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Abstract: Background: Recent advancements in deep learning have significantly impacted ophthal-
mology, especially in glaucoma, a leading cause of irreversible blindness worldwide. In this study,
we developed a reliable predictive model for glaucoma detection using deep learning models based
on clinical data, social and behavior risk factor, and demographic data from 1652 participants, split
evenly between 826 control subjects and 826 glaucoma patients. Methods: We extracted structural
data from control and glaucoma patients’ electronic health records (EHR). Three distinct machine
learning classifiers, the Random Forest and Gradient Boosting algorithms, as well as the Sequential
model from the Keras library of TensorFlow, were employed to conduct predictive analyses across
our dataset. Key performance metrics such as accuracy, F1 score, precision, recall, and the area under
the receiver operating characteristics curve (AUC) were computed to both train and optimize these
models. Results: The Random Forest model achieved an accuracy of 67.5%, with a ROC AUC of
0.67, outperforming the Gradient Boosting and Sequential models, which registered accuracies of
66.3% and 64.5%, respectively. Our results highlighted key predictive factors such as intraocular
pressure, family history, and body mass index, substantiating their roles in glaucoma risk assessment.
Conclusions: This study demonstrates the potential of utilizing readily available clinical, lifestyle,
and demographic data from EHRs for glaucoma detection through deep learning models. While our
model, using EHR data alone, has a lower accuracy compared to those incorporating imaging data,
it still offers a promising avenue for early glaucoma risk assessment in primary care settings. The
observed disparities in model performance and feature significance show the importance of tailoring
detection strategies to individual patient characteristics, potentially leading to more effective and
personalized glaucoma screening and intervention.

Keywords: glaucoma; early detection; machine learning algorithms; clinical data

1. Introduction

Glaucoma, a leading cause of irreversible blindness, is primarily linked to elevated
intraocular pressure (IOP), the only currently modifiable risk factor known to slow the
progression of vision impairment [1-16]. It has been reported that glaucoma will impact
roughly 112 million individuals worldwide by 2040 [17]. The American Glaucoma Society
notes that while 2.7 million Americans live with glaucoma, a concerning 50% remain
unaware of their condition [18]. Also, the disease significantly reduces the quality of life and
imposes a considerable economic strain [17], with treatment and healthcare expenses in the
U.S. reaching approximately $2.5 billion annually [19]. Detecting glaucoma during its initial
stages remains a complex challenge [20,21] due to varying symptoms and rates of disease
advancement among individuals [22]. This often results in delayed diagnosis, allowing the
disease to progress unchecked until significant visual loss ensues. Consequently, enhancing
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early glaucoma detection through innovative screening and diagnostic innovation is vital
for initiating prompt treatment strategies to lessen vision loss [23-26].

From the viewpoint of health economics, it is argued that universal glaucoma screening
may not be economically viable; however, focusing on individuals at high risk could prove
to be more cost-effective [27]. Early detection of high-risk patients within these targeted
groups could lead to a more efficient use of healthcare resources, enabling cost-saving
management strategies while reducing unnecessary procedures and tests for those at lower
risk. This approach has gained particular significance considering the anticipated sharp
rise in glaucoma cases due to an aging population, a trend that is unlikely to be paralleled
by an increase in the number of healthcare professionals specialized in glaucoma care [28].

Numerous factors have been identified as contributing to the risk of glaucoma de-
velopment [29]. Currently, a glaucoma risk calculator exists to estimate patients’ risk of
developing glaucoma, but it requires many pieces of ocular information (i.e., IOP, optic
nerve cup-to-disc ratio, visual field parameters, and corneal thickness) [29], which is avail-
able only in the eyecare provider’s office [30,31]. Incorporating the systemic information
available from the primary care’s EHR allows us to risk profile patients who have not been
seen by eyecare providers [32,33]. Studies have indicated that individuals with systemic
health conditions like diabetes experience a 2.8 times higher risk of developing glaucoma
compared to those without diabetes [34]. Moreover, vascular issues such as coronary artery
diseases have been linked to increased rates of glaucoma, suggesting they could act as
indicators for the disease’s progression [35]. Moreover, various population-based studies
have identified a correlation between high blood pressure and an increased likelihood of
glaucoma [35-37]. Furthermore, the impact of medical treatments and the utilization of
electronic health records (EHR) on the onset of glaucoma have not been fully explored in
either prospective or cross-sectional studies, indicating a potential area for further inves-
tigation. Establishing a correlation between clinical, lifestyle, and demographic factors
and glaucoma cannot be efficiently achieved through traditional cross-sectional studies
alone, as these methods are both time-consuming and costly. While several studies have
leveraged EHR for glaucoma prediction, none have incorporated the potentially valuable
insights offered by lifestyle and demographic data yet [38—41].

Recent advancements in technology algorithms have significantly enhanced the detec-
tion and diagnosis of various diseases, including glaucoma. Deep learning (DL) algorithms,
particularly convolutional neural networks (CNNs), have shown great promise in analyz-
ing medical images such as fundus photography and optical coherence tomography (OCT)
scans. Studies by Kim et al. [20] and Asaoka et al. [21] demonstrated the efficacy of CNNs
in diagnosing glaucoma, achieving accuracies of 83% and 90%, respectively. Also, ensemble
learning methods, as utilized by Norozifar et al. [42] and Chai et al. [43], have improved
predictive performance by combining multiple classifiers. Hybrid models that integrate
deep learning with traditional machine learning algorithms have also been developed to
enhance diagnostic accuracy. Explainable Al (XAI) techniques have been employed to
make Al models more interpretable and trustworthy.

Deep learning models, a subclass of artificial neural networks, consist of multiple layers of
“neurons”, algorithms inspired by biological neural cells. These neurons process inputs from
preceding layers, compute an output, and pass it on, functioning collectively within an artificial
neural network. These networks process data with the aim of achieving specific outcomes.
These have been used for three decades to interpret perimetry data for glaucoma detection [44].
Recent advancements in computational capabilities have enabled the development of deep
learning networks with multiple layers capable of handling more intricate data, enhancing
performance significantly beyond that of earlier, less complex networks. The application of
machine learning for glaucoma diagnosis, particularly through the classification of medical
imaging like fundus photography [45-48], visual fields [28,49-52], and optical coherence
tomography (OCT) [53-56], has since seen widespread use and demonstrated the potential
for early detection. Despite these advances, there remains a gap in utilizing a model that
integrates clinical, lifestyle, and demographic data for predicting individual glaucoma risk.
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This study aims to bridge this gap by developing a comprehensive and robust predictive
model using advanced machine learning techniques, specifically, Random Forest and
Gradient Boosting algorithms, and a sequential model from the TensorFlow library, to
analyze these varied data types. Our goal is to provide a tool that enhances early glaucoma
detection and supports clinicians in making informed decisions, thereby improving patient
outcomes. Figure 1 illustrates the multifaceted approach of our artificial intelligence
model for the early detection of glaucoma, highlighting the integration of various clinical,
lifestyle, and demographic factors such as IOP, Body Mass Index (BMI), blood work results,
blood pressure (BP), family history, medication use, patient visits, age, tobacco usage, and
alcohol consumption. This visual encapsulates the model’s comprehensive data inputs,
underscoring the holistic analysis employed to predict glaucoma onset.
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Figure 1. Schematic representation of data utilized in Al-based glaucoma detection, showcasing
clinical, lifestyle, and demographic factors.

The methods employed in this study offer several distinct advantages for glaucoma
detection. The reliance on EHR data eliminates the need for invasive procedures or spe-
cialized tests, making it a patient-friendly approach. Utilizing existing EHR data is more
cost-effective than conducting new clinical trials or developing new diagnostic tools. The
data used in this study are readily available in primary care settings, potentially enabling
wider screening and earlier detection of glaucoma. By incorporating clinical, lifestyle, and
demographic data, the model provides a holistic assessment of glaucoma risk, considering
various factors that may contribute to the disease. The methodology can be easily adapted
to analyze registry data from different EHR systems, enhancing its applicability across



Bioengineering 2024, 11, 577

4 0f 20

diverse healthcare settings. The model’s ability to identify individuals at high risk for glau-
coma before significant vision loss occurs is a major advantage, as early intervention can
significantly improve patient outcomes. The model’s focus on individual risk factors allows
for personalized risk assessment and tailored treatment strategies, potentially improving
the effectiveness of glaucoma management. The use of machine learning algorithms al-
lows for the efficient processing of large datasets, making it scalable for population-level
screening and risk assessment.

2. Materials and Methods
2.1. Participants, Feature Selection, and Dataset Preparation

We obtained deidentified clinical data from an EHR database, which encompassed a
broad array of attributes including demographic details, minimum and maximum BMI, di-
astolic and systolic blood pressures, prescribed medications, number of medical diagnoses,
tobacco and alcohol usage, IOP, and results from various laboratory tests. The dataset
comprised information on 1937 individuals, of whom 1111 were non-glaucoma patients
and 826 were diagnosed with glaucoma. To ensure balance and reduce model bias, we
randomly selected a subset of 826 non-glaucoma patients to match the number of glaucoma
cases. This study received approval from the institutional review board (IRB #00027899) at
the Oregon Health and Science University, Portland, OR, and was conducted in strict adher-
ence to the principles set forth in the Declaration of Helsinki. The methodologies employed
in this research are adaptable for analyzing registry data from various EHR systems.

The inclusion criteria for the glaucoma cohort are individuals 40 years or older when
glaucoma was diagnosed, with an EHR record between 2012 and 2022, and with at least
3 months of follow-up appointment visits. For the control dataset, we compiled a cohort
of patients being evaluated for cataracts without a diagnosis of glaucoma. This approach
ensures a clear distinction between cases and controls based on documented medical visits
and glaucoma status.

We started by processing the patient data from Excel sheets into a standardized
Comma-Separated Value (CSV) format, with the following factors included from up to
2 years before the glaucoma diagnosis (for glaucoma cohort) and cataract surgery (for
control cohort): BMI, Diastolic Blood Pressure, Systolic Blood pressure, Gender, Race,
Alcohol Use, Tobacco Use, Age, Family History, IOP, Hemoglobin A1C, Hematocrit, Creati-
nine Plasma, Past Diagnosis Count, and Medications. Figure 2 represents the quantitative
variables used in the dataset, categorized by glaucoma diagnosis. Figure 3 shows the
distribution of medication usage among glaucoma and control groups. This bar chart
compares the frequency of various medications, including Lisinopril, Losartan, Metformin,
Furosemide, Insulin, Estradiol, Carvedilol, Bupropion, Hydrochlorothiazide, and Nitro-
glycerin, between individuals diagnosed with glaucoma and control participants.

Glaucomatous and non-glaucomatous patients were processed separately, then com-
bined into a single dataset. Due to an emerging separation between the number of glau-
comatous and non-glaucomatous patients in the filtered dataset, individuals were sys-
tematically undersampled to correct for any bias that could be transferred to the models.
All numerical variables, e.g., BMI, blood pressure, age, IOP, hemoglobin A1C, hematocrit,
creatinine, and diagnoses, were filtered for outliers and data entry errors. Categorical
variables were encoded into discrete numerical values through indexing unique values
in the data and creating lookup tables for gender, race, alcohol/tobacco use, and family
history. Medication data were condensed to identify unique medications for each patient
and split to extract the names of the drugs used. Any individuals without readings for
any of these variables, except for medication, were excluded from the dataset. Once the
data were preprocessed, the mean and standard deviation of all numerical variables (and
any categorical variables encoded to numerical values) were saved and the data were
standardized into standard scores in order to be better processed by the TensorFlow library.
The extracted mean and standard deviation were later used in the input preprocessing
of the application so as to keep user-input data consistent with training and testing data
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from the dataset. Comparative mean values of clinical parameters between control and
glaucoma groups are summarized in Table 1. This table presents the average measurements
of IOP, age, diastolic and systolic blood pressure, BMI, creatinine, hemoglobin A1C, and
hematocrit for individuals within the control group versus those diagnosed with glaucoma.
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Figure 2. Comparative distributions of key variables for glaucoma versus control groups. The overlaid
histograms illustrate the frequency distributions of crucial factors, including Intraocular Pressure
(IOP), Age, Diastolic Blood Pressure, Systolic Blood Pressure, BMI, Creatinine, Hemoglobin A1C, and
Hematocrit, differentiating between individuals diagnosed with glaucoma and healthy controls.

Table 1. Comparative mean values of clinical parameters between control and glaucoma groups. This
table presents the average measurements of intraocular pressure (IOP), age, diastolic and systolic
blood pressure, body mass index (BMI), creatinine, hemoglobin A1C, and hematocrit for individuals
within the control group versus those diagnosed with glaucoma.

Parameters Control Glaucoma

IOP (mm Hg) 15.18 16.68

Age (year-old) 69.25 68.79
Diastolic blood pressure (mm Hg) 73.2 72.8

Systolic blood pressure (mm Hg) 128.2 128.49
Body mass index (kg/ m?) 28.69 27.89
Creatinine (mg/dL) 0.99 1.04
Hemoglobin A1C (%) 6.27 6.21
Hematocrit (%) 40.28 40.4
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Figure 3. Distribution of medication usage among glaucoma and control groups. This bar chart com-
pares the frequency of various medications, including Lisinopril, Losartan, Metformin, Furosemide,
Insulin, Estradiol, Carvedilol, Bupropion, Hydrochlorothiazide, and Nitroglycerin, between individu-
als diagnosed with glaucoma and control participants.

2.2. Training Models
2.2.1. Sequential Model from Keras Library of TensorFlow

TensorFlow is a versatile and scalable open-source library designed for numerical
computation, particularly utilized in machine learning and neural network modeling. It
employs dataflow graphs for calculations, optimizing performance with C++ and CUDA
for parallel computing, particularly on NVIDIA architectures. TensorFlow supports mul-
tiple programming languages, with Python being the most developed and user-friendly
interface. This library facilitates the construction and execution phases of machine learn-
ing models through an organized computational graph system. In these graphs, nodes
represent mathematical operations, while edges denote the multidimensional data arrays
(tensors) that traverse the network. TensorFlow provides essential components like layers
and activation functions, alongside various loss functions, enabling the effective assembly
and training of complex machine learning models, exemplified by applications such as
classifying handwritten digits using convolutional neural networks [57]. The TensorFlow
model is highly suitable for EHR and early detection of glaucoma due to its ability to
handle large datasets and complex data structures typical of EHRs. Its advanced computa-
tional capabilities, supported by parallel computing and optimized algorithms, enable the
processing and analysis of vast amounts of medical data efficiently. TensorFlow’s flexibility
in model architecture allows for the customization of neural networks to identify subtle
patterns and indicators relevant to early glaucoma stages, enhancing diagnostic accuracy
and patient outcomes.

To train the multiple layer perceptron model from TensorFlow library, we began by
importing the processed data from the CSV file. We used the Pandas Python library for
most data transfer between the input files and the machine learning models. The data were
then split into training, testing, and validation datasets, by first randomly sampling 80% of
the initial data to be used as training, with the remaining becoming test data, and then 30%
of the training data to be used for validation so as to prevent model overfitting. The data
were then processed into TensorFlow datasets. To accommodate the varied inputs for our
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TensorFlow model, we employed a Keras Dense Features layer, configuring it primarily
for numerical data inputs. This approach streamlined the integration of diverse data
types into the model. Medication data were embedded into the feature layer numerically
using the TensorFlow library, utilizing a vocabulary list vectorized into a two-dimensional
shape. The model itself utilized the aforementioned input layer, leading to a series of
two dense layers and an output dense layer. The two hidden layers each consisted of
32 units, using Rectified Linear Unit (ReLU) activation. The output layer used Sigmoid
activation. In order to prevent overfitting to the training data, each layer had a quadratic
kernel regularizer, followed by a dropout layer with a factor of 0.5. The loss function
used for the model was Binary Cross-Entropy, along with the Adam optimizer, targeting
accuracy as a main metric. Figure 4 visually depicts the neural network’s structure as
designed for our study, illustrating a detailed architecture that includes an input layer
capable of processing 14 different features (R'#), followed by two hidden layers each with
32 nodes (R3?), and incorporating dropout mechanisms (rate of 0.5) to prevent overfitting.
The network culminates in an output layer (R!) tailored for binary classification. The
diagram was constructed using NN-SVG to clearly present the model’s complexity and
functional design.

Dropout (0.5) Dropout (0.5)

B

Q20000

Input Layer € R14 Hidden Layer € R32 Hidden Layer € R32  Output Layer € R?

Figure 4. Architecture of the actual deep learning model for glaucoma detection: this diagram
illustrates the TensorFlow-based neural network structure, showcasing an input layer with 14 features
(R), two hidden layers each with 32 nodes (R3?) incorporating dropout (0.5) to reduce overfitting,
and an output layer (RY) for glaucoma risk classification.

The model was trained for 25 epochs, and then tested on the test dataset produced
earlier. The model was exported using Keras to be included in the application. Figure 5
shows the loss over 50 epochs of example training for the model. Evidently, the model
begins to overfit after reaching 30 epochs. The model quickly fits to the data but cannot
reduce loss much further. This suggests that there is not enough correlation to continue
learning from the data.

The ROC curve of the TensorFlow model is also illustrated in Figure 6. The curve plots
the True Positive Rate (Sensitivity) against the False Positive Rate (1-Specificity) at various
threshold settings. The area under the ROC curve (AUC) provides a single measure of
overall accuracy. In our analysis, the ROC curve demonstrates a moderate classification
performance, with an AUC value of 0.645. This indicates that the model performs better
than random chance, effectively distinguishing between the classes.
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Figure 5. Performance metrics of the TensorFlow model over 50 epochs: this graph illustrates the
dynamics of training and validation loss, alongside training and validation accuracy, throughout the
model’s learning process.

ROC Curve

1.0 -

& o o
£ [=)] (=]
1 1 ]

True Positive Rate

e
N
]

0.0 -

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 6. The ROC curve of the TensorFlow model.



Bioengineering 2024, 11, 577

9 of 20

2.2.2. Random Forest and Gradient Boosting

The Random Forest model is a robust machine learning algorithm that operates by
constructing multiple decision trees during the training phase and outputting the mode
of the classes (for classification tasks) or mean prediction (for regression tasks) of the
individual trees. It excels in handling large datasets with higher dimensionality and can
manage missing values and maintain accuracy even when a large proportion of the data is
missing. Random Forests perform well for a wide range of data types and are particularly
noted for their ability to mitigate overfitting, making them highly reliable and versatile for
predictive modeling. This ensemble approach increases predictive accuracy and controls
overfitting by averaging the results from multiple decision trees constructed on different
subsets of the dataset [58,59]. The Random Forest algorithm is particularly suitable for
EHR and early detection of glaucoma due to its ability to handle heterogeneous data types,
manage missing values, and process complex interactions between variables. This is crucial
when working with EHR, which often contains incomplete and varied data. Furthermore,
Random Forest’s ensemble approach reduces the risk of overfitting, enhancing the reliability
of early glaucoma detection by providing more generalized and robust predictive insights
from patient records.

The Gradient Boosting model is a robust machine learning technique that builds pre-
dictive models in the form of an ensemble of weak prediction models, typically decision
trees. It improves model predictions iteratively by correcting errors from previous mod-
els through optimized weight adjustments [60,61]. This approach is highly effective for
complex datasets like those found in healthcare, making it particularly valuable for tasks
such as the early detection of diseases. Gradient Boosting handles various data types and
distributions effectively, making it suitable for nuanced tasks like analyzing EHR for early
signs of conditions such as glaucoma by capturing intricate patterns and relationships
within the data.

The Random Forest and Gradient Boosting algorithms were both used from the Python
library SciKit-Learn. Data were loaded from CSV format in the same way as the TensorFlow
model. The Random Forest and Gradient Boosting models did not use medication data
as the TensorFlow model did. It was separated into training and test datasets, with
80% of the data being used for training, and the remainder for evaluation. Randomized
hyperparameter search was conducted, resulting in optimal hyperparameters of 15 and
17 estimators for the Gradient Boosting and Random Forest algorithms, respectively, and
with 3 being used as the maximum depth for each. The models were fitted to the data and
evaluated using the test data. Figure 7 shows the graph of one decision tree used in the
Random Classifier. This figure, created with the DTreeViz Python library, demonstrates a
single estimator (or decision tree) from the ensemble, which votes on the final outcome of
the model. Individuals are first classified by IOP in this tree, and then processed into smaller
“bags”, until reaching a conclusion. The more homogenous a final bag is, the more effective
the classification. This includes histograms for IOP, maximum BMI, creatinine levels, and
minimum BMI, alongside pie charts depicting distributions of family history and alcohol
use. Each histogram and pie chart delineate the frequency or proportion of these variables
within the glaucoma and control cohorts, showcasing differences and similarities that aid
in the analysis and understanding of the risk factors associated with glaucoma.
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Figure 7. Feature distributions by glaucoma diagnosis status: comparative histograms and pie
charts illustrating variations in IOP, BMI, family history, creatinine levels, and alcohol use between
diagnosed and undiagnosed glaucoma patients, as analyzed by the Random Forest classifier.

3. Results

Figure 8 highlights IOP and Family History as substantial risk factors using the
Random Forest model. Maximum BMI and Minimum BMI follow, showing moderate
importance. Variables such as Age and Hematocrit show lower importance but are still
relevant. In contrast, parameters like Systolic Blood Pressure, Diastolic Blood Pressure,
Race, Gender, Creatinine, Hemoglobin A1C, Alcohol Use, and Tobacco Use demonstrate
minimal impact on the model’s decision-making process for glaucoma prediction. This
suggests that while IOP and Family History are critical in assessing the risk of glaucoma,
other collected variables have less predictive value in this specific model context. The same
results were observed with the Gradient Boosting model (Figure 9). That is, in the Gradient
Boosting model, IOP emerges as the most significant feature in predicting glaucoma, with
Family History also showing substantial importance. These are followed by Maximum
BMI and Hematocrit, indicating a moderate level of significance. Other variables such as
Age, Minimum BMI, and Hemoglobin A1C exhibit lower levels of importance. Particularly,
factors like Alcohol Use, Diastolic Blood Pressure, Number of Visits (Dxs), Creatinine,
Gender, Systolic Blood Pressure, Tobacco Use, and Race are demonstrated to have minimal
influence on the model’s predictive capabilities regarding glaucoma. This suggests that
the Gradient Boosting model prioritizes physiological and hereditary factors over lifestyle
choices and demographic characteristics in glaucoma risk assessment.

The directional impact of each feature can be specifically visualized with SHAP values
as shown in Figure 10, which is not compatible with the Gradient Boosting implementation
used from SciKit-Learn. The graph displays impact data from the Random Forest model.
The graph reveals some expected and some unexpected correlations. For example, IOP and
Family History have a high positive correlation with estimated glaucoma risk, while BMI
appears to have a weak negative correlation. Race and Gender are not useful to interpret
from this graph, as the mapped values are arbitrary, but because Tobacco and Alcohol
Use were mapped so that a higher value relates to a higher use, we can see that Tobacco
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Use is very weakly negatively correlated with predicted glaucoma risk. Systolic Blood
Pressure is positively correlated, but diastolic does not appear to hold the same correlation,
as most data points are centered around the origin. Overall, our analysis delineates the
profound utility of machine learning in refining glaucoma detection methods, specifically
highlighting the critical roles of genetic predisposition, physiological measurements, and
demographic factors in influencing disease risk and model predictions.

Random Forest
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M
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Figure 8. Feature importance rankings from the Random Forest model: bar chart displaying the
relative importance of clinical, lifestyle, and demographic variables, including IOP, family history,
BMI, and others, in predicting glaucoma.

The three model types used were evaluated based on the models” accuracy, F1 score,
precision, recall, and Area Under the Curve (AUC) as displayed in Figure 11. This graph
shows the comparisons between the three models. The Random Forest classifier outper-
forms the other two, though with lower precision than Gradient Boosting. Interestingly, the
Sequential model from the Keras library of TensorFlow performed the worst on all metrics
except recall. This may be due to the relatively low population size of 1652 individuals
used in training, as decision tree classifiers tend to perform better with small data sets.



Bioengineering 2024, 11, 577 12 of 20

The sparse nature of medication data may also reduce some metrics, as only a minority
of individuals in the dataset had recorded data on their medication history. If the model
was retrained on a larger and more complete dataset, we could expect it to outperform the
decision tree-based classifiers, especially with more complex factors like medication data.

Gradient Boosting
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Figure 9. Feature importance rankings from the Gradient Boosting model: bar chart displaying the
relative importance of clinical, lifestyle, and demographic variables, including IOP, family history,
BMI, and others, in predicting glaucoma.

Supplementary Figure S1 illustrates an interface snapshot of our glaucoma risk as-
sessment tool, showcasing the initial user inputs such as BMI, Blood Pressure, Intraocular
Pressure, Age, and other clinical, lifestyle, and demographic details. The figure also displays
risk assessments generated by the Random Forest, Gradient Boosting, and comprehen-
sive Al (TensorFlow) models based on the provided data, highlighting the tool’s capacity
to evaluate glaucoma risk with varying levels of confidence across different machine
learning approaches.
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Figure 10. SHAP summary plot demonstrating the impact of various features on glaucoma prediction:
the graph visualizes the SHAP values for each feature used in the Random Forest model, indicating
the influence of factors like family history, IOP, and BMI on model output. Higher feature values
push the model output from Low (blue) to High (red) risk of glaucoma.
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Figure 11. Comparative performance metrics of machine learning models in glaucoma detection:
this bar chart displays the evaluation of Random Forest, Gradient Boosting, and TensorFlow models
across various classification metrics, including Accuracy, F1 Score, Precision, Recall, and ROC AUC.
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4. Discussion

Glaucoma, a chronic condition leading to irreversible blindness, presents significant
challenges in early diagnosis. However, recent advancements in computer-aided techniques
create new opportunities for glaucoma screening and diagnosis. This study leverages
sophisticated machine learning algorithms, namely Random Forest, Gradient Boosting,
and the Sequential model from the TensorFlow library. We found that a combination of
clinical, lifestyle, and demographic information in the EHR can help predict the diagnosis of
glaucoma. Our findings highlight the potential of Al in assisting the diagnosis and screening
of glaucoma, with the hope of improving patient outcomes and reducing vision loss.

Our analysis revealed that IOP, Family History, and BMI stand out as principal risk
factors for glaucoma (Figures 7-9), aligning with the existing literature [56,62-65]. IOP and
family history are well-known risk factors for glaucoma, but existing research presents
conflicting findings between BMI and glaucoma, where some studies report no significant
association [66], while others suggest a positive correlation [67] or indicate a negative
relationship [68]. Aligning with the findings of the most extensive study to date [67], our
data suggest a positive correlation, indicating that a higher BMI may be associated with an
increased risk of glaucoma. It is likely that the relationship between BMI and glaucoma
is non-linear and complex. For example, a higher BMI is associated with increased IOP,
while a lower BMI is associated with higher translaminar pressure across the optic nerve.
Machine learning methods may be better at exploring complex relationships compared to
conventional biostatistics that use mean to analyze data.

We found several laboratory tests to be important for the risk prediction model.
Hemoglobin A1C, a blood test that indicates diabetes control, was found to be a risk
factor for glaucoma (Figure 9). Diabetes has been associated with glaucoma, although
the relationship is again complex and likely non-linear. Diabetes likely contributes to
endothelial dysfunction, leading to decreased perfusion to the optic nerve. However,
certain diabetes medications have neuroprotective effects and have been found to decrease
the risk of glaucoma. While this is still preliminary, our study highlights the importance
of further investigation to explore whether managing hemoglobin A1C levels could have
a reducing effect on glaucoma diagnosis. Creatinine level indicates renal function, and
our analysis suggests lower values correlate with a higher risk for glaucoma and vice
versa. This may seem counter-intuitive at first that better renal functions would be a risk
for glaucoma, but again complex relationships exist in these clinical conditions. Patients
with renal insufficiency may be placed on medications that have neuroprotective effects,
as diabetes-related nephropathy is a major cause for renal disease. These findings are the
first step in identifying and exploring broader vascular and systemic health conditions in
glaucoma diagnosis and underscore the potential interconnections between systemic health
and ocular conditions.

Numerous studies have highlighted various risk factors contributing to the onset
and progression of glaucoma, with age consistently recognized as a predominant non-
modifiable factor [69]. However, delineating the impact of preventable risk factors separate
from aging remains complex due to their interrelated nature [70]. Since glaucoma is an
aging disease [71-73] and, in our study, age did not emerge as a significant differentiator,
likely because both our glaucoma and control groups were composed predominantly of
older individuals. Remarkably, genetic factors, particularly within the African American
population, have been identified as significant, with research pointing to specific genetic
variations associated with increased susceptibility to primary open-angle glaucoma [74-77].
Furthermore, while obesity, hypertension, cataracts, atherosclerosis, and type 2 diabetes
have all been cited as potential predictors for glaucoma [22], our analysis did not prioritize
hypertension as a leading risk factor, diverging from previous findings where hypertension
showed a strong association with glaucoma. This discrepancy emphasizes the complexity
of glaucoma’s risk factors and underscores the need for tailored approaches in glaucoma
screening and prevention, particularly in genetically predisposed populations (Figure 10).
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Our analysis considered the impact of various medications on glaucoma outcomes. In
line with studies like [78], we found that the inclusion of medications such as metformin
had a notable influence on the model’s predictions. Conversely, the exclusion of most
oral medications, which have minimal effectiveness against glaucoma, helped to refine
our model and reduce potential confounding effects. These findings underscore the im-
portance of carefully selecting relevant clinical variables to enhance the model’s accuracy
and reliability.

The variability in glaucoma definitions and testing equipment, as highlighted by [79],
underscores the importance of developing standardized protocols for Al applications in
glaucoma care. This variability can lead to inconsistencies in diagnosis and treatment,
which our model aims to address through rigorous validation and adaptation to different
clinical settings. Future work should focus on collaborating with a broad range of clinical
practices to refine these standards and enhance the model’s generalizability and reliability.

Limitations

First, inherent biases in the dataset can inadvertently be absorbed by the model. For
instance, previous research indicates that African American individuals are at a higher risk
for glaucoma. However, in this study, due to the predominantly white demographic of
Oregon State, we faced limitations in accessing a sufficient number of African American
participants [75-78]. Consequently, our dataset lacks substantial data on African Amer-
ican individuals, which may affect the accuracy of our model’s race-based predictions.
Enhancing the model’s accuracy could be achievable by integrating a larger and more
diverse dataset, including imaging data, to create a more generalizable model of glaucoma
detection [80].

Second, despite progress in demystifying the decision-making processes of deep
learning models, description continues to be a major challenge. Clinicians are more likely
to trust models that are explainable. We used Shapley values to explain our input variables,
but this is not possible with all models. This underscores the critical need for transparency
in the application of Al to medical decision-making.

Third, most deep learning models offer only a probability of diagnosis rather than
absolute certainty. Unlike human experts who might err on complex cases, deep learning
models can falter on simpler cases, sometimes assigning high likelihoods to incorrect
decisions. This underscores the unique limitations of Al compared to human judgment in
medical diagnostics.

Fourth, EHR studies rely on the accuracy of diagnosis labels. Since 50% of individuals
with glaucoma are not aware of their disease, there is a potential for a high false negative
rate in the control group. We decreased this likelihood by using a control cohort with a
complete eye exam by an ophthalmologist for potential cataract evaluation, which decreases
the likelihood of unreported glaucoma. However, it is still possible that diagnosis codes
are inaccurately assigned. In the future, developing an algorithm that uses multiple EHR
data (i.e., glaucoma medications, exam findings) can help verify the diagnosis.

Fifth, the accuracy values obtained in our study are lower compared to some other
studies [20,21,76]. In our study, the Random Forest model achieved an accuracy of 67.5%,
while the Gradient Boosting and multiple layer perceptron models achieved accuracies
of 66.3% and 64.5%, respectively. These values, although lower than some reported in
the literature, are consistent with the inherent complexity and heterogeneity of the data
used. The studies mentioned primarily used high-quality imaging data such as fundus
photography and OCT images, which provide detailed structural information about the
eye. In contrast, our study relied on EHR, which includes a broader array of clinical,
lifestyle, and demographic data. These data types can introduce more variability and noise,
potentially impacting model accuracy. The dataset size and population diversity also play
critical roles in model performance. Our dataset included 1652 participants, while some of
the referenced studies used larger and more homogenous datasets, contributing to higher
accuracy. The preprocessing techniques and feature selection criteria can significantly affect
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model performance. While we included a wide range of features from EHR, differences in
feature engineering and selection can lead to variations in accuracy. It is also important
to note that our study’s primary goal was not to achieve the highest possible accuracy
but rather to explore the potential of using EHR data for early glaucoma detection. The
results, while not as high as some imaging-based studies, still demonstrate the feasibility
and potential value of this approach. Future studies incorporating larger and more diverse
datasets, as well as additional data modalities like imaging, could potentially improve the
accuracy and clinical utility of such predictive models.

Finally, in this study, distinctions among primary open-angle glaucoma, high-tension
glaucoma, and normal-tension glaucoma were not delineated. However, we anticipate that
incorporating OCT images in future iterations of our model will enable us to include and
differentiate between these specific types of glaucoma, enhancing the model’s diagnostic
capability and precision.

5. Conclusions

Deep learning shows promise for glaucoma diagnosis, especially by identifying the
disease through EHR, which could lead to cost-effective screening methods. Our research
shows the potential that machine learning methods, such as Random Forest, Gradient
Boosting, and the Sequential model from the TensorFlow library, can have on the early de-
tection of glaucoma. By harnessing a wide-ranging dataset incorporating clinical, lifestyle,
and demographic factors, we demonstrated the role of including a variety of data elements
to improve diagnostic precision in the model. Also, our study corroborates the importance
of factors like IOP, BMI, and Family History as crucial predictors, as well as highlights other
factors for future research to expand our understanding of pathophysiology of glaucoma.
The integration of machine learning into ophthalmology has the potential for more timely
diagnoses and the prevention of vision loss.

The path ahead requires ongoing research to refine these technologies, improve their
transparency, and ensure their ethical use in healthcare settings. Looking to the future, the
synergy between artificial intelligence and clinical practice promises to enhance glaucoma
management and the detection and treatment of a broader range of eye conditions. En-
couraging collaboration between data scientists and medical professionals will be crucial in
harnessing Al’s full potential to advance preventive ophthalmology and elevate patient
care standards.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11060577/s1, Figure S1: An interface snapshot of
our glaucoma risk assessment tool, showcasing the initial user inputs such as BMI, Blood Pressure,
Intraocular Pressure, Age, and other clinical, lifestyle, and demographic details. The figure also
displays risk assessments generated by the Random Forest, Gradient Boosting, and comprehensive
Al models based on the provided data, highlighting the tool’s capacity to evaluate glaucoma risk
with varying levels of confidence across different machine learning approaches.
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