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Abstract: Purpose: This study aimed to employ the incremental digital image correlation (DIC)
method to obtain displacement and strain field data of the cornea from Corvis ST (CVS) sequences
and access the performance of embedding these biomechanical data with machine learning models
to distinguish forme fruste keratoconus (FFKC) from normal corneas. Methods: 100 subjects were
categorized into normal (N = 50) and FFKC (N = 50) groups. Image sequences depicting the horizon-
tal cross-section of the human cornea under air puff were captured using the Corvis ST tonometer.
The high-speed evolution of full-field corneal displacement, strain, velocity, and strain rate was
reconstructed utilizing the incremental DIC approach. Maximum (max-) and average (ave-) values of
full-field displacement V, shear strain γxy, velocity VR, and shear strain rate γxyR were determined
over time, generating eight evolution curves denoting max-V, max-γxy, max-VR, max-γxyR, ave-V,
ave-γxy, ave-VR, and ave-γxyR, respectively. These evolution data were inputted into two machine
learning (ML) models, specifically Naïve Bayes (NB) and Random Forest (RF) models, which were
subsequently employed to construct a voting classifier. The performance of the models in diagnosing
FFKC from normal corneas was compared to existing CVS parameters. Results: The Normal group
and the FFKC group each included 50 eyes. The FFKC group did not differ from healthy controls for
age (p = 0.26) and gender (p = 0.36) at baseline, but they had significantly lower bIOP (p < 0.001) and
thinner central cornea thickness (CCT) (p < 0.001). The results demonstrated that the proposed voting
ensemble model yielded the highest performance with an AUC of 1.00, followed by the RF model
with an AUC of 0.99. Radius and A2 Time emerged as the best-performing CVS parameters with AUC
values of 0.948 and 0.938, respectively. Nonetheless, no existing Corvis ST parameters outperformed
the ML models. A progressive enhancement in performance of the ML models was observed with
incremental time points during the corneal deformation. Conclusion: This study represents the first
instance where displacement and strain data following incremental DIC analysis of Corvis ST images
were integrated with machine learning models to effectively differentiate FFKC corneas from normal
ones, achieving superior accuracy compared to existing CVS parameters. Considering biomechanical
responses of the inner cornea and their temporal pattern changes may significantly improve the early
detection of keratoconus.
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1. Introduction

Keratoconus (KC) is a corneal disease characterized as gradual, non-inflammatory
thinning and conical protrusion of the cornea. The prevalence and incidence rates of
KC have been estimated to range from 0.2 to 4790 per 100,000 people and 1.5 to 25 per
100,000 people/year, respectively, and Asians have a much higher frequency and incidence
than Caucasians [1]. KC usually manifests in adolescence or early adulthood as myopia
and irregular astigmatism which may significantly reduce visual quality [2] and require
corneal transplantation in severe cases [3]. Although one eye may be affected initially, KC
is a progressive condition that eventually affects both eyes [4,5].

The early detection of KC is vital to slow or stop its progression typically by corneal
cross-linking procedures. However, this has proven to be challenging because the disease,
at its earliest stage of forme fruste keratoconus (FFKC), may present normal morphologic
features through tomography examinations [1]. Such a challenge has increasing clinical
significance at the current heat of laser vision corrections (LVCs), such as TPRK, LASIK
and SMILE, where undetected FFKC has become one of the most important risk factors of
keratectasia following LVCs [6]. Identifying FFKC allows for the early intervention and
management of KC patients. First, early detection can lead to timely treatments, such as
corneal collagen cross-linking or specialized contact lenses, which can potentially halt or
slow the progression of the disease to more advanced stages. Second, timely diagnosis
and management can prevent significant visual impairment associated with progressive
keratoconus. By addressing the condition early on, vision loss and the need for more
invasive treatments, like corneal transplantation, can be minimized. Third, a precise
diagnosis provides patients with a clearer understanding of their condition, its implications,
and the importance of regular follow-ups. This facilitates better patient education and
counseling, empowering patients to make informed decisions about their eye health. Most
importantly, accurate diagnosis of FFKC enables ophthalmologists to tailor treatment plans
according to the individual’s specific condition and progression rate. This personalized
approach can optimize treatment outcomes and patient satisfaction [7].

Conventionally, the diagnosis of KC (including FFKC) was based on corneal topogra-
phy or tomography, and significant efforts have been made to develop novel indices based
on morphologic features to reveal the earliest signs of disease development [8]. With the
development of machine learning in medical data application [9–11], it is now of great inter-
est to employ AI algorithms in FFKC diagnosis. Notably, recent developments in artificial
intelligence (AI) techniques have enabled new attempts to combine multiple morphologic
features for such purposes, for example, Hidalgo et al. used SVM (Support Vector Machine),
RF (Random Forest), and other artificial intelligence models to differentiate FFKC from
normal and KC corneas, with some achieving an AUC higher than 0.9 but the sensitivity
remained below 90% [12,13].

In recent years, corneal biomechanics has shined new light on FFKC diagnosis. On
one hand, experimental studies proved that local biomechanical weakening of the cornea
precedes its morphologic irregularities [1]; on the other, the Corneal Response Analyzer
(ORA) and Corvis ST (CVS) have enabled in vivo corneal biomechanical evaluations (in
addition to the conventional tomography) and multiple studies have demonstrated the
added value of such evaluations in improving the accurate detection of KC [14]. With
the enriched diagnostic information, Yan Wang et al. trained an AI model to distinguish
KC from normal corneas and achieved an accuracy of 98.7%, a sensitivity of 97.4%, a
specificity of 100%, and a precision of 100% in the external validation set [15]. Nan-Ji Lu
et al. demonstrated that combining corneal morphologic and biomechanical variables could
increase the diagnostic effectiveness of AI models [16].
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By recording the deformation of the cornea during the air puff test, the CVS can
provide more biomechanical measures of the cornea than the ORA, which have been the
foundations for the recent development of various indices intended to reflect early and
subtle biomechanical abnormalities of the cornea [17]. However, most CVS parameters are
based on the deformation information of the anterior corneal surface and only focus on one
or two time points during the entire course of the deformation [18–20]. First, the subtle local
irregularities inside the cornea may not be reflected due to the superficial nature of existing
parameters. Second, as a visco-elastic material, the deformation of the cornea is highly
time-dependent [21–24], meaning the deformation patterns of the cornea during the entire
test (inward deformation and outward restoration) can be a significant indicator of subtle
abnormality. Thus, tracking the entire bulk of the cornea and its whole deformation history
may provide more sensitive information that reflects the local and subtle biomechanical
weakening which may be otherwise overlooked by surface-based biomechanical indices
and tomographic indices.

In this study, an incremental digital image correlation method (previously developed
by the same group of the current study [25]) was used to obtain the deformation and strain
patterns of the entire corneal cross-section during the whole air puff test. These forms of
information consisting of both spatial and temporal domains were then inputted to several
AI models to create a framework that distinguished between FFKC and normal corneas.
The performance of these AI models was then compared with existing CVS parameters.

2. Material and Methods
2.1. Participants and Procedures

The study collected preoperative Corvis ST test results of 50 healthy participants
for the normal group and 50 FFKC patients for the FFKC group. The test results of the
normal group were collected from patients presenting for laser vision correction in the
Eye Hospital of Wenzhou Medical University, using the inclusion criteria of no ocular or
systemic abnormalities, no ocular surgery history, a stable-corrected-distance visual acuity
(CDVA) of 20/20 or better for 2 years before surgery.

For the FFKC group, the inclusion criteria were (1) the contralateral eye was diagnosed
as KC (at least one slit-lamp finding (Fleischer ring, Vogt striae, or central thinning) and two
signs of keratoconus using Pentacam tomography (Oculus Optikgeräte GmbH, Wetzlar,
Germany), such as decreased thinnest pachymetry, skewed asymmetric bowtie/inferior
steep or increased inferior steepness), (2) CDVA of 20/20 or better, (3) no keratoconus
signs on slit-lamp examination, (4) maximum keratometry (Kmax) less than 47.40 diopters
(D), (5) thinnest pachymetry of 480 µm or greater obtained by Pentacam, and (6) “normal”
topography with the difference between the Kmax values in the inferior and superior areas
at 3 mm (I-S value) less than 1.40 D, no skewed asymmetric bowtie/inferior steep, and
keratoconus percentage index (KISA%) less than 60.

Visual acuity, objective, and manifest refraction, as well as demographic information
including participant age and gender, were recorded. Fundoscopy, noncontact intraocular
pressure, and slit-lamp microscopy were also carried out. Corneal biomechanics were
assessed using the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) and the
pachymetry using Pentacam; only quality tests with “OK” were kept for analysis.

The study was approved by the Research Ethics Committee of Eye Hospital of Wen-
zhou Medical University (2022-198-K-154) and conducted following the tenets of the
Declaration of Helsinki.
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2.2. Incremental DIC Method

To assess full-field displacement, strain, velocity, and strain rate, the 140 images from
the whole deformation series were loaded into the incremental DIC program [26], where
full-field displacements in the horizontal (U) and vertical (V) directions were tracked, which
were used to estimate the three Cauchy strain components (εxx, εyy, and γxy) using the
pointwise least-square method. The finite differential approach was then used to determine
two velocity components (UR and VR) and three strain rate components (εxxR, εyyR, and
γxyR). The details of the analysis can be found in the previous study published by the same
group [25]. The entire process can be seen in Figure 1.
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2.3. Feature Extraction and Model Construction

The maximum (max-) and average (ave-) values of the full-field displacement V,
shear strain γxy, velocity VR, and shear strain rate γxyR were retrieved over time (whole
140 frames, lasting approximately 30 ms [25]), resulting in 8 evolution curves against time
(Figure 1, bottom row), denoted as max-V, max-γxy, max-VR, max-γxyR, ave-V, ave-γxy,
ave-VR, and ave-γxyR, respectively.

These evolution data were inputted to two machine learning (ML) models, namely,
Naïve Bayes (NB) [27] and Random Forest (RF) [28]. A voting classifier was then con-
structed with these models to balance out their individual weaknesses and ensure a rela-
tively stable result. Meanwhile, a logistic regression model was also trained. The whole
dataset of 100 patients was divided into a training set (80%) for model training and a
validation set (20%) for reliability assessment.
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2.4. Experimental Setting and Performance Metrics

All calculations were conducted using a Windows 10 operating system equipped with
8 GB RAM and an Intel Core i5 processor running at 1.6 GHz and featuring 8 CPUs. The
built-in functions inside the sklearn package were used in the Python 3.7 environment.

The performance metrics used to evaluate the efficacy of the machine learning models
were accuracy, precision, recall, and F1 score. All these metrics were based on the values of
the confusion matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score = 2 × Precision × Recall
Precison + Recall

(4)

Receiver operating characteristic (ROC) analysis was also carried out which enabled
comparisons in diagnostic effectiveness between the ML models and existing CVS parameters.

2.5. Statistical Analysis

Statistical analysis was conducted using SPSS software (version 24; IBM Corporation,
Armonk, NY, USA: IBM Corp). Descriptive statistics were reported as mean ± standard
deviation. The demographic data of both groups were compared for differences. Two
independent sample t-tests were used for continuous variables, whereas Chi-square tests
were adopted for categorical data. A significance level of p < 0.05 was considered statistically
significant for all tests. For the CVS parameters, ROC curves and area under the curve
(AUC) were utilized to determine their optimal cut-off values, sensitivity, and specificity in
distinguishing FFKC from the normal corneas.

3. Results
3.1. The Demographic Data of the Participants

The demographic data of the participants are listed in Table 1. The FFKC group did
not differ from healthy controls in terms of age (p = 0.26) and gender (p = 0.36) at baseline,
but they had a significantly lower bIOP (p < 0.001) and a thinner central cornea thickness
(CCT) (p < 0.001).

Table 1. Demographic data of the participants.

Group Gender
(Male/Female) Age CCT bIOP

Normal 35/15 20.08 ± 4.19 558.58 ± 26.55 16.63 ± 2.88
FFKC 39/11 19.74 ± 5.09 530.12 ± 26.51 13.70 ± 2.01

Statistic Value X2 = 0.83 t = 1.12 t = 5.36 t = 5.90
p value 0.36 0.26 <0.001 <0.001

3.2. Initial Model Construction

The eight time-dependent evolution curves from the incremental DIC method, namely,
the maximal and average values of the vertical displacement V, shear strain γxy, vertical
velocity VR, and shear strain rate γxyR, were inputted to the two ML models (NB and RF).
The initial results indicated that including both maximal and average values did not lead to
accurately distinguishing between FFKC and normal groups. After a few attempts to cull
and add data forms, only the average values were kept, which led to a significantly better
diagnosis performance, probably due to the higher calculation noise levels of the maximal
values. A voting classifier model (NB + RF) was subsequently employed to differentiate



Bioengineering 2024, 11, 429 6 of 13

FFKC from normal corneas. During these initial attempts, datasets with different numbers
of time points (from 1 time point to the full 140 points) were incrementally incorporated
into the models and a gradual increase in performance was observed with an increasing
number of time points (Supplementary Figures S1 and S2); the results with the full dataset
(140 time points) are reported herein and were compared to existing CVS parameters. The
feature importance of the ML models is shown in Supplementary Figure S3.

3.3. Performance of the Machine Learning Models and Voting Classifier Model

The accuracy, precision, recall score, F1-score sensitivity, specificity, and AUC values of
the machine learning (both the training and validation datasets) are shown in Table 2. The
results demonstrate that the proposed voting ensemble model had the best performance
with an AUC of 1.00, followed by the RF model with an AUC of 0.99. The 5-fold cross-
validation results of the ML models are shown in Supplementary Table S1, with the AUCs
of the voting and RF models both reaching 0.90.

Table 2. The performance of machine learning models in classifying FFKC and normal corneas in the
training and validation datasets.

Dataset ML Models Accuracy
(%) Precision Recall F1-Score Sensitivity Specificity AUC

Training

Naïve Bayes 86.25 0.82 0.95 0.88 0.95 0.76 0.95
Random Forest 100.00 1.00 1.00 1.00 1.00 1.00 1.00

Voting Classifier 86.25 0.82 0.95 0.88 0.95 0.76 0.99
Logistic Regression 90.00 0.89 0.93 0.91 0.93 0.87 0.97

Validation

Naïve Bayes 85.00 0.73 1.00 0.84 1.00 0.75 0.92
Random Forest 95.00 0.89 1.00 0.94 1.00 0.92 0.99

Voting Classifier 85.00 0.73 1.00 0.84 1.00 0.75 1.00
Logistic Regression 95.00 0.89 1.00 1.00 1.00 0.92 0.94

3.4. Performance Comparison with Existing CVS Parameters

The ROC analysis results of the top 10 existing CVS parameters with the validation
dataset are presented in Table 3. Radius and A2 Time were among the best performing
parameters with an AUC of 0.948 and 0.938, respectively. However, no existing parameters
performed better than the AI models, where the voting classifier and RF had an AUC of
1.00 and 0.99, respectively (Table 2). The ROC curve of the NB, voting classifier, Radius,
and A2 Time are shown in Figure 2. The complete ROC results of existing CVS parameters
are presented in Supplementary Table S2.

Table 3. The ROC analysis results of top 10 CVS parameters in differentiating FFKC from normal corneas.

Variable AUC Sensitivity (%) Specificity (%)

Radius [mm] 0.948 100.000 87.500
A2 Time [ms] 0.938 75.000 100.000

Max Inverse Radius [mm] 0.932 83.330 100.000
SP A1 0.927 83.330 100.000
cCBI 0.927 91.670 100.000
CBI 0.917 91.670 100.000
SSI2 0.906 91.670 87.500

A1 Time [ms] 0.896 83.330 100.000
SP HC 0.896 91.670 87.500

Integrated Radius [mm] 0.865 75.000 100.000
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4. Discussion

In this study, displacement and strain data across the entire corneal cross-section
were calculated from image sequences capturing corneal deformation throughout the air
puff test, employing the incremental DIC method. These datasets, comprising spatial and
temporal biomechanical information of the cornea, were utilized as inputs for various
machine learning models to discriminate between forme fruste keratoconus (FFKC) and
normal corneas, yielding promising outcomes compared to existing CVS biomechanical
parameters. Both time and spatial domain data, including inner corneal biomechanical
properties, were integrated into the FFKC diagnosis from a pure biomechanical perspective
without recourse to topography. In the context of the definition of FFKC, as delineated
in most related research, FFKC is characterized by its proximity to the normal cornea
and represents an early stage in the development of keratoconus compared to subclinical
KC [12,13,16,29]. As the current study focused on diagnosing FFKC from normal corneas,
the discussion herein thus excluded studies that treated subclinical KC and FFKC as
equivalent corneal conditions.

The timely and precise diagnosis of FFKC has garnered recent research attention,
driven by its escalating clinical significance, and facilitated by advancements in tomo-
graphic and in vivo biomechanical measurement techniques, and, notably, the expanding
utilization of AI models for ocular medical imaging data analysis.

Smadja et al. utilized a decision tree model to distinguish FFKC from normal and
keratoconus corneas, achieving a sensitivity of 93.6% and a specificity of 97.2% based on
morphological features obtained from the GALILEI system [29]. Hidalgo et al. employed
an SVM model to differentiate FFKC from normal and keratoconus corneas, attaining an
AUC of 0.922, with a sensitivity and a specificity of 79.1% and 97.9%, respectively, based on
morphological features obtained from Pentacam [12]. Kovács et al. constructed a neural
network model using morphological data derived from a Scheimpflug camera, achieving
an AUC of 0.97, a sensitivity of 90%, and a specificity of 90% in distinguishing FFKC from
normal and keratoconus corneas [13]. Rachana et al. utilized Bowman’s topography data
derived from OCT and employed a Random Forest model to differentiate FFKC from
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normal and keratoconus corneas, yielding an AUC of 0.95, a sensitivity of 72.2%, and a
specificity of 95.64% [30]. However, none of these studies exclusively differentiated FFKC
from normal corneas only, but rather from a mixed population of both normal corneas and
KC, and the uneven sample sizes among the groups may have impacted the diagnostic
performance of the models. In clinical practice, the accurate differentiation between FFKC
and normal corneas is of primary concern.

Recently, a study employed a Random Forest model to integrate both the biomechani-
cal information (CVS) and morphological features (SD-optical coherence tomography) of
the cornea to distinguish FFKC from normal corneas, achieving an AUC of 0.902, with a sen-
sitivity and a specificity of 73.53% and 87.74%, respectively [31]. This study, being different
from those mentioned earlier, leveraged the corneal biomechanical properties for the early
detection of KC, which aligns with the understanding of keratoconus pathogenesis that a
corneal biomechanical abnormality may precede structural alterations detectable through
traditional slit-lamp examination and corneal topography [32]. Notably, the biomechani-
cal characteristics of the cornea undergo changes during the early stages of keratoconus,
with corneal stiffness progressively diminishing as the condition advances [33,34]. As
such, recent years have seen numerous investigations using corneal biomechanics to aid
KC detections.

The Ocular Response Analyzer (ORA) is the first clinical device that enables in vivo
corneal biomechanical assessment, based on which the reliability of the keratoconus match-
ing index as a diagnostic indicator for KC has been demonstrated, achieving an accuracy
rate of 97.7%, a sensitivity rate of 91.18%, and a specificity rate of 94.34% [35]. In 2016,
based on Corvis ST (CVS), the Corneal Biomechanical Index (CBI) was introduced as a
novel measure to differentiate between eyes with keratoconus and those with normal
corneas, demonstrating a sensitivity of 94.1% and a specificity of 100% [14]. Similarly,
the Chinese version of CBI (cCBI) was recently reported to achieve an AUC of 0.985, a
sensitivity of 95.5%, and a specificity of 93.4% [36]. However, in the diagnosis of FFKC, the
diagnostic efficacy of individual or combined corneal biomechanical parameters derived
from an ORA or Corvis ST is not as robust as in diagnosing keratoconus [37]. Among the
explored Corvis ST parameters, SP-A1 exhibited the highest diagnostic efficacy with an
AUC of 0.761, a sensitivity of 69.9%, and a specificity of 74.1%, followed by the DA-ratio 2
in Lili’s study [38]. Lei Tian et al. reported that compared with the tomographic parameters,
corneal biomechanical parameters are more efficient in the diagnosis of FFKC from normal
corneas, and A2DA (corneal deflection amplitude during the second applanation) had the
highest diagnosis efficacy with an AUC of 0.766, a sensitivity of 74%, and a specificity of
72%, followed by A1DA (corneal deflection amplitude during the first applanation), A1V
(velocity of the corneal apex during the first applanation), and CBI in all tested Corvis ST
parameters [39].

In this study, an ROC analysis of all Corvis ST parameters was conducted, revealing
Radius (AUC: 0.948) and A2 Time (AUC: 0.938) as the top two parameters for diagnosing
FFKC from normal corneas, which deviates from previous findings, probably due to the
sample size and population difference. An increase in the sample size and the inclusion of
diverse populations are warranted for future validation studies. Although cCBI’s ability
to diagnose FFKC from normal corneas is not as robust as its ability to diagnose KC from
normal corneas, it outperforms CBI in this context; the results showed that cCBI slightly
outperformed CBI in detecting FFKC from the normal population (Table 3), which is
believed to benefit from its optimization based on the Chinese population.

It should be noted that the biomechanical parameters discussed so far are based on
corneal deformation characteristics of the anterior cornea, incorporating a single or limited
number of time points during the entire test, which may not capture the subtle but vital
biomechanical abnormalities in FFKC. In fact, most CVS parameters exhibit suboptimal
performance in diagnosing FFKC from normal corneas, indicating a deficiency in detecting
subtle biomechanical disparities between FFKC and normal corneas through existing
parameters. Despite recent advances in combining multiple CVS parameters to enhance
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KC diagnosis (such as CBI and cCBI), significant biomechanical information may have been
lost when relying solely on existing CVS parameters. Furthermore, when air is expelled
from the jet orifice by the CVS device, the cornea experiences fluctuating air pressure over
time, resulting in various alterations [25]. Previous research consistently indicated that the
stress–strain relationship of the cornea following air puff may vary with time due to the
visco-elastic nature of the cornea and the temporal changes in air puff pressure, and these
variations differ between keratoconus and normal corneas [22–24]. Therefore, incorporating
deformation characteristics of the cornea in its thickness and the temporal information
of such a deformation into artificial intelligence models may enhance the differentiation
between FFKC and normal corneas. This hypophysis was supported by the results of this
study. By embedding the strain changes of the inner cornea over the entire history of the
deformation process, the ML models could successfully distinguish FFKC from the normal
corneas with a higher accuracy than existing CVS parameters.

The displacement and strain field data were obtained by an incremental DIC method
and previous research has demonstrated that these data could effectively differentiate
between keratoconus (KC) and normal corneas [25]. After the DIC analysis of the corneal
deformation sequences, biomechanical data from the inner cornea, such as strain changes
in the stromal layer, can be detected, while also excluding the influence of whole-eye
movement. Therefore, the method was naturally extended to explore the scenario in
FFKC where subtle biomechanical changes may be present inside the cornea while obvi-
ous biomechanical and morphological changes are still absent at the external surfaces of
the cornea.

Given the small sample size and inclusion of time-dimensional data in this study, two
single machine learning models and a voting classifier model were selected to distinguish
between the two types of corneas. The Random Forest model exhibited the best performance
with an AUC of 0.99, consistent with previous studies that highlighted the effectiveness of
Random Forest models in differentiating corneas in various states [16,40–43]. To further
enhance outcomes, several studies have advocated for the use of ensemble machine learning
models. Ensemble classifiers consistently outperform individual models [44,45]; thus, in this
study, an ensemble model was employed to detect FFKC. The voting classifier, comprising a
combination of the Naïve Bayes and Random Forest models, outperformed individual models.
This outcome can be attributed to the proposed voting ensemble model compensating for
the deficiencies of different individual models, thus enhancing the overall performance.
Additionally, ensemble models tend to exhibit greater stability compared to single machine
learning models, maintaining their performance even when applied to diverse datasets. As
is well-known, the accurate identification of FFKC is particularly crucial for determining
candidates for refractive surgery. Therefore, the results of this study can provide some
reference values for the selection of refractive surgery candidates. However, whether an
individual is suitable for refractive surgery is not only related to the presence of FFKC but is
also closely related to factors such as corneal thickness, degree of refractive error, and residual
corneal thickness post-surgery. Thus, the results of this study can be incorporated as part of
the selection system, like the system created by Yoo et al. for refractive surgery candidates [46],
aiding in the optimal selection of candidates for refractive surgery.

The integration of the DIC method with machine learning models in this study offers a
systematic approach for a more precise analysis of FFKC diagnosis from a novel perspective.
The research presents a distinctive methodology, laying the foundation for subsequent
incremental improvements. An increased sample size for validation purposes will bolster
the robustness of this study. Several limitations in addition to the small sample size need to
be noted. First, the cross-sectional design introduces the potential for selection bias. Second,
only average displacement and strain values of the corneal cross-section were used in the
models, while the patterns of these attributes were not studied due to the limitations of
the models adopted. Further investigations should incorporate longitudinal clinical data
with multiple follow-up times and explore the pattern changes of the displacement and
strain fields using deep learning models. Third, the exclusive use of data from one hospital
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necessitates further validation across different datasets to ascertain the generalizability of
the proposed approach. Rigorous validation studies, including external validation with
independent datasets, is crucial to assess the performance, sensitivity, specificity, and
clinical utility of the machine learning model in real-world settings. This step should be
performed in the future for gaining acceptance and adoption by the medical community.
Lastly, clinical implementation and workflow integration of the machine learning models
were lacking. User-friendly interfaces and decision-support tools need to be developed in
the future to facilitate its adoption and use by ophthalmologists in routine practice.

While there are limitations associated with the small dataset, the potential implica-
tions, and applications of the findings in clinical practice are promising and noteworthy.
(1) Clinical decision support tool: once validated with larger datasets, the machine learning
model has the potential to serve as a valuable clinical decision support tool for ophthal-
mologists. It can assist clinicians in making more informed diagnoses, leading to early
interventions and personalized treatment plans. (2) Enhanced patient care: the accurate
diagnosis of forme fruste keratoconus through machine learning can lead to improved
patient care by enabling timely interventions, preventing visual impairment, and opti-
mizing treatment outcomes. It can contribute to better patient satisfaction and quality of
life. (3) Integration into telemedicine and remote care: machine learning models can be
integrated into telemedicine platforms, allowing for remote diagnosis and monitoring of
forme fruste keratoconus. This can expand access to specialized care, especially for patients
in underserved or remote areas.

5. Conclusions

In conclusion, the objective of this study was to develop a framework capable of
effectively distinguishing between FFKC corneas and normal corneas, thereby aiding clini-
cians in enhancing diagnostic efficiency and reducing outpatient visit costs. The proposed
method prioritizes accuracy enhancement and reduction of prediction errors in FFKC detec-
tion. The experimental findings demonstrated that leveraging displacement and strain data
following incremental DIC analysis of Corvis ST images, along with incorporating time
domain and inner cornea data, yielded more precise results compared to existing Corvis ST
parameters. Moreover, the ensemble classifier, comprising Naïve Bayes and Random Forest
models, exhibited superior performance with greater stability. This study delved into the
assessment of corneal biomechanical properties through dynamic imaging, emphasizing
the versatility of image acquisition across various devices. Subsequently, this diagnostic
model can serve as the preliminary groundwork for clinical diagnostic software, guiding
the future development of clinical instruments.
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Terminology

FFKC Forme fruste keratoconus, an early form of keratoconus.

KC
Keratoconus, a non-inflammatory eye condition where the cornea progressively
thins and bulges into a cone-like shape.

DIC
Digital Image Correlation, an optical method used to measure deformation,
strain, and motion on a wide range of materials and structures.

CVS

Corvis ST, a non-contact tonometer equipped with an ultra-high speed
Scheimpflug camera used to measure intraocular pressure and assess corneal
biomechanics by analyzing the dynamic deformation response of the cornea to
an air puff.

AUC
Area under the ROC curve, which plots the true positive rate against the false
positive rate.

ROC
Receiver Operating Characteristic, a graphical plot that illustrates the
performance of a binary classification model across various threshold settings.

ORA
Ocular Response Analyzer, a device used to measure the biomechanical
properties of the cornea, such as corneal hysteresis and corneal resistance factor.

CBI Corvis Biomechanical Index, a parameter derived from Corvis ST.
cCBI Corvis Biomechanical Index for Chinese people.

AI
Artificial Intelligence, the simulation of human intelligence in machines
programmed to think and learn.

ML
Machine Learning, a subset of AI that enables computers to learn from data and
make predictions or decisions without being explicitly programmed.

NB
Naïve Bayes, a probabilistic machine learning algorithm based on Bayes’s
theorem with an assumption of independence between features.

RF
Random Forest, an ensemble learning method that combines multiple decision
trees to improve predictive accuracy and control overfitting.

TPRK
Trans-Epithelial Photorefractive Keratectomy, a type of laser eye surgery that
corrects vision by reshaping the cornea without manually removing the
epithelial layer.

LASIK
Laser-Assisted In Situ Keratomileusis, a popular refractive surgery procedure
that reshapes the cornea using an excimer laser to correct myopia, hyperopia,
and astigmatism.

SMILE

Small Incision Lenticule Extraction, a minimally invasive refractive surgery
technique that uses a femtosecond laser to create a lenticule within the cornea,
which is then removed through a small incision to correct refractive errors
without creating a corneal flap.
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