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Abstract: Precise medical image segmentation of regions of interest (ROIs) is crucial for accurate
disease diagnosis and progression assessment. However, acquiring high-quality annotated data at
the pixel level poses a significant challenge due to the resource-intensive nature of this process. This
scarcity of high-quality annotated data results in few-shot scenarios, which are highly prevalent in
clinical applications. To address this obstacle, this paper introduces Agent-Guided SAM (AGSAM),
an innovative approach that transforms the Segment Anything Model (SAM) into a fully automated
segmentation method by automating prompt generation. Capitalizing on the pre-trained feature
extraction and decoding capabilities of SAM-Med2D, AGSAM circumvents the need for manual
prompt engineering, ensuring adaptability across diverse segmentation methods. Furthermore, the
proposed feature augmentation convolution module (FACM) enhances model accuracy by promoting
stable feature representations. Experimental evaluations demonstrate AGSAM’s consistent supe-
riority over other methods across various metrics. These findings highlight AGSAM’s efficacy in
tackling the challenges associated with limited annotated data while achieving high-quality medical
image segmentation.

Keywords: deep learning; medical image segmentation; cardiac ultrasound; Segment Anything
Model; few-shot scenarios

1. Introduction

AI-based automated techniques have demonstrated their efficiency and success in med-
ical image segmentation [1,2], which is indispensable for disease diagnosis and progression
assessment. However, the foundation of high-quality AI segmentation models lies in ob-
taining abundant high-quality annotated samples [3]. However, segmentation annotation is
difficult and laborious for clinical applications, posing a challenge to effectively harnessing
limited annotation [4], compared to other medical tasks such as classification [5,6].

This challenge of data scarcity can be addressed through few-shot learning approaches [7].
Few-shot learning enables pre-trained models to generalize and segment new categories of
data that were unseen during the original training by leveraging just a few labeled samples
per class.

The recent success of Generative Pre-Trained Transformer (GPT) models in few-shot
tasks [8–10], pre-trained on vast datasets, has inspired the development of the Segment
Anything Model (SAM), a model trained extensively on data to encode and decode feature
for segmentation, exhibiting remarkable few-shot and even zero-shot capabilities [11].
SAM-Med2D [12] bridges the gap between SAM’s proficiency in natural images and its
application in medical 2D image analysis. Studies on SAM and SAM-Med2D have revealed
that simple prompts, such as a few point coordinates or rough region vertices, can effectively
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guide precise segmentation [12]. However, these methods still rely on additional manual
prompts, limiting their applicability.

Recent work has leveraged SAM’s pre-trained image encoder for automated segmen-
tation of medical images, like AutoSAM [13] and nnSAM [4], by integrating it into new
architectures. However, these approaches focus only on SAM’s encoding module while
underutilizing its extensively trained decoding module. SAM’s decoder holds strong value
in few-shot scenarios where limited training data make fine-tuning a new decoder inferior
to utilizing SAM’s already optimized decoder. Moreover, while SAM-Med2D fine-tunes
SAM on medical images, it was reported that updating both SAM’s encoder and decoder
modules, either individually or jointly, enhances segmentation performance, with joint up-
dates achieving greater gains. This suggests that after extensive pre-training on abundant
data, SAM’s encoder and decoder inherently acquire valuable knowledge beneficial for
segmentation tasks [12]. Hence, fully utilizing both the encoding and decoding capabilities
within a trained SAM represents an unmet need for maximizing performance, especially
with scarce training data.

In the few-shot scenario, data are exceedingly scarce, rendering them inadequate for
direct fine-tuning of the pre-trained SAM. Consequently, the paper describes training a
lightweight segmentation model, known as the agent model, using these limited data.
The predictions and acquired semantic features of this agent model are subsequently
leveraged to generate prompts for the pre-trained model, thereby activating its encoding
and decoding capabilities. Therefore, we propose a simplified agent-guided model to
replace manual prompt generation, introducing an optimized framework called Agent-
Guided SAM (AGSAM). AGSAM maximizes the utilization of SAM’s trained encoder and
decoder modules. The fusion of SAM and the guided model is particularly advantageous
for limited training data, achieving high-quality medical image segmentation. The main
contributions of this paper are summarized as follows:

a. Introducing a novel fully automatic segmentation approach: AGSAM. This method
leverages SAM-Med2D’s pre-trained feature extraction and generalized decoding ca-
pabilities. The guided model seamlessly replaces prompt generation and embedding,
making it adaptable to any segmentation method.

b. Introduction of a feature augmentation convolution module (FACM) in AGSAM, a
parameter-free and computationally efficient module that enhances model accuracy.
FACM ensures more stable feature representations, minimizing image noise impact
on segmentation.

c. Experimental comparisons demonstrate that AGSAM consistently outperforms
comparative methods across various metrics, showcasing its effectiveness in few-
shot scenarios.

2. Related Work
2.1. SAM and SAM-Med2D

The success of large language models like GPT series models in zero-shot and few-
shot scenarios when trained on extensive datasets has translated to the vision domain
through SAM [11]. Trained on a massive dataset of 11 million images and over a billion
segmentation masks, SAM has emerged as a pivotal advancement for segmentation tasks,
exhibiting significant potential for few-shot or zero-shot learning across diverse image
categories. However, directly applying the pre-trained SAM to medical images reveals
limitations in accuracy without additional domain-specific fine-tuning [12].

Thus, SAM-Med2D extended SAM’s framework by introducing an adapter mechanism
to acquire domain-specific knowledge from a large dataset of approximately 4.6 million
medical images across diverse medical devices and 197,000 segmentation masks. This
establishes a robust foundation tailored for medical image segmentation applications.
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2.2. SAM-Based Method

Building upon SAM, a series of innovative methods have been developed to further
enhance its capabilities.

AutoSAM goes beyond SAM’s feature encoding by integrating an external lightweight
task prediction head, aiming to leverage SAM’s strong image encoding while extending
applicability to a broader range of medical segmentation tasks for fully automated op-
eration [13]. nnSAM serves as a plug-and-play solution that merges SAM’s embedded
features with encoded features from other segmentation models, executing predictions
through the other model’s decoding section [4]. This approach leverages SAM’s encoding
capabilities while integrating into established segmentation architectures. However, these
existing SAM-based methods primarily focus on utilizing SAM’s encoding module. As
depicted in Figure 1, they essentially embed SAM’s encoding into specific models rather
than enhancing and optimizing SAM’s complete workflow framework. Notably, none of
these methods leverage the domain-specific pre-training of SAM-Med2D on massive medi-
cal image datasets. Inspired by SAM’s strong performance, our objective is to unlock the
potential of SAM’s comprehensive set of modules, including its extensively trained decoder,
for few-shot medical image segmentation by taking full advantage of the SAM-Med2D
pre-training on medical data.
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3. Methods
3.1. Architecture Overview

The existing methodologies leverage SAM’s encoded features directly by integrating
various segmentation prediction heads for automated segmentation, effectively utilizing
SAM’s encoding component to support other models (Figure 1). In contrast, our proposed
approach integrates the pre-trained model’s encoder and decode module with the agent
model to guide or assist the SAM. The AGSAM framework introduces a strategy by inte-
grating an additional segmentation model as a guiding agent within the SAM architecture
(Figure 2). AGSAM’s primary objective is to fully exploit SAM’s pre-trained image-feature-
encoding and prompt- and mask-decoding capabilities to enable autonomous segmentation
without relying on manual prompts. By coupling SAM with the guiding segmentation
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model, AGSAM automates the prompt generation process typically required for SAM,
accurately performing segmentation without human intervention or manual prompts.
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3.2. Agent-Guided SAM

The AGSAM architecture consists of two primary modules: the agent model and the
pre-trained SAM-Med2D (Figure 2). When an image is input into AGSAM, its features are
extracted separately by the agent model and SAM’s image feature encoder. This dual-path
feature-embedding process enhances the diversity of features.

In this process, the input image I, after data pre-processing, is transformed into a
tensor with dimensions of 3 × 256 × 256. First, for the feature pathway in SAM, the fea-
ture fSAM was computed through the pre-trained encoder module MSAMencoder . Specifically,
the image is tokenized by partitioning it, followed by feature extraction and encoding
through 12 layers of transformer modules within the Vit-b structure, ultimately resulting in
a feature of SAM fSAM with dimensions of 256 × 16 × 16.

fSAM = MSAMencoder (I) (1)

Additionally, the other pathway is determined based on the selection of the agent
model. Taking FCN as an example, for the same input image I, the agent encoder Magentencoder

is the feature extract module of FCN. It can encode the input to obtain the feature of the
agent fAgent with dimensions of 2048 × 32 × 32.

fAgent = Magentencoder (I) (2)

After obtaining the two features, they are fused by confusion module MCM as fol-
lows: fSAM is aligned with fAgent in terms of channels and spatial dimensions through a
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3 × 3 convolutional layer Conv3×3 and a linear interpolation operation Fbilinear, resulting
in f ′SAM. Then, they are concatenated along the channel dimension. Finally, a 1 × 1 convo-
lutional layer Conv1×1 is applied to reduce the dimensionality of the concatenated feature
channels. The entire process is represented as:

fFused = MCM
(

fAgent , f ′SAM
)
= Conv1×1

(
fAgent ⊕ Fbilinear(Conv3×3( fSAM))

)
(3)

After obtaining fFused, the agent model utilizes the agent decoder Magentdecoder based on
this information to decode and obtain the segmentation result Maskagent. Taking FCN [14]
as an example, this agent decoder is the mask prediction module in FCN.

Maskagent = Magentdecoder ( fFused) (4)

Then, the prompt generation module employs the prediction of agent results and
confused feature for embedding sparse and dense prompt features, respectively. There are
two separate paths for generating sparse prompt embedding and dense prompt embed-
ding (Figure S1). Firstly, for sparse prompt embedding psparse, the obtained prediction of
agent Maskagent undergoes downsampling compression to 1/16 of its original size through
pooling layer Avgpool and three FACMs with a stride of 2, FACMs (Table S1). Subsequently,
it goes through four FACMs, FACMs, for feature enhancement while maintaining the fea-
ture map size. Then, a single 1 × 1 convolutional layer Conv1×1 is applied to adjust the
channel dimensions of the feature map. The channel dimension is updated to n × 256,
where n represents the number of segmentation categories. Finally, the tensor is arranged
to obtain parse prompt embedding psparse.

psparse = Arrange
(
Conv1×1

((
FACMs

(
Avgpool

(
Maskagent

)))))
(5)

For dense prompt embedding pdense, the entire process is similar to sparse prompt
embedding, except that the input is the fused feature f f used instead of the mask Maskagent.
Firstly, f f used is resized through interpolation to match the feature map size of Maskagent,
resulting in f ′f used. Then, it undergoes a similar process as before for calculation. Finally,
after arranging, dense prompt embedding pdense can be obtained.

pdense = Arrange
(

Conv1×1

((
FACMs

(
Avgpool

(
f ′f used

)))))
(6)

After obtaining the two prompt-embedding features, the pre-trained SAM’s mask
decoder module MSAMdecoder is activated to generate the predicted result MaskSAM. At the
same time, the prediction of SAM is fused with the prediction of the agent to obtain the
fused prediction result Maskpred:

MaskSAM = MSAMdecoder

(
psparse, pdense

)
(7)

Maskpred = (1 − α)×MaskSAM + α × Maskagent (8)

where a ϵ [0.0, 1.0]. In the study, several empirical values are chosen, such as 0.1, 0.3,
0.5. The overall loss Lall during the training of AGSAM is the sum of two parts: the
loss LAgent constraint between the prediction of agent Maskagent and the annotation, and
the loss Lpred constraint between the final fused mask Maskpred and the same annotation. It
can be represented as:

Lall = LAgent + Lpred (9)

3.3. Feature Augmentation Convolution Module

To further enhance the model’s generalization ability in few-shot scenarios, mitigate
the risk of overfitting, and augment feature responses, the feature augmentation convo-
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lution module (FACM) was introduced. This module introduces a feature enhancement
mechanism through random linear suppression, expressed as:

xaug = α × x + β (10)

Here, α follows a range of [0.25, 1.0], and β ranges from [−10, 10]. The FACM inte-
grates random linear suppression to smooth and adjust feature information, selectively
suppressing less discernible features. The OFF state of FACM status is equivalent to a
single convolutional layer. During training phase, the state of FACM can be either ON/OFF
and is OFF during the inference phase. This mechanism guides the model toward more
contrasted response feature values, resulting in an augmented feature set that enriches the
overall information content. This allows for feature response enhancement without adding
extra parameters or increasing computational complexity, expressed as:

x′ = MFCAM(x) =
{

a × Conv3×3(x) + β + Conv3×3(x), status : ON
1 × Conv3×3(x) + 0 + Conv3×3(x), status : OFF

(11)

4. Experiments
4.1. Datasets

The CAMUS [15] dataset comprises cardiac ultrasound images from 500 patients in
apical two-chamber (A2C) and apical four-chamber (A4C) views. Collected from a single
vendor (GE Vingmed Ultrasound, Horten Norway) and center (Saint-Etienne University
Hospital, France), it represents a highly heterogeneous dataset encompassing varying
image quality and pathological cases, representing typical real-world clinical practice data.
For each patient, CAMUS provides complete cardiac cycles with manual annotations de-
lineating the end-diastolic (ED) and end-systolic (ES) cardiac structures for each view. As
annotations were unavailable for the last 50 patients in the training data, the remaining
450 patients were utilized for training and testing purposes. With four different orientations
imaged per patient, the dataset contains a total of 1800 annotated images. The dataset was
split into 512 samples for the training set and 88 samples for the validation set, with the
remaining 1200 samples used for testing. The annotations include the endocardium and epi-
cardium of the left ventricle, as well as the left atrium wall, serving as the ground truth for
both supervised training and evaluation. Accurate segmentation of these regions is crucial
for subsequent clinical measurements such as ventricular volume and ejection fraction.

The REFUGE [16] dataset consists of 1200 retinal color fundus photographs (CFPs)
acquired from patients in an upright sitting position using one of two devices: a Zeiss
Visucam 500 or a Canon CR-2. Manual annotations of the optic disc (OD) and optic cup
(OC) boundaries were provided by seven independent glaucoma specialists, serving as the
ground truth for both supervised training and evaluation. The first 100 samples (50 for
train and 50 for validation) were utilized for training and validation to select the optimal
model weights. Subsequently, the remaining 1100 samples were used for testing purposes.
Accurate segmentation of the OD and OC regions enables assessment of a patient’s risk of
glaucoma based on the size ratio between these structures.

4.2. Data Pre-Processing

For the CAMUS dataset, the data pre-processing includes converting grayscale images
to the 3-channel RGB images, transforming pixel values to integer values ranging from 0 to
255. During training, both images and annotated masks undergo random central rotations
of ±10◦. Finally, the images are uniformly resized to 256 × 256 pixels for training.

For the REFUGE dataset, as retinal fundus photographs are inherently RGB three-
channel images, there is no need for converting single-channel to multi-channel data. The
remaining pre-processing steps are consistent with those used for the CAMUS dataset.
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4.3. Implementation Details and Evaluation Metrics
4.3.1. Architecture Description

Our AGSAM builds upon the SAM-Med2D method, which employs SAM’s Vit-b
structure consisting of 12 transformer layers, each with 12 attention heads. The encoding
dimension in each layer is set to 768, followed by two convolutional layers to reduce the
feature embedding to 256, producing the SAM feature. On the other side, the guiding
model is a basic segmentation model with an encoder to decoder structure, taking FCN as
an example. Its encoder is the standard ResNet-50 structure before global pooling, resulting
in a feature of the agent with dimensions h

8 × w
8 × 2048, where h and w are the height and

width of the input image, respectively.
In the fusion module, the feature of SAM was aligned with the feature of the agent

through a single convolutional layer, followed by interpolation to match the size of the
agent’s feature and concatenation along channels. A 1 × 1 convolution layer is then
applied for channel fusion, compressing it by half. The fused feature undergoes encoding
embedding and mask prediction in the guiding model’s decoder. Using FCN as an example,
the decoder consists of two convolutional operations to adjust the channel dimensions to
the number of segmentation classes, followed by linear interpolation upsampling operation
to obtain the predicted mask for the agent model.

The predicted mask and the fused feature are input into the prompt generation module.
This module contains two channels, each processing one of the two feature types. The two
pathways share a similar structure, involving average pooling for feature downsampling.
Seven layers of FACMs are utilized for further feature extraction, with the final 1 × 1
convolution reshaping the channels into 768. Notably, within the seven FACM blocks, only
the first layer activates the augmentation block (ON), while the remaining layers do not
(OFF), and the convolution blocks in the first three FACMs have a stride of 2, while the
subsequent four layers have a stride of 1 (Table S1). The output represents the feature
embeddings for the two types of prompts, corresponding to sparse prompts generated
from the predicted mask and dense prompts generated from the fused feature.

The FACM within the prompt generation module consists of a convolutional block
and an augmentation block employing random linear transformations. During training and
when the status is set ON, the augmentation block is activated with a certain probability,
suppressing the response values of the convolutional feature map or setting the feature
response values to zero with small probability. During inference or when its status is set
OFF, it behaves like a standard 3 × 3 convolutional block.

Finally, the fused image feature embedding, along with the generated feature em-
beddings for two types of prompts, is fed into the mask decoder of SAM. This module
directly adopts SAM’s flood-decoding module, essentially combining the image feature
embedding and various prompt feature embeddings and producing the predicted mask
results. The ultimate mask prediction result is a weighted combination of the mask result
and the guiding model’s predicted mask.

4.3.2. Setting of Training

All methods were implemented using PyTorch, and both training and testing were
conducted on a single NVIDIA GPU (RTX 4090 with 24 GB memory). The training process
for all methods involved initially augmenting the data to 512 copies, followed by training
for 50 epochs. The batch size was set to 8, except nnSAM which used 4 and Mamba-Unet
which used 1. Dice loss was selected as the loss function. The optimizer was AdamW, with
an initial learning rate of 1 × 10−4 (except SegFormer was set 1 × 10−5). Starting from the
26th epoch, the learning rate decayed to 1 × 10−5 (for SegFormer was set 1 × 10−6). The
best model for evaluation was selected by the performance on the validation set.

4.3.3. Evaluation Metrics

For evaluation, we employed the dice similarity coefficient (DICE) and Hausdorff
distance (HD) as metrics. The DICE assessed the similarity of segmentation results, repre-
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senting internal overlap [17], while HD focused on the similarity of contour portions in
the segmentation results [18]. These metrics systematically evaluated the segmentation
effectiveness, considering both internal and contour regions. Additionally, we employed
additional metrics such as sensitivity, specificity, AUC, and AUPR in the Supplementary
Materials for further analysis.

4.4. Experimental Settings

To assess AGSAM’s performance, we conducted various experiments for comparisons
and an ablation study. To ensure fairness in the comparisons, all methods considered in
the study were systematically tested by reproducing their core functionalities and utilizing
open-source code. Training or fine-tuning was uniformly performed on the research
dataset. More details about hyperparameters of experiments and training can be seen in
Tables S2 and S3. A p < 0.05 was set to determine significance, and p values were two-sided
(t-test).

4.4.1. Comparative Study

We conducted comparisons in CAMUS and REFUGE datasets between various re-
cent baseline segmentation models and optimized baseline models based on SAM. The
baseline segmentation models include both traditional CNN models and newer transformer-
based state-of-the-art solutions, specifically FCN [14], DeepLabV3 [19], PSPNet [20], Fast-
SCNN [21], TGANet [22], SegFormer [23], Unet++ [24], and Mamba-Unet [25]. Additionally,
we compared the latest optimized baseline solutions based on SAM, such as autoSAM [13]
and nnSAM [4]. Our comprehensive comparison now encompasses representative state-
of-the-art solutions across different architectures: pure CNN-based (FCN, DeepLabV3,
PSPNet), transformer-based (SegFormer, SAM-Med2D), hybrid CNN–transformer models
(nnSAM, autoSAM), and the newly added Mamba-Unet. Since our evaluation focused on
automated segmentation, SAM [11], SAM-Med2D [12], and MedSAM [26], which require
manual prompts, were not included in the comparison.

For the baseline segmentation models, we utilized publicly available and widely
used source codes. However, in the case of nnSAM, due to our hardware constraints and
the unique configuration of its core network, nnUnet, which differs from other methods
evaluated in our study, we followed the description provided in its paper to reproduce the
nnSAM method. During this process, we replaced the core network with a lighter network
solution and substituted MobileSAM [27] with SAM-Med2D.

4.4.2. Ablation Study

We conducted ablation experiments to validate the effectiveness of integrative modules
with one training sample. We used FCN, DeepLabV3, and Unet++ as three segmentation
baselines to evaluate the performance of different combinations of the image feature encoder
of SAM (FE), mask decoder of SAM (MD), and feature augmentation convolution module
(FACM). To verify the effectiveness of AGSAM’s strategies, we performed ablations on the
structure of the agent model, comparing the impact of different agent model structures
between nnSAM and our proposed method. Specifically, based on the proposed method
and nnSAM, we used FCN (nnSAM (FCN) vs. proposed (FCN)) and DeepLabV3 (nnSAM
(Deep) vs. proposed (Deep)) to compare the two methods. All results were evaluated
using DICE and Hausdorff distance (HD) metrics to assess differences in the impact
on segmentation region internal and edge regions. Additionally, we included a series
of supplementary evaluations to validate the methods proposed in the paper. These
evaluations encompassed the computational efficiency of different methods, assessing the
influence of additional data augmentation on the results, and comparing the performance
of the automatically prompted scheme proposed in the paper with the manually provided
coordinate prompting information of the SAM-Med2D method.
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5. Results and Discussion
5.1. Comparison in Few-Shot Scenario with CAMUS

We evaluated each method’s performance across varying amounts of training data.
As expected, the evaluation metrics showed consistent improvement for all methods as the
data volume increased (Tables 1, S4 and S5). Notably, AGSAM consistently outperformed
the other approaches, underscoring the effectiveness of fully leveraging the pre-trained
SAM. However, this performance differential gradually narrowed with increasing training
data volume. This can be attributed to the other approaches having more data available to
better fine-tune their models when provided with larger datasets. AGSAM’s advantage was
most pronounced in limited data scenarios, where its ability to exploit the pre-trained SAM
provided significant benefits over methods that rely heavily on data-driven fine-tuning
from scratch.

As the data volume increased to a more typical few-shot problem, the adoption of
pre-trained weight initialization methods (ResNet-50 pre-trained with ImageNet dataset)
such as FCN, DeepLabV3, and PSPNet demonstrated significant superiority over random
initialization, as evidenced by the performance comparison with Unet++ (Figures 3 and S2).
Comparing DeepLabV3 with AGSAM, noteworthy improvements by AGSAM were ob-
served in all categories except for Endocardium. For example, Epicardium’s result was
enhanced from 0.4248 to 0.5372, and that of the Left Atrium Wall from 0.4112 to 0.5073, while
the Endocardium metric experienced a slight decrease from 0.7112 to 0.6829 (Table S6). This
can be attributed to the Endocardium’s prevalent central positioning and near-uniform ellip-
tical shape within the images, allowing methods like DeepLabV3 to more effectively learn
relevant features even with extremely limited data. As data volume increased, AGSAM
outperformed various baselines in achieving more accurate segmentations for all three
structures (Figure S3). Ultimately, when trained with 512 samples, despite metrics being
close across methods, AGSAM still yielded the best overall results (Tables S7 and S8).

Visual examination of the predicted segmentation results revealed distinctive charac-
teristics (Figure 3). AGSAM exhibited fewer false positive segmentation pixels, especially
in limited training data scenarios. This was particularly noticeable for the Left Atrium
Wall segmentations, which were poor across all methods until more training data were
provided. However, even with increased data, SegFormer continued to struggle with
reliable predictions for this category. These observations highlight AGSAM’s efficient data
utilization in few-shot scenarios and more generalized feature extraction and semantic
induction capabilities.
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Table 1. Comparison results of different methods with different sizes of training sample with DICE and HD in CAMUS. * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not
significant (p > 0.05).

Method

Metrics

DICE HD

Training Sample Size (n)

1 2 4 6 8 12 16 20 1 2 4 6 8 12 16 20

FCN 0.4819
***

0.6044
***

0.5962
***

0.7507
*

0.7607
***

0.7954
**

0.8058
ns

0.8036
ns

30.7356
***

307356
***

25.0324
***

12.4143
ns

10.7692
***

8.7511
*

7.9985
**

8.1526
ns

DeepLabV3 0.5157
***

0.6312
***

0.6382
*

0.7417
***

0.7512
***

0.7983
ns

0.8029
*

0.8118
ns

26.2979
***

24.4466
***

20.1742
***

12.1354
ns

11.6624
***

8.3925
***

8.5411
***

7.3718
ns

PSPNet 0.5308
***

0.6198
***

0.6059
***

0.7002
***

0.7206
***

0.7400
***

0.7592
***

0.7681
***

23.5507
***

17.9434
***

18.7494
***

12.3391
***

11.1914
***

11.0718
***

9.4149
***

9.7201
***

Fast-SCNN 0.2311
***

0.3133
***

0.4271
***

0.5263
***

0.5418
***

0.6374
***

0.6328
***

0.6501
***

55.0956
***

36.9229
***

36.3592
***

24.4900
***

23.6173
***

16.7035
***

17.6839
***

17.6589
***

TGANet 0.3387
***

0.3503
***

0.3886
***

0.6406
***

0.6435
***

0.7145
***

0.7216
***

0.7069
***

57.5892
***

56.7400
***

44.2247
***

19.1582
***

19.0647
***

14.6703
***

14.8420
***

15.9357
***

SegFormer 0.2637
***

0.4378
***

0.2495
***

0.6084
***

0.4136
***

0.6591
***

0.4737
***

0.6593
***

65.4658
***

50.6095
***

67.2951
***

30.3880
***

47.6450
***

18.7880
***

42.6189
***

19.2131
***

Unet++ 0.2486
***

0.2915
***

0.3562
***

0.6098
***

0.6779
***

0.7119
***

0.7063
***

0.7405
***

66.9296
***

67.5001
***

68.7728
***

29.8018
***

22.7979
***

19.4106
***

19.3498
***

16.7502
***

autoSAM 0.4482
***

0.4911
***

0.4465
***

0.5844
***

0.5807
***

0.6671
***

0.6642
***

0.6682
***

61.9208
***

51.3325
***

47.9954
***

20.5984
***

20.8936
***

17.8528
***

17.9705
***

18.9544
***

Mamba-Unet 0.5040
***

0.5982
***

0.6089
***

0.6290
***

0.6534
***

0.6528
***

0.6674
***

0.7067
***

23.3985
***

18.8779
***

19.3776
***

18.5073
***

16.8112
***

16.9241
***

15.9930
***

14.8776
***

nnSAM
(FCN)

0.5087
***

0.5906
***

0.5882
***

0.7564
ns

0.7786
ns

0.8021
ns

0.8069
***

0.8010
ns

32.6712
***

31.6343
***

23.6663
***

11.1222
*

9.2595
ns

8.1799
ns

7.3214
***

8.2214
ns

Proposed
(FCN)

0.5419
***

0.6164
***

0.6103
***

0.7570
ns 0.7818 0.8060 0.8091 0.8052 25.5238

***
23.3281

***
19.4167

*** 10.5465 8.7999 7.9875 7.1839 7.8991

nnSAM
(deep)

0.5323
***

0.6417
***

0.6435
ns

0.7530
ns

0.7588
***

0.7915
***

0.8031
ns

0.8058
ns

24.2617
***

19.6827
***

17.5183
ns

12.6661
ns

10.7260
***

9.3173
***

8.4043
**

8.0490
ns

Proposed
(deep) 0.5758 0.6584 0.6519 0.7599 0.7672

**
0.7973

*
0.8091

ns
0.8104

ns 20.7766 17.5505 16.7683 11.8957
***

10.3071
***

8.7514
*

7.8906
*

7.6765
ns
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uniform elliptical shape within the images, allowing methods like DeepLabV3 to more 
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tions for all three structures (Figure S3). Ultimately, when trained with 512 samples, de-
spite metrics being close across methods, AGSAM still yielded the best overall results (Ta-
bles S7 and S8). 

 
Figure 3. Comparison of predictions of different methods with different training samples (n) in
CAMUS dataset.

5.2. Comparison in Few-Shot Scenario with REFUGE

Multiple experiments were conducted on the REFUGE dataset using varying data
volumes, following comparative studies for the CAMUS dataset. AGSAM consistently
outperformed other solutions in most cases across different evaluation metrics. However,
as the dataset volume increased, the performance advantage of the proposed method
gradually diminished, aligning with the trends observed in previous experiments (Table 2).
Additional indicators and detailed category-wise results are provided in the Supplemen-
tary Materials, with AGSAM performing the best for both the optic cup and optic disc
(Tables S9–S11 and Figures S4 and S5).

Visual inspection of the predicted segmentation results revealed that even with very
limited data, AGSAM exhibited higher sensitivity in detecting the optic cup area within the
images (Figure 4). As more data became available, all methods demonstrated noticeable
segmentation improvements. However, methods like nnSAM, Mamba-Unet, TGANet, and
SegFormer exhibited significant false positives under a few data volumes. In contrast,
the results of AGSAM were very stable, with the predicted areas gradually aligning more
closely with the annotated ground truth.
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Table 2. Comparison results of different methods with different size of training sample with DICE and HD in REFUGE. * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not
significant (p > 0.05).

Method

Metrics

DICE HD

Training Sample Size (n)

1 2 4 6 8 12 16 20 1 2 4 6 8 12 16 20

FCN 0.4790
***

0.6759
***

0.7762
***

0.8210
***

0.8130
***

0.8726
ns

0.8718
ns

0.8751
ns

20.0650
***

10.7355
***

5.3205
***

3.0799
**

3.3850
***

1.7938
ns

1.9800
ns

1.6347
ns

DeepLabV3 0.5657
***

0.7034
***

0.8229
***

0.8145
***

0.8350
ns

0.8736
ns

0.8754
ns

0.8763
ns

19.1857
***

8.0980
***

3.3823
***

4.2733
***

2.8859
*

1.7468
ns

1.7494
ns

1.4995
ns

PSPNet 0.2952
***

0.5397
***

0.6876
***

0.7643
***

0.7935
***

0.8342
***

0.8432
***

0.8349
***

36.6751
***

8.7706
***

6.3812
***

8.7565
***

7.6729
***

5.8643
***

3.9266
***

3.8622
***

Fast-SCNN 0.3473
***

0.5133
***

0.6423
***

0.6507
***

0.6662
***

0.7837
***

0.7746
***

0.7987
***

45.4614
***

31.5551
***

15.1610
***

15.2604
***

15.1658
***

6.2228
***

6.7428
***

6.1936
***

TGANet 0.5750
***

0.6537
***

0.6491
***

0.6970
***

0.7471
***

0.8157
***

0.8091
***

0.7976
***

26.2602
***

26.0183
***

31.2509
***

26.2529
***

15.8280
***

8.5710
***

9.9134
***

10.0348
***

SegFormer 0.6014
***

0.6518
***

0.7065
***

0.7574
***

0.7638
***

0.7764
***

0.7559
***

0.7578
***

30.1322
***

16.0105
***

14.2888
***

7.9404
***

8.1005
***

9.7448
***

9.4702
***

9.1201
***

Unet++ 0.5241
***

0.4020
***

0.7922
***

0.8215
***

0.7961
***

0.8426
***

0.8463
***

0.8563
***

41.3638
***

82.2642
***

9.9493
***

8.1613
***

10.7172
***

10.3751
***

9.2046
***

7.2565
***

autoSAM 0.4723
***

0.4456
***

0.7208
***

0.7627
***

0.7789
***

0.8042
***

0.7972
***

0.8076
***

22.5677
***

35.1402
***

12.9685
***

8.2359
***

8.5600
***

6.2316
***

5.2601
***

5.3802
***

Mamba-Unet 0.2567
***

0.3326
***

0.3225
***

0.6176
***

0.6935
***

0.7320
***

0.6709
***

0.7605
***

41.4738
***

33.2122
***

15.8653
***

13.8365
***

10.6301
***

13.8848
***

16.3959
***

8.5436
***

nnSAM
(FCN)

0.6049
***

0.7886
ns

0.7994
***

0.8172
***

0.8412
***

0.8737
ns

0.8668
***

0.8720
**

13.0598
***

3.8768
ns

4.5948
***

3.3072
***

2.6651
***

1.7309
ns

1.9841
ns

2.0956
*

Proposed
(FCN) 0.7141 0.7898 0.8427 0.8449 0.8432 0.8743 0.8773 0.8800 7.5007 4.6304 2.3837 2.3026 2.3543 1.7615 1.8195 1.5801

nnSAM
(deep)

0.6347
***

0.7007
***

0.8028
***

0.8176
***

0.8395
ns

0.8721
ns

0.8681
**

0.8748
ns

10.5907
***

9.2379
***

3.9076
***

3.6697
***

2.8225
ns

2.0105
ns

1.9409
ns

1.7629
ns

Proposed
(deep)

0.6725
***

0.7282
***

0.8075
***

0.8229
***

0.8329
*

0.8674
*

0.8741
ns

0.8784
ns

11.8223
***

7.5185
***

4.2160
***

3.3738
***

2.6646
ns

2.1048
ns

2.2357
ns

1.5954
ns
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5.3. Ablation Studies of AGSAM

The ablation experiments were conducted with training data of 1 for the CAMUS
dataset. At first, the baseline model FCN was tested as the agent model. Successively, SAM
feature encoder (FE), which corresponds to nnSAM (FCN), SAM’s mask decoder (MD), and
the feature augmentation convolution module (FACM) were incrementally added. Metrics
revealed improvements with the addition of each module over the baseline. Finally, the
combination of all modules resulted in the maximum enhancement from 0.4819 to 0.5419
(Table 3). Metrics demonstrated improvements with each module over the baseline, and the
combination of all modules resulted in the maximum enhancement from 0.4819 to 0.5419.
Furthermore, we assessed FCN, DeepLabV3, and Unet++ as guided models for AGSAM.
Consistent trends observed across methods (e.g., for DeepLabV3 from 0.5157 to 0.5758; for
Unet++ from 0.2486 to 0.2615) (Table 3) suggest the effectiveness of AGSAM’s modules,
rather than reflecting inherent randomness associated with a single model.
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Table 3. Results of different AGSAM-based models with different module combinations in
ablation analysis.

Ablation study
(FCN)
n = 1

Modules Metrics

FE MD FACM DICE HD

× × × 0.4819 33.53
√

× × 0.5087 32.67
√ √

× 0.5324 25.57
√ √ √

0.5419 25.52

Ablation study
(DeeplabV3)

n = 1

Modules Metrics

FE MD FACM DICE HD

× × × 0.5157 26.30
√

× × 0.5323 24.26
√ √

× 0.5689 20.67
√ √ √

0.5758 20.78

Ablation study
(Unet++)

n = 1

Modules Metrics

FE MD FACM DICE HD

× × × 0.2486 66.93
√

× × 0.2430 68.49
√ √

× 0.2592 66.88
√ √ √

0.2615 66.46

To assess the efficacy of FACM feature augmentation, we visualized the extracted
feature maps [5,6] (Figure 5) using Grad-CAM [28]. This visualization technique revealed
that after FACM processing, the feature maps exhibited improved alignment and brightness
with annotated regions, indicating a better correspondence between the augmented features
and the ground truth annotations. This observation suggests that suppressing irrelevant fea-
ture responses during training enhances the model’s ability to produce relevant responses.

The design intention behind the FACM was to ensure that during supervised training,
the feature maps’ response values and positions at each layer in the current iteration contain
semantic feature information contributing to the final segmentation result. By randomly
compressing the values of the feature maps, the model is encouraged to prioritize larger
response values in subsequent iterations to counteract the effects of random compres-
sion. Additionally, the FACM aims to minimize the inclusion of feature response regions
irrelevant to the final prediction.

The visualization results (Figure 5) demonstrate that the integration of the FACM
effectively suppresses irrelevant feature information while enhancing feature responses
relevant to the prediction results. This enhancement allows the prompt feature embedding
to extract relatively reliable information from noisy or rough data, contributing to improved
segmentation performance.

Although the guided model may produce unreliable prediction information, leading
to unreliable prompt information, the impact of inaccuracies can be mitigated in two ways:
(1) the subsequent prompt-embedding module, which can accommodate certain noise
information, coupled with the immunity of SAM’s decoder to a certain extent of erroneous
cues, and the final decoding results correct some of the prediction errors made by the
agents used to generate prompt embeddings. (2) The integration of the FACM can suppress
some irrelevant feature information and enhance feature responses related to the prediction
results, as shown in the figure, enabling the prompt feature embedding to extract relatively
reliable information from rough data.



Bioengineering 2024, 11, 447 15 of 18
Bioengineering 2024, 11, x FOR PEER REVIEW 14 of 18 
 

 
Figure 5. Ablation comparison of predictions with/without FACM. 

The design intention behind the FACM was to ensure that during supervised train-
ing, the feature maps’ response values and positions at each layer in the current iteration 
contain semantic feature information contributing to the final segmentation result. By ran-
domly compressing the values of the feature maps, the model is encouraged to prioritize 
larger response values in subsequent iterations to counteract the effects of random com-
pression. Additionally, the FACM aims to minimize the inclusion of feature response re-
gions irrelevant to the final prediction. 

The visualization results (Figure 5) demonstrate that the integration of the FACM 
effectively suppresses irrelevant feature information while enhancing feature responses 
relevant to the prediction results. This enhancement allows the prompt feature embedding 
to extract relatively reliable information from noisy or rough data, contributing to im-
proved segmentation performance. 

Although the guided model may produce unreliable prediction information, leading 
to unreliable prompt information, the impact of inaccuracies can be mitigated in two 
ways: (1) the subsequent prompt-embedding module, which can accommodate certain 
noise information, coupled with the immunity of SAM’s decoder to a certain extent of 
erroneous cues, and the final decoding results correct some of the prediction errors made 
by the agents used to generate prompt embeddings. (2) The integration of the FACM can 
suppress some irrelevant feature information and enhance feature responses related to the 
prediction results, as shown in the figure, enabling the prompt feature embedding to ex-
tract relatively reliable information from rough data. 

AGSAM predictions are a weighted sum of the agent and SAM decoder (Table 4). 
Varying weights showed higher decoder weights are crucial with limited data, relying on 
SAM’s generalized decoding. As data increase, the agent gains more task experience 
through training. Consequently, the agent’s prediction weights can be gradually 

Figure 5. Ablation comparison of predictions with/without FACM.

AGSAM predictions are a weighted sum of the agent and SAM decoder (Table 4). Vary-
ing weights showed higher decoder weights are crucial with limited data, relying on SAM’s
generalized decoding. As data increase, the agent gains more task experience through
training. Consequently, the agent’s prediction weights can be gradually strengthened. We
believe specialized experience will surpass generalized experience given sufficient data.
Fine-tuning the decoder could then further improve accuracy.

Table 4. Results of AGSAM with different fusion weight ratio of agent and SAM.

Fusion Weight of Agent and SAM Training Sample Size (n)

Agent SAM Metrics 1 4 8 16

0.1 0.9 DICE 0.5758 0.6428 0.7683 0.7986

0.25 0.75 DICE 0.5683 0.6427 0.7672 0.8091

0.5 0.5 DICE 0.5581 0.6385 0.7618 0.8063

0.75 0.25 DICE 0.5536 0.6357 0.7591 0.8023

0.9 0.1 DICE 0.5518 0.6345 0.7580 0.8005

0.1 0.9 HD 20.7766 18.2607 10.1163 8.0842

0.25 0.75 HD 20.6299 18.4923 10.3071 7.8906

0.5 0.5 HD 20.5974 18.9707 10.6805 9.6143

0.75 0.25 HD 20.6733 19.2346 10.8251 11.4226

0.9 0.1 HD 20.6801 19.3462 10.8708 12.2420
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In terms of computational efficiency comparison, although the proposed method has
a larger computational load due to the presence of the SAM, it can still process predictions
for 35 samples per second, meeting the requirements for real-time processing (Table S12).
Evaluation of the proposed method using FACMs in two different states (ON/OFF) showed
no increase in processing time, indicating that FACMs do not add computational overhead.

For the data augmentation experiment, random displacement and random scale
scaling were added to the original settings (Table S13). Comparing the results with the
previous settings, data augmentation was found to increase the diversity of training data
through simulated data, thereby alleviating the scarcity of diversity in few-shot scenarios
(Tables S14–S17).

Compared with SAM-Med2D augmented with manual prompts, AGSAM can achieve
better results in a fully automatic manner compared to manual prompts (Tables S18 and S19
and Figure S6). AGSAM may provide a solution to enhance the performance of SAM-
Med2D for specific medical segmentation applications.

5.4. Limitations of AGSAM

However, our current study has some limitations that should be addressed in future
work. First, the current research has only been validated on two modalities of data: ul-
trasound and fundus color photography. Subsequent studies will require more extensive
validation experiments on various other modalities of data. The Discussion emphasizes
the theoretical training of SAM and SAM-Med2D on multiple data modalities, suggest-
ing avenues for further exploration in validating SAM’s feature-encoding and -decoding
capabilities on additional datasets.

Another crucial point addressed in the Discussion is the scope of validation scenarios,
which, thus far, have focused on few-shot, particularly one-shot, scenarios. The challenges
associated with handling entirely new data without any labeled samples are recognized,
paving the way for future investigations into prompt learning strategies akin to large
language models (LLMs) for achieving zero-shot tasks.

Finally, this paper explores several approaches for model enhancement and incorpo-
rates knowledge from general model SAM. However, what is still lacking is the comprehen-
sive utilization of data, such as clinically relevant prior knowledge for segmentation targets
and addressing the diversity distribution of data. In the future, we can focus on integrating
more prior knowledge to ensure segmentation accuracy and optimize through combina-
tions of data augmentation, synthetic data generation, and various generative models.

6. Conclusions

This paper introduces AGSAM, a framework leveraging SAM for automatic segmenta-
tion with limited training samples. Through an agent-guided model, SAM feature encoding
is extracted and fused to generate prompt embeddings for SAM’s mask decoder, elimi-
nating the need for manual inputs. The image-feature-encoding module and its fusion
module enhance SAM’s encoding by integrating the guiding model’s capabilities, inheriting
SAM’s universal feature representation. The prompt generation module automatically
guides mask-decoding predictions, generating sparse to dense prompts to comprehensively
constrain and avoid redundancy. The mask decoder, based on SAM, combines decoding
experience with prompt embeddings for reliable predictions, integrated with the guiding
model’s own predictions. Superior metrics are attributed to these modules effectively
extracting and transferring SAM’s pre-trained ‘segmentation experience’ to AGSAM. Ad-
ditionally, an online feature enhancement training strategy was explored, suppressing
previous model feature responses during training to force improved responses to effective
features in the next iteration, boosting encoding ability. Together, these ensure AGSAM
benefits from varying training data quantities. The proposed method has potential as a
new few-shot benchmark leveraging SAM-like pre-training.
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of different methods with one sample; Figure S3: Comparison results of different methods with full
training data; Figure S4: Comparison results of different methods with one sample with DICE in
REFUGE dataset; Figure S5: Comparison results of different methods with one sample with HD in
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and SAM Med2d based on manual points prompt; Table S1: Architecture of Prompt Generation
Module; Table S2: Hyper parameters of different experiments; Table S3: Hyper parameters of different
experiments; Table S4: Comparison results of different methods with few-shot data with sensitivity
and specificity; Table S5: Comparison results of different methods with few-shot data with AUC and
AUPR; Table S6: Comparison results of different methods with one train sample with DICE and HD;
Table S7: Results of different methods in comparison analysis with DICE; Table S8: Results of different
methods in comparison analysis with HD; Table S9: Comparison results of different methods with
few-shot data with sensitivity and specificity; Table S10: Comparison results of different methods with
few-shot data with AUC and AUPR; Table S11: Comparison results of different methods with one
train sample with DICE and HD in REFUGE dataset; Table S12: Computational efficiency of different
methods and FACM; Table S13: The specific settings parameters for data augmentation; Table S14:
Comparison results of different methods with one train sample with DICE and HD in CAMUS dataset
with data augmentation; Table S15: Comparison results of different data augmentation with one
train sample with DICE and HD in CAMUS dataset with different methods; Table S16: Comparison
results of different methods with one train sample with DICE and HD in REFUGE dataset with data
augmentation; Table S17: Comparison results of different data augmentation with one train sample
with DICE and HD in REFUGE dataset with different methods; Table S18: Comparison results of
proposed method based on automatic prompt and SAM Med2d based on manual points prompt in
CAMUS dataset; Table S19: Comparison results of proposed method based on automatic prompt and
SAM Med2d based on manual points prompt in REFUGE dataset.
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