificity of independent
diagnosis of the junior group and non-doctor group is significantly lower than that of the
OMGMed group. After referring to OMGMed-assisted diagnosis, the average sensitiv-
ity and specificity of non-medical staff were increased by 38.46% and 25%, respectively,
and that of primary doctors by 19.23% and 15%, respectively. Moreover, the diagnostic
accuracy of senior doctors improved when they referred to the system diagnosis, surpassing
OMGMed’s automated diagnosis accuracy. In addition, the system can also improve the
speed of doctors’ diagnosis, and the average diagnosis time of a subject is shortened from
7.7 min to 2.5 min. This evidence suggests that OMGMed can significantly enhance the
diagnostic precision and efficiency of physicians. This system has been implemented in the
MG clinic at Beijing Hospital.

ROC
Diagnose Referring to 1.0
independently OMGMed
Non. | Sensitivity() 23.07 61.53 08 NS
doctor  Specificity(%) 65.00 90.00
Timemin) 12 3 206 \
& )
Junior = Sensitivity(%) 57.69 76.92 g
L
doctor  Specificity(%) 75.00 90.00 0.4 OMGMed
Time(min) 6 2.4 o Senior doctor
o 3 -
Senior | Sensitivity(%) 80.77 88.46 02 o Junior doctor
. o Non-doctor
doctor = Specificity(%) 80.00 90.00
0.0
Time(min) 5 2.2 0.0 0.2 0.4 0.6 0.8 1.0
1 - specificity

Figure 10. A Comparison between doctors” independent diagnosis and doctors” diagnosis with
OMGMed. The starting points of the arrows represent the results of the independent diagnosis, and
the end points represent the results with the assistance of our method. The orange line represents the
receiver operating characteristic (ROC) curve of our method.

4. Discussion
4.1. Eye Segmentation Performance
4.1.1. Network Structure

We have carried out experiments on nine network structures in Section 3.3, covering
the two major infrastructures of CNN and Transformer. In the end, the top three in terms
of performance are nnUnet, TransUNet, and Deeolabv3+ in order from high to low. Based
on this result, we believe that nnUnet excels in the complex multi-class segmentation of
myasthenia gravis eye images, attributed to its robust adaptive capability. The encoder
component of TransUNet merges the Transformer encoder’s global context modeling
strength with the CNN encoder’s capacity for detailed, high-resolution spatial information
extraction, which facilitates superior performance in multi-class eye image segmentation
tasks for OMG. Meanwhile, Deeplabv3+ also can achieve good segmentation results due
to the separable convolution and pyramid structure that expands the sensory field and
captures multi-scale contextual information.
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4.1.2. Loss Function

The global loss has a high degree of stability, but it does not focus on the boundary
pixels. The local loss has a low degree of stability, but it can focus on the whole of the
segmented object. The boundary loss stability has a very low degree of stability, but it
can focus on the boundary pixels. Based on the above cognition, we conducted a hybrid
experiment on the three types of loss functions in Section 3.4. From the experimental
results, we found that the performance of the “G + B” hybrid mode and “G + L + B” hybrid
mode was improved, indicating that the boundary loss could effectively improve the eye
segmentation effect. However, the “L + B” hybrid mode would lead to a great decline
in performance. Combining three types of loss function characteristics, we attribute to a
phenomenon of “local bias”: The model overly fixates on local outcomes to the detriment
of overall segmentation results, resulting in unstable training processes and unreliable
training outcomes. The loss curves of different hybrid modes also verify our conjecture
(Figure 9). It can be seen that the loss function curve of the “L + B” combination oscillates
greatly, indicating that the optimization direction of the model is prone to great changes
during the training process due to the consideration of too few pixels. Leads to unstable
and unreliable results.

4.2. Practical Implication

OMGMed system has improved the accuracy and efficiency of diagnosis for different
groups (non-doctors, junior doctors, and senior doctors). From the perspective of accuracy,
the lower the group’s professional grade, the greater the improvement of its accuracy,
which is also logical. The system is most helpful to the non-doctor group, which further
demonstrates the potential of the system for remote disease monitoring of patients in
remote areas, illustrating the scope of the system and the wide range of applicable groups.
From the perspective of time, in the past, doctors needed to use calipers close to the eyes
of patients and measure the actual indicators, during which they also faced problems
such as patients shaking, blinking, manual measurement inaccurate, and many times they
needed to re-measure, which was very inefficient. However, the OMGMed system directly
measured through eye images, greatly saving the measurement time and reducing the
burden of doctors.

4.3. Limitations and Future Work
4.3.1. Image Quality Varies

Pursuant to the results of empirical studies on eye image segmentation, we find
that one dominant reason for mis-segmentation might lie in the fact that the eye images
from different devices and environments have different qualities. For example, the eye
image may be blurred when taken by mobile phones with low pixels; Shooting in a dark
environment may cause dark areas in the lacrimal caruncle. Shooting light directly into the
patient may cause the iris to appear reflected light, which is similar in color to the sclera.
The above conditions are all factors that will affect image quality. Research indicates that
CNN:s are highly susceptible to out-of-distribution samples. It is well established that the
performance of CNNs on out-of-distribution samples significantly diminishes [35].Based
on the above situation, taking into account the differences in uncertain factors such as
equipment, environment, and location, we plan to try to improve such problems through
“data” and “model” in future work.

At the data level, Traditional data augmentation (flipping, translation, clipping, etc.) is
commonly unable to extrapolate the generated data, which leads to data bias and suboptimal
performance of trained models [36]. Many researchers have shown that data augmentation
using GAN techniques can provide additional benefits over traditional methods [37]. Conse-
quently, GAN techniques can be used to synthesize realistic myasthenia gravis eye images for
data augmentation, thus mitigating data imbalance issues. Furthermore, for image data of
poor quality, GAN techniques can be utilized for de-noising preprocessing. Cheong et al. built
DeShadowGAN using manually masked artifact images and conditional GAN with percep-
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tual loss and demonstrated the effectiveness of the model in removing shadow artifacts [38].
Although these techniques are primarily applied to fundus or OCT images, they also offer
valuable insights into potential future research directions.

At the model level, firstly we can consider segmentation models built on the GAN net-
work architecture, including conditional GANs [39], patch-based GANs [40], and topological
structure-constrained GANSs [41], etc. Secondly, we can focus on enhancing the robustness
(generalization ability) of the segmentation model. For instance, adversarial training can be
used to enhance the cross-domain generalization ability of the model [42—44], which introduces
simulated attacks during training to bolster the model generalization ability of the crossing
domains. This approach integrates segmentation consistency across different distributions
of data and has great potential to be employed for improving the accuracy of eye image
segmentation and automatic diagnosis of OMG.

4.3.2. Single Diagnostic Basis

In the process of diagnosing ocular myasthenia gravis, our system has the problem of
single diagnostic indicators. In real-world clinical diagnosis, in addition to scleral distance
(area) indicators, there are many important evaluation indicators that need to be referred
to, such as clock point, eyelid distance, etc. In future work, we will consider more relevant
indicators as a diagnostic basis. We believe that the diagnostic accuracy of the system can
be further improved after considering more indicators as the diagnostic basis.

5. Proactive Healthcare Service

The application of OMGMed for automatic OMG detection enables the early interven-
tion of potential OMG patients and long-term monitoring of patients with diagnosed OMG.
As shown in Figure 11, the usage scenario of the pilot study on OMGMed involves three
types of parties, i.e., (1) myasthenia gravis clinics; (2) physical examination centers; and
(3) families of diagnosed patients. In a real-world case, parties (2) and (3) might be located
in one expert center. The staff members in the party (1) are myasthenia gravis experts who
provide healthcare to patients. The workers in the party (2) are nurses or general medical
practitioners who work primarily on physical examinations of large populations. However,
their MG knowledge is limited. The party (3) is staffed by the diagnosed patients or the
patient’s families.

OMGMed
system

LS

H n [ Patient's home }

Hysical examination
centers

Figure 11. The usage scenario of the real-world application of OMGMed on eye image segmentation
for automatic OMG diagnosis.

The operation of the OMG diagnostic solution includes two phases, i.e., the screening
phase and the monitoring phase. In the screening phase, whenever the potential patients
(e.g., health checkers) go to the party (2) for checking, their face data are stored remotely in
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the database. At the same time, the myasthenia gravis diagnostic component is triggered.
Sending the original images and diagnosis results to the expert doctors in the party (1),
and if the expert doctors verify the results to be true, then the party (2) contacts the potential
patient and informs him/her that he/she has OMG. Similarly, in the monitoring stage,
the diagnosed patients in the party (3) can upload photos at home, if the diagnosis is
aggravated, the expert doctor in the party (1) will contact the patient to seek medical
treatment as soon as possible, or first remote intervention.

The usage scenario in Figure 10 shows that the multiple types of objects are loosely
coupled together to enable high quality healthcare to reach remote regions, greatly reducing
the cost of remote patient healthcare, while also improving the efficiency and quality of
diagnosis by expert doctors.

6. Conclusions

A computer-aided diagnosis system—OMGMed is presented, which can auxiliary di-
agnosis of OMG through eye image segmentation. It is helpful for improving the diagnostic
efficiency of doctors and reducing the cost of MG treatment for patients, thus promoting
the popularization of MG medical resources in underdeveloped areas. Building on this,
we conducted an empirical study focusing on “network structure” and “loss function” to
refine eye image segmentation accuracy. The experiments demonstrated the efficacy of
a hybrid loss function, and finally, we selected “nnUNet” + “CE + Iou + Boundary” as
the segmentation model for our auxiliary diagnosis system. The Intersection over Union
(MIOU) on the two datasets are 82.1% and 83.7%, respectively.

The real-world pilot study is reported, which is about the computer-aided auxiliary
diagnosis system for OMG. By retrieving eye images from the database, conducting image
segmentation and automatic indicator calculation, and returning the diagnosis results to
the expert doctors or patients. The study has been applied to the myasthenia gravis clinic
of Beijing Hospital, which effectively improves the accuracy rate of the expert doctors. It is
worthwhile to be generalized and adapted to be used for solving OMG or other medical
diagnosis problems with similar situations.
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