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Abstract: The study of the effects of aging on neural activity in the human brain has attracted consid-
erable attention in neurophysiological, neuropsychiatric, and neurocognitive research, as it is directly
linked to an understanding of the neural mechanisms underlying the disruption of the brain struc-
tures and functions that lead to age-related pathological disorders. Electroencephalographic (EEG)
signals recorded during resting-state conditions have been widely used because of the significant
advantage of non-invasive signal acquisition with higher temporal resolution. These advantages
include the capability of a variety of linear and nonlinear signal analyses and state-of-the-art machine-
learning and deep-learning techniques. Advances in artificial intelligence (AI) can not only reveal the
neural mechanisms underlying aging but also enable the assessment of brain age reliably by means
of the age-related characteristics of EEG signals. This paper reviews the literature on the age-related
features, available analytic methods, large-scale resting-state EEG databases, interpretations of the
resulting findings, and recent advances in age-related AI models.
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1. Introduction

Aging affects the entire human brain, in which the anatomical and functional alter-
nations in the cellular structures extend to massive changes in neuronal morphology and
neural plasticity [1–3]. In particular, because age-related changes in the neural system
in adults over the age of 60 are inevitably associated with a risk of neurodegenerative
diseases with behavioral and cognitive impairments [4,5], recent studies have attempted to
understand how aging affects the brain and what kinds of neural characteristics manifest,
in addition to investigating how brain age can be quantitatively assessed using artificial
intelligence (AI) in combination with the corresponding age-related neural evidence [6–9].
In brief, aging is known to mediate the morphology of neurons and synaptic plasticity
differentially in the hippocampus and cerebral cortex [10,11]. A decline in neurotransmit-
ters, such as dopamine, serotonin, and neurosteroids (testosterone in men and estrogen
in women), in the hippocampal formation leads to the degradation of neural mechanisms
across associated regions and may finally cause senile neuropathological disorders, such as
dementia, Alzheimer’s disease and Parkinson’s disease [4,12,13]. Structural or functional
neuroimaging studies on the effects of aging on the brain have reported that aging decreases
the volume and integrity of both gray and white matter in the cerebral cortex, despite
different patterns of declines in each matter type [11,14]. Due to the different vulnerabilities
to aging in the subregions of the brain, volumetric changes in the medial temporal lobe
(MTL) and prefrontal cortex (PFC) are more significant rather than those in the parietal
and occipital regions [2,11,15]. Neuroscience studies on human aging have employed
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neural activities that can be recorded noninvasively, such as electromagnetic changes and
hemodynamic fluctuations, to elucidate the underlying neural mechanisms of aging. In
particular, scalp electroencephalography (EEG) has been widely used to estimate or predict
brain age because it allows the easy acquisition of neural signals in a more comfortable and
natural environment than other techniques, such as functional magnetic resonance imaging
(fMRI), diffusion tensor imaging (DTI), magnetoencephalography (MEG), and positron
emission tomography (PET) [6,16–19].

In terms of digital signal processing, EEG has excellent temporal resolution but rel-
atively low spatial resolution without additional source-localization methods compared
with blood oxygen level-dependent (BOLD) image-based signal techniques [20]. These
advantages of EEG allow for various types of time-series signal processing and analytical
approaches based on both linear and nonlinear models [20–22]. Linear spectral analy-
sis, which explains a single EEG signal as a combination of several different oscillatory
components, uses physical properties, such as the amplitude or phase of each oscillatory
component [23,24]. Nonlinear analysis attempts to interpret time-series signals in terms
of nonlinear dynamic properties, such as regularity, complexity, and predictability [21,25].
Various brain connectivities based on the corresponding mathematical principles have
been proposed to identify the significant evidence of functional (unidirectional) or effective
(bidirectional) connectivity in the brain using graph-theory-based network analysis [26,27].
Accordingly, many neuroscience and engineering studies on aging have focused on the
characteristics of EEG signals to identify their relationship with aging or create mathe-
matical models for age classification or prediction [6–9]. This review intensively focuses
on normal aging EEG signals recorded during the awake resting state with eyes closed
(REC) or eyes opened (REO) without any cognitive task engagements and then extensively
surveys the literature on how aging affects the intrinsic characteristics of EEG signals and
the relevant methodological approaches. Compared with the task-relevant condition, in
which individuals perform a specific cognitive task or are exposed to an external stimulus,
neural activity in a task-irrelevant resting state has been reported to be strongly linked to
the intrinsic or innate properties of an individual’s brain state [28–30]. Therefore, many
EEG and fMRI studies on the prediction of human aging have mainly focused on neural
activities recorded during the resting state [27,31–33]. By examining rsEEG signals, they
attempt to determine how aging changes the EEG signal, how this can be expressed through
certain EEG indices, and how this relates to brain developmental processes throughout the
lifespan, including growth, maturation, and aging [30,34].

The remainder of this paper is organized as follows. First, we present several large-
scale EEG databases that have been used in previous age-prediction studies. Second,
we discuss age-related EEG measures that can be extracted from a single channel using
traditional analytical approaches, such as linear spectral analysis or nonlinear dynamics
models. Third, we describe the age-dependent properties of the spatial components or
measures of brain connectivity extracted from multiple EEG channels, including findings
on the influence of aging on the properties of EEG microstates or functional connectivity in
combination with network analysis. Finally, we introduce a state-of-the-art EEG processing
in the manifold space (i.e., the Riemannian manifold), along with several ML- and DL-based
regression models or classifiers to predict aging.

2. Large-Scale EEG Database Related to Aging

Previous EEG studies on developmental stages of the brain or aging in healthy in-
dividuals can be roughly divided into two types of EEG acquisition conditions in which
EEG signals were recorded while performing goal-specific tasks or during a resting state
with eyes closed (REC) or opened (REO) [35–37]. In goal-specific tasks, the recorded
EEG signals are analyzed on the basis of the task corresponding to the experimental
paradigm. Most EEG signals are recorded during a specific cognitive process, such as work-
ing memory, attention, and emotion; therefore, the corresponding behavioral results are
commonly included. In contrast to task-relevant EEG signals, which are linked to cognitive
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performance as measured by behavioral data, task-irrelevant rsEEG signals have more
intrinsic and biological properties that are independent of the presence of external stimuli
or the performance of specific cognitive tasks [27,38]. For these reasons, previous EEG
studies on aging have aimed at creating rsEEG databases to identify significant differences
or unique classifications between two or three specific age groups, but also at revealing spe-
cific EEG relationships across the human lifespan. Unfortunately, most of these databases
are not publicly available and include only a small number of participants, divided into
two or three age groups, such as young and older groups, or young, middle-aged, and
older groups with a total of fewer than 100 participants. Some brain research consortia
have published individual, large-scale rsEEG databases with more than 100 participants,
reporting resting-state multichannel EEG signals from infancy to older age and containing
additional information on individual physical and personality traits [39,40]. In this article,
we limit ourselves to large-scale and open-access rsEEG databases that fulfill the criteria of
including at least 100 participants and as many age groups as possible.

2.1. Temple University Hospital Abnormal EEG Corpus

The Temple University Hospital (TUH), Philadelphia, USA, has released a series of
large-scale EEG databases consisting of several EEG records and information annotated by
clinicians. As of September 2023, seven major EEG databases have been released by the
TUH, including the TUH EEG corpus (TUEG), TUH abnormal EEG corpus (TUAB), TUH
EEG artifact corpus (TUAR), TUH EEG epilepsy corpus (TUEP), TUH EEG events corpus
(TUEV), TUH EEG seizure corpus (TUSZ), and TUH EEG slowing corpus (TUSL) [41,42].
Among these, the TUAB has been widely used in EEG studies on aging [6–8,43]. This
database is consistently updated, and the 2023 version is 2.0.0. This database has also
been adopted by the EEG studies on general properties of multiple EEG signals because
it consists of two types of EEG recordings, normal and abnormal EEG signals, based on
whether the EEG signals comprise or do not comprise five unique characteristics, namely
reactivity, alpha rhythm, mu rhythm, beta activity, and theta activity [44]. The TUAB
comprises EEG records constituted of multiple EEG signals with 20–30 channels at a 250 Hz
sampling rate during at least 15 min of a resting state. A total of 2993 datasets, consisting
of 1521 normal and 1472 abnormal EEG signals, are stored in two different folders for
evaluation and training datasets in a ratio of 1:9. All individual EEG records correspond to
the individual information annotated in the text for biological information, such as age, sex,
and clinical information, such as specific brain disorders diagnosed by physicians. Several
studies on ML- or DL-based models have used this database to predict the biological age
of individuals [6–9,43].

2.2. Leipzig Study for Mind–Body–Emotion Interactions Database

The Leipzig study for mind–body–emotion interactions (LEMON) [39] is a large-scale
multimodal body dataset, released by the Max Planck Institute for Human Cognitive and
Brain Sciences in Leipzig, Germany, in 2018. The LEMON database consists of EEG and
T1/T2 magnetic resonance imaging (MRI) image data, as well as behavioral data from
questionnaires to assess individuals’ cognitive traits. All data were obtained during four
individual experimental rounds between 2013 and 2015. To collect the rsEEG recordings,
227 participants, including 154 young participants in the age group 20–25 years and 74 older
participants aged 59–70 years, participated in the EEG recording sessions. These sessions
consisted of 16 individual experimental blocks in which the 62-channel EEG signals were
recorded for 1 min by two types of REO or REC, alternating them so that there were eight
REO blocks and eight REC blocks. Several age-related EEG studies have used the LEMON
database for comparison purposes. One study compared the predictive power of biological
age using five different approaches [6]. Using this database, aging has been reported to
influence distinct EEG spatial patterns, such as EEG microstates [45], signal variability in
beta rhythms [46], and long-range temporal correlations in alpha rhythms [47].
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2.3. Cuban Human Brain Mapping Project Database

In 2021, the Cuban Neuroscience Center (CNEURO) published a multimodal neuroimag-
ing and cognitive dataset called the “Cuban human brain mapping project” (CHBMP), which
was collected between 2004 and 2008. This dataset consists of high-density
(64–120 channels) rsEEG signals, T1 MRI and diffusion-weighted (DWI) images, various be-
havioral outcomes from psychological testing, and demographic information from 282 young
and healthy middle-aged participants. The study population comprised 87 women and
195 men aged 18–68 years [48,49]. Another project on pediatric and older age groups is
currently in progress. EEG signals in the CHBMP dataset were recorded for at least half an
hour according to the following six protocols: (1) baseline: REC for 10 min, (2) reactivity:
consecutive REO and REC with an interval of 12 s for 5 min, (3)–(5) hyperventilation (HPV):
inhaling air through the nose thrice and breathing deeply for 1 min, and (6) recovery: re-
covery after HPV inspiration for about 2 min. In order to extend age-related EEG studies,
this project, in collaboration with international research groups, investigated descriptive
parameters for aging in EEG signals [50]. This research consortium developed a reliable
algorithm for predicting biological age by transforming the descriptive parameters of the
EEG, which are based on the cross-spectral density of several EEG signals, into the Rieman-
nian manifold dimension [50]. As described in the introduction to the LEMON database,
Engemann et al. used the CHBMP, LEMON, and TUAB databases to assess the performance
of five representative algorithms for predicting brain age [6].

2.4. Tulsa 1000 Database

The Laureate Institute in Tulsa, USA has released a large-scale multimodal database
that includes fMRI images and concurrent 31-channel EEG signals of 1000 participants [40].
Considering dimensional psychopathology beyond traditional psychiatric diagnoses, the
participants consisted of healthy controls and treatment-seeking individuals with mood,
anxiety, substance use, and eating disorders. In addition, insightful behavioral results were
obtained from various questionnaires for the domains of positive and negative valence,
cognition, and arousal [40]. However, unlike TUAB, LEMON, and CHBMP, this database
is not open access. In addition, most of the studies used in this database are from the
Laureate Institute. In one study, an automated pipeline for artifact reduction of EEG signals
in this database was presented, since the EEG signals in this database were contaminated
with MRI gradients and ballistocardiogram artifacts due to simultaneous EEG recording in
magnetic resonance scanners [51]. Using the EEG signals in this database, Al Zoubi et al.
indicated significant differences in the temporal dynamics of EEG microstates between
healthy controls and individuals with mood and anxiety disorders [52]. They also investi-
gated the performance of classification or regression of several ML approaches to predict
brain age [53].

2.5. ISB-NormDB (QEEG Normative Database)

A commercial healthcare company in Republic of Korea, iMediSync Inc. (Seoul, Re-
public of Korea)., provided a sex- and age-differentiated normative EEG database called
the ISB-Norm database [54]. This database is not publicly accessible. A total of 1289 partici-
pants, including 553 men and 736 women aged 4.5–81 years, were recruited for this database.
The 19-channel EEG signals, digitized at a sampling rate of 250 Hz, were recorded for 4 min
REO and REC, each. Based on the age groups of the participants, different questionnaires
were administered to assess individual cognitive, emotional, and behavioral characteristics.
Using this database, one study showed that several spectral powers of the delta, theta,
alpha, beta, and gamma rhythms were modulated by the ages of the participants and
correlated strongly with those of the commercial EEG database, such as qEEG-Pro [54]. A
specific algorithm was developed that achieved 92.3% accuracy in discriminating between
116 potentially depressed participants and 80 healthy controls using four representative
EEG features as absolute or relative spectral powers [55].
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2.6. Other Databases

Several other databases are available for commercial services or research on age-related
EEG changes. However, most of these studies fall outside the scope of our review, as they
do not fulfill the criteria of including more than 100 participants of all ages. Nonetheless,
some noteworthy databases relevant to EEG research on aging are briefly described below.
Several valuable large-scale databases intended for noncommercial research purposes did
not focus on healthy participants, but on pediatric participants with a neurodevelopmental
stage from infancy to early adulthood or on pathological patients targeting different types
of psychiatric disorders. The Healthy Brain Network (HBN) project, for example, recruited
about 10,000 participants aged 5–21 years and created open-access databases of fMRI and
EEG signals and various behavioral questionnaires [56]. In a recent study, this database was
used to identify changes in the characteristics of the periodic and aperiodic components of
brainwaves at different stages of brain development [57]. Another project recruited more
than 10,000 participants aged 40–79 years and established the LIFE Adult study database.
This database contains extensive physiological information and comprises 20 min rsEEG
datasets from participants aged ≥ 60 years [58]. Although it is a nonpublic database,
recent research utilizing it has shed light on the relationship between two major age-
related alterations, including individual alpha frequency (IAF) decline and flatter 1/f
spectral slope, and cognitive performance [59]. To support the development of biomarkers
and methods to address psychiatric dysfunctions, Two Decades-Brainclinces (TDBrain)
Research has released an open-access EEG dataset called the “TDBrain database”. This
database contains 2 min REO and REC EEG recordings from 1274 psychiatric patients
aged 5–89 years, including patients with major depressive disorder (MDD; N = 426),
attention deficit hyperactivity disorder (ADHD; N = 271), subjective memory complaints
(SMC; N = 119), and obsessive–compulsive disorder (OCD; N = 75) [60]. In contrast to
noncommercial research databases, several private EEG databases are only available for
commercial services. These databases, such as qEEG-Pro, BrainDx, NeuroGuide, and
HBimed, offer commercial services that involve analyzing signals from input brainwave
data using proprietary technologies and databases and providing evaluations as a result.

3. Age-Related Spectral Measures

Several critical EEG characteristics or features related to the aging of the brain have
been proposed in the past [35,61–65]. Spectral analysis is the most commonly used tech-
nique in EEG analysis methods to decompose a single EEG signal into a set of different
spectral components, generally including delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
beta (12–30 Hz), and gamma (above 30 Hz) rhythms. The method is also employed to
evaluate the spectral measures of each component by using the spectral power or phase
information within the corresponding frequency band [24,66]. In contrast to these oscil-
latory rhythms, another critical component of neural activity is defined as an aperiodic
component or scale-free 1/f noise [67,68]. Previous studies have revealed the critical role
of 1/f noise in neural mechanisms underlying cognitive and neural processing [67–71]. In
fact, the aperiodic component is not only strong interference in the feature extraction of
the periodic component [72–76] but is also an important factor in the assessment of human
aging [30,68,77,78]. For this reason, some studies on aging have attempted to develop new
algorithms, in which EEG signals are first divided into aperiodic (1/f noise) and period
components [72–74]. Next, the aperiodic component is eliminated to obtain the spectral
power or is converted into independent features (slope and offset) to characterize the power
spectrum density (PSD) of 1/f noise [72–74].

In this session, we will describe the age-dependent spectral measures proposed in
previous studies. However, the corresponding results remain controversial. Various
spectral methods to calculate spectral power and different groups related to the participants’
ages make it difficult to interpret the findings directly. For example, some studies used
absolute spectral power, whereas others used relative spectral power. Depending on the
type of power used, absolute, relative, or aperiodic-adjusted spectral powers, the resulting
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spectral characteristics of aging differ significantly. Moreover, distinct developmental
procedures in the brain have to be considered based on the participants’ ages, which are
roughly grouped into three perspectives: developmental cognitive neuroscience from
childhood to early adulthood (<25 years old), degenerative neuropsychiatric disease in
older adults (>70 years old), and neurophysiological changes throughout the human
lifespan [30,32,79]. Not all spectral measures exhibit significant and linear age-related
changes statistically. However, some studies jumped to general conclusions based on
specific patterns within a narrow age range. For these reasons, we tried to consider
not only the method of power calculation but also the number and age of each group
of participants. The age-related spectral measures are described under the following
subheadings: (1) power slope, (2) alpha rhythm: peak frequency, (3) alpha rhythm: power,
(4) alpha rhythm: reactivity, (5) beta power, and (6) other spectral powers.

3.1. Power Slope (1/f Noise)

Aperiodic components are generally quantified as a measure of the slope or offset
of the PSD of EEG signals. This increase in power slope in the PSD is determined by
the balance between excitatory and inhibitory inputs, which consist of fast glutamatergic
and slow GABAergic synaptic connections, respectively [80,81]. This balance in synapses
provides the basis for the maintenance of neural homeostasis and the formation of neural
oscillations in terms of information transmission and computation in the brain network [70].
One of the most consistent findings in age-related EEG measurements is the power slope of
the PSD. The power slope flattens with age because excitability and neural noise increase,
leading to asynchronous spiking activity. In addition, population-level synchrony has
been reported to decrease in neural networks [59,68,69,77]. Since aperiodic components in
EEG rhythms are highly related to aging but also affect the calculation of periodic power,
several studies have proposed a bundle of efficient algorithms to obtain the spectral powers
more purely by separating aperiodic components and performing a further statistical
analysis. Donoghue et al. proposed a new algorithm called fitting oscillations and one
over f (FOOOF). In FOOOF, a neural signal is first separated into aperiodic and periodic
components [72]. Then the aperiodic component, which corresponds to the 1/f properties
of the neural signal, is eliminated. Finally, the spectral power is calculated from the pure
periodic component only [72]. Whitten et al. proposed a new algorithm called the better
oscillation detection (BOSC) method [73]. This algorithm first identifies the nonrhythm
activity components as background by fitting the empirically observed power spectrum in
the neural signal. Then it calculates the spectral power from the remaining components
that significantly deviated from the spectral characteristics of the background [73]. Wen
and Liu proposed irregular resampling autospectral analysis (IRASA) to robustly separate
the fractal (aperiodic) component [73]. It was developed to extract the fractal power by
computing the auto-power spectra of a bundle of resampled time-series signals modified
from the original signals in terms of Hurst exponent and Fourier transform [74].

Recent EEG studies have consistently shown the obvious effect of aging on aperiodic
components (Table 1). Donoghue et al. examined not only the differences in the periodic
components of alpha oscillations, such as IAF and power but also the aperiodic compo-
nents of PSD, such as offset and exponents (same as slope), between younger (20–30 years,
N = 17) and older (60–70 years, N = 14) adults. By applying the FOOOF algorithm, they
found not only two age-dependent periodic measures (older adults had slower alpha center
frequencies and lower aperiodic-adjusted alpha power) but also two age-dependent aperi-
odic measures (older adults had lower aperiodic offset and flatter aperiodic exponents) [72].
Pathania et al. examined the 2 min REC signals obtained from two different age groups:
healthy young adults (<35 years, N = 22) and healthy older adults (>59 years, N = 24).
Using the FOOOF algorithm, they found that older adults had significantly lower (flatter)
exponents of the aperiodic components in the frontal, central, and parietal regions than
young adults [82]. Cesnaite et al. examined the REC signals from participants (40–79 years;
N = 1703) in a large physiological dataset, named the LIFE-Adult dataset, and reported
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two significant negative relationships with aging by using source reconstruction: (1) IAF
in the left temporal lobe and (2) 1/f slope in the right frontal lobe. The results of the
abovementioned three recent studies have shown that the PSD in rsEEG signals becomes
flatter. That is, more noise was noted with increasing age throughout the lifespan [59].
Unlike some spectral components, which present a U-shaped or nonlinear relationship
across the lifespan, these properties of the aperiodic components have a relatively linear
trend during the developmental period. Recent studies have focused on the significant
changes in the aperiodic component of rsEEG signals during the neurodevelopmental
period from childhood to adolescence, when there is significant growth and fundamental
neural reorganization throughout the cortex [57,78,83]. Cellier et al. analyzed REO sig-
nals from 96 participants aged 3–24 years [78]. Tröndle et al. used a large-scale pediatric
database (5–22 years, N = 2529) and independent validation (6–22 years, N = 369) [57]. Hill
et al. recruited participants from early-to-middle childhood ranging between 4 and 12 years
(9.41 ± 1.95 years, N = 139) [83]. Regardless of the different age groups and sample sizes
in the participant groups, these studies consistently found that both the aperiodic slope
and the offset (intercept) decreased, but the peak frequency in the alpha rhythm increased
with age.

Table 1. Review of age-related aperiodic measures of resting-state EEG signals.

Measures Study Main
Results

Subjects
(Age Range (yr), Numbers (N))

Eyes
Condition

Aperiodic
components

Cellier et al.
[78]

exponent, offset:
decrease

adolescence
(3–24 yr, N = 96) REO

Hill et al.
[83]

exponent, offset:
decrease

early–to–middle childhood
(4–12 yr, N = 139) REO, REC

Tröndle et al.
[57]

slope, intercept:
decrease

adolescence
(5–22 yr, N = 2529) REO, REC

Voyetk et al.
[68]

1/f slope:
young > old (flatten)

young (20–30 yr, N = 11)
old (60–70 yr, N = 13) –

Donoghue
et al. [72]

exponent, offset:
young > old (flatten)

young (20–30 yr, N = 17)
old (60–70 yr, N = 14) REO

Pathania et al.
[82]

exponent:
young > old (flatten)

young (<35 yr, N = 22)
old (>59 yr, N = 24) REC

Cesnaite et al.
[59]

1/f slope:
decrease (flatten)

LIFE–Adult DB
(40–79 yr, N = 1703) REC

3.2. Alpha Rhythm

The alpha rhythm was recognized earlier than the other brain rhythms [84]. It generally
ranges between 8 and 13 Hz, the most dominant rhythm in human EEG signals [63,85]. In
the past, the alpha rhythm was regarded as the representation of the idling state in the brain
due to its enhancement in task-irrelevant conditions as opposed to other rhythms. However,
the alpha rhythm has distinctive characteristics compared to the other rhythms, but it is also
highly associated with a variety of task-relevant tasks [86], such as working memory [87],
attention [88], facial preference [89], perceptual learning [90], and top–down inhibitory
process [91]. The alpha rhythm has been reported to be closely linked to the resting state or
default-mode network in the brain. For example, a concurrent EEG-fMRI study investigated
the relationship between the temporal dynamics of neural activity from EEG signals and
the spatial distribution of brain areas from resting-state fMRI images [38]. It showed that
alpha activity in EEG signals correlated positively with BOLD activity in the resting-state
network. However, it negatively correlated with those in the dorsal attention network. The
enhancement of alpha activity seen in the visual cortex and posterior region during REC is
strongly suppressed by the presence of visual stimuli [38]. This alpha suppression is known
to facilitate the transmission of sensorimotor information and memory processes [87,92,93].
In addition, the alpha rhythm is known to play an important role in the functional feedback
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in the thalamocortical system by propagating from the higher- to lower-order cortex and
from the cortex to the thalamus [94,95].

Compared with other rhythms, the alpha rhythm is the most prominent rhythm
influenced by human aging [18,93,96,97]. This alpha modulation due to aging has been as-
sociated with physiological changes in white- or gray-matter volume [32,98] and cognitive
performance in working memory [93]. As we focus more on the age-related characteris-
tics of the alpha rhythm at rest, we have selected three important alpha characteristics:
individual alpha frequency, alpha reactivity, and alpha power (Table 2).

3.2.1. Alpha Peak Frequency

One of the well-known EEG characteristics of aging is that EEG rhythms, especially
the theta and alpha rhythms, become slower with increasing age [23,63,64,99]. Since a
shift toward slower frequencies is reflected in the IAF or center frequency within the alpha
rhythm with increasing age, the older group was generally reported to be slower than the
younger group [64,100]. A comparison of alpha peak frequency between young and old
groups in two studies has revealed that frequencies in the older group were significantly
lower than those in the younger group [23,99]. The study by Scally et al. recruited a total of
69 participants belonging to two age groups, 37 in the young (20.3 ± 2.1 years) and 32 in
the older (69.8 ± 4.9 years) groups. In addition to the slower alpha peak frequency with
aging, the authors reported that the old group had lower alpha power and weaker global
connectivity than the young group [99]. The study by Stacey et al. also recruited 75 partici-
pants from two age groups, 31 young (24.0 ± 4.5 years) and 44 older (71.5 ± 6.5 years), and
was mainly concerned with the fact that the older group had a lower alpha peak frequency
but a higher beta power compared to the young group [23]. However, a slower alpha
peak frequency with age was not observed across the lifespan. Several developmental
EEG studies, focusing on individuals under the age of 25 years, reported a relationship
between alpha peak frequency and increasing age [57,78,83]. A more recent study on the
characteristics of alpha oscillations in childhood and adolescence reported that the alpha
peak frequency increased linearly with age, ranging 5–22 years of age (N = 2529) [57].

With regard to alpha spatiality, the effects of aging on the alpha rhythm have been
reported to be mainly observed in the posterior region. By examining peak alpha frequency
in 60 participants aged 20–81 years, Knyazeva et al. identified two components of the
alpha rhythm that were distributed in the posterior region [101,102]. These included higher
frequency components (peak: 9.9 ± 0.8 Hz) from the occipito-parietal regions and lower
frequency components (peak: 9.0 ± 0.9 Hz) from the occipito-temporal cortices [101]. The
peaks of the higher frequency components, which were more distributed over the posterior
regions, decreased more markedly with increasing age. However, the low-frequency
component was relatively insensitive to age [102]. A study with 96 participants aged
3–24 years showed that the alpha peak frequency in the posterior region during REO shows
a linear increasing trend with age [78]. Furthermore, the dominant frequency extracted
from the parietal-midline areas was mainly in the theta band (4–8 Hz) in infants but shifted
to the alpha band (8–12 Hz) in adolescents [78]. Another study, including 139 participants
aged 4–12 years, also reported similar findings that the alpha center frequency of the
posterior area from both REO and REC increased with age [83]. In addition to these
findings, several studies covering the entire human lifespan have reported that alpha peak
frequency, particularly in the posterior region, increases linearly at around 20 years of age
and begins to decline at around 40–50 years of age [96,103]. To summarize, aging strongly
modulates the alpha rhythm, which is distributed over the posterior region, compared to
other regions. The peak alpha rhythm increases linearly with age during the developmental
stages of the brain but gradually decreases with the process of brain degeneration. A
decrease in peak alpha frequency leads to a shift to slower frequencies in all EEG signals
with increasing age. In particular, a more obvious slowing in the posterior regions leads to a
shift in the brain’s neural network from the posterior to the anterior region with age [34,104].
This is described in detail in Section 5.1.
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3.2.2. Alpha Reactivity

Another important feature associated with the aging of the alpha rhythm is alpha
reactivity. Particularly in the posterior region, alpha reactivity or suppression refers to a
marked decrease in alpha activity in response to the presence of a visual stimulus or to the
performance of cognitive tasks that require cognitive attention or mental effort [97]. Alpha
suppression is thought to reflect the active processing of sensory information, as it facilitates
task-relevant areas and allows other neural frequencies to become more prominent. Apart
from different calculation methods, alpha reactivity is generally defined as the difference in
alpha power between two resting-state conditions, in which the participant’s eyes are either
closed or open. Human aging has been reported to strongly influence the characteristics
of alpha activity [18,31]. Several studies on age-related alpha reactivity have argued that
this relationship is significant in the older group but not in the younger group [36,105–107].
A study with 63 participants aged 30–80 years showed that both types of alpha reactivity,
which are calculated by the difference (ECALM-EOALM) or ratio (ECALM/EOALM) of
alpha amplitude between the eyes-closed state (ECALM) and eyes-open state (EOALM),
correlated negatively with aging [35]. Another study that recruited old (65.1 ± 1.18 years,
N = 32) and young (22.1 ± 0.38 years, N = 33) participants also indicated lower alpha
reactivity in the old group in comparison to the young group [107]. Indeed, this negative
correlation between alpha reactivity and aging is more apparent in older groups than in
younger groups [36,105–107]. An EEG study on aging investigated the difference in alpha
reactivity, as the ratio of REC and REO in alpha power, between two subgroups (young
and old groups) of healthy adults (52.9 ± 19.0 years, N = 54). The authors observed a
nonlinear relationship between alpha reactivity and age in the temporo-occipital regions.
Furthermore, a significant negative correlation with age was only observed in the old
group [105]. Another EEG study examined the difference in alpha reactivity between
older adult participants (69.5 ± 10.2 years, N = 39) and young controls (29.9 ± 10.4 years,
N = 21) and reported a significant negative correlation with aging only in the older adults
group [106]. However, another study pointed out that the differences in performance
between REC and REO are not limited to the alpha rhythm in the posterior region but can
also be observed in other bands, such as the delta and beta rhythms in noncentral regions
and the theta rhythms in the posterior region [37].

Table 2. Review of age-related alpha measures of resting-state EEG signals.

Measures Study Main
Results

Subjects
(Age Range (yr), Numbers (N))

Eyes
Condition

Alpha
frequency

Cellier et al.
[78]

peak frequency:
young < old

adolescence
(3–24 yr, N = 96) REO

Hill et al.
[83]

center frequency:
young < old

early–to–middle childhood
(4–12 yr, N = 139)

REO
REC

Tröndle et al.
[57]

peak frequency:
young < old

adolescence (HBN project)
(5–22 yr, N = 2529)

REO
REC

Stacey et al.
[23]

peak frequency:
young > old

young (18–30 yr, N = 31)
old (61–90 yr, N = 44)

REO
REC

Scally et al.
[99]

IAPF:
young > old

young (20.3 ± 2.1 yr, N = 37)
old (69.8 ± 4.9 yr, N = 32) REC

Donoghue et al.
[72]

center frequency:
young > old

young (20–30 yr, N = 17)
old (60–70 yr, N = 14) REO

Aurlien et al.
[103]

peak frequency:
increase until 20 yr 0–100 yr (N = 4651) REC

Chiang et al.
[96]

peak frequency:
younger > older 6–86 yr (N = 1498) REC

Cesnaite et al.
[59]

IAPF:
decrease

LIFE–Adult DB
(40–79 yr, N = 1703) REC
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Table 2. Cont.

Measures Study Main
Results

Subjects
(Age Range (yr), Numbers (N))

Eyes
Condition

Alpha
reactivity

Duffy et al.
[35] decrease 30–80 yr (N = 63) REO

REC
Könönen et al.

[105] decrease 53 ± 19 yr (N = 54) REO
REC

Marciani et al.
[106] decrease

young (29.9 ± 10.4 yr, N = 21)
old (60.6 ± 5.4 yr, N = 20)

older (78.7 ± 7.3 yr, N = 19)
REC

Gaal
[36] decrease young (21.5 ± 22 yr, N = 23)

old (66.9 ± 3.6 yr, N = 25)
REO
REC

Alpha
power

Tröndle et al.
[57]

absolute power: decrease
relative, adjusted power: increase

adolescence (HBN project)
(5–22 yr, N = 2529)

REO
REC

Babiloni et al.
[108]

power:
young > old

young (18–50 yr, N = 108)
old (51–85 yr, N = 107) REC

Scally et al.
[99]

absolute power:
young > old

young (20.30 ± 2.06 yr, N = 37)
old (69.75 ± 4.91 yr, N = 32) REC

Knyazeva et al.
[102]

higher alpha rhythm
(more distributed) 45–81 yr (N = 32) REO

REC
Donoghue et al.

[72]
aperiodic adjusted-power:

young > old
young (20–30 yr, N = 17)

old (60–70 yr, N = 14) REO

3.2.3. Alpha Power

Compared to the two age-dependent properties of the alpha rhythm, peak frequency
and reactivity, the effect of aging on alpha power is more controversial, as it depends
on different methods of calculating alpha power. Alpha power is usually calculated
as the mean of absolute or relative powers and is often normalized by a logarithm or
other transformations. To obtain a more reliable measure of individual oscillations, some
analytical methods for calculating EEG spectral power have evaluated the individual power
of the oscillatory rhythm after the elimination of the aperiodic component by additional
signal processing. Depending on the power calculations, the resulting correlations with
aging are inconsistent [93]. Similar to alpha peak frequency and alpha reactivity, the
relationship between alpha power and aging is not linear across the lifespan; therefore, the
ages of the participants’ groups must be considered. On the individual spectral power of
EEG rhythms associated with aging, the alpha rhythm highly reflects the processes of the
physiological development of the brain, such as growth, maturation, and decline [64,78,102].
Alpha power in adolescent and middle-aged groups has been reported to be lower than
that in infant and early young groups [57,109,110]; however, it is higher than that of the
old group [108]. In a concise review of alpha and theta oscillations, Klimesch succinctly
stated that upper alpha power increases from early childhood to adulthood, but gradually
decreases later in life [93]. Similarly, several studies have addressed the power or magnitude
of the alpha rhythm, which is mainly distributed in the posterior regions and decreases
with physiological aging [18,64,72,97,108]. Babiloni et al. indicated that alpha power in
the occipital areas, which is spatially specified by low-resolution brain electromagnetic
tomography (LORETA), linearly decreased with age in a cohort of young (18–50 years,
N = 108) and older (51–85 years, N = 107) participants [108]. Donoghue et al. compared
the difference in alpha power between younger and older adults in conditions with two
types of alpha powers calculated using the FOOOF algorithm. They pointed out that the
inclusion of age-related aperiodic changes exaggerated the effect of aging on the magnitude
of alpha power [72]. Several EEG studies have consistently shown a linear increase in
relative or aperiodic-adjusted alpha powers with increasing age from 5–22 [57], 8–12 [109],
and 5–12 years [111].
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3.3. Beta Power

The beta rhythm is an oscillatory rhythm that generally ranges between 12 and 30 Hz,
with an onset at approximately 12–13 Hz. The “sensorimotor rhythm” [84] is closely
associated with motor activity in the body. It is widely adopted in brain–computer interface
(BCI) research, where it enables the control of machines through imagery or voluntary
modulation of movement [112]. In addition, the beta rhythm is considered a rhythm that
indicates the state of equilibrium of neural activity in the brain, as it is often observed in
stable postures, while it disappears during movement [113]. For these reasons, this rhythm
is closely associated with processes involving executive control of movement [113], such as
in Parkinson’s disease [114,115], and serves as a significant marker for arousal processing,
as observed in conditions such as ADHD [116,117]. In studies analyzing BOLD and EEG
signals, beta power has been reported to have strong associations with a few different
brain networks, including positive correlations with a resting state and self-referential
brain network activity and negative correlations with dorsal attention network activity [38].
Similarly, in a study by Laufs et al., while not visible in the 13–16 Hz range, beta rhythm
activity in the 17–23 Hz range was found to exhibit significant characteristics of the default
mode network, which aligned with the distribution of task-independent deactivations [118].

Several rsEEG studies have also examined the effects of aging on beta rhythms
(Table 3). Although there are some contradictory findings, the consensus is that beta
power tends to increase with age. For example, using a young group (average age approx.
30 years, N = 21) as a control group, the researchers examined two older groups: one aged
50–69 years (old, N = 20) and the other aged 72–86 years (older, N = 19) by measuring the
rsEEG of the central and occipital regions [106]. They calculated and analyzed the relative
power in different frequency bands, finding a significant difference was observed in the
beta rhythm in the range of 13–19.5 Hz and no significant differences between the young
and old groups in other frequency bands. In the older group (50–86 years, N = 39), the
beta power showed a linear correlation with age and a linear increase with a correlation
coefficient of about 0.55 [106]. Stacey et al. analyzed and compared the REO and REC EEG
between a young group aged 18–30 years (N = 31) and an older group aged 61–90 years
(N = 44). They reported a statistically significant increase in the occipital beta power and a
decrease in the IAF of the global area in the older group [23]. Similarly, a study targeting
40 healthy participants aged 6–65 also found a linear increase in the relative beta power
in the frontocentral area with advancing age [119]. Using the BOSC method, one study
investigated the relationship between valid spectral powers in relation to age and found
that only beta power, which was not seen in other bands in the ≥12 Hz range, showed
an increase in the older group (60–74 years, N = 12) compared to the younger group
(18–25 years, N = 16) [100]. In contrast to these results, however, a study comparing a
relatively small group of 25 people, with an average age of 23 and 70 years in the young
and older groups, respectively, found a significant reduction in absolute beta power in the
midline and occipital areas in the older group [62]. Interestingly, a recent study focused on
the variability of the beta rhythm and not on performance. The authors analyzed the rsEEG
signals in LEMONDB and reported that the variability of the beta rhythm amplitude across
temporal regions increased with aging [46].

Table 3. Review of age-related delta and beta rhythms measures of resting-state EEG signals.

Measures Study Main
Results

Subjects
(Age Range (yr), Numbers (N))

Eyes
Condition

Beta
power

Marciani et al.
[106]

relative power:
younger < old

young (29.9 ± 10.4 yr, N = 21)
old (60.6 ± 5.4 yr, N = 20)

older (78.7 ± 7.3 yr, N = 19)
REC

Zappasodi et al.
[119]

power:
inverse U-shape with aging

young (16–25 yr, N = 10)
old (25–66 yr, N = 14)

older (66–86 yr, N = 16)
REO
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Table 3. Cont.

Measures Study Main
Results

Subjects
(Age Range (yr), Numbers (N))

Eyes
Condition

Beta
power

Caplan et al.
[100]

(BOSC) power:
young < old

young (18–30 yr, N = 16)
old (60–74 yr, N = 12)

REO
REC

Wang et al.
[17]

relative power:
young < (middle-age, older)

young (22 ± 3 yr, N = 16)
middle-age (45 ± 6 yr, N = 16)

older (66 ± 6 yr, N = 16)
REO

Al Zoubi et al.
[53]

relative power:
increase

T–1000 DB
(mean age: 34.8 yr, N = 468) REO

Stacey et al.
[23]

power:
young < old

young (18–30 yr, N = 31)
old (61–90 yr, N = 44)

REO
REC

Delta
power

Babiloni et al.
[108]

power:
young > old

young (18–50 yr, N = 108)
old (51–85 yr, N = 107) REC

Slow wave
(0.5–7.5 Hz)

Whitford et al.
[32]

power:
decrease 10–30 yr (N = 138) REC

3.4. Other Spectral Powers—Delta, Theta, and Gamma Rhythms

Compared to the characteristics of the alpha and beta rhythms described above,
fewer studies have found statistically significant correlations between age and the spectral
measures of the delta, theta, and gamma rhythms. Regarding the delta rhythm, one
EEG study, which analyzed the REC signal by the LORETA technique, reported that the
young group (18–50 years, N = 108) showed a higher delta power in the occipital regions
compared to the older group (51–85 years, N = 107) [108]. Another study on the age-
related relationship between EEG spectral parameters and gray- and white-matter volume
reported a significant decrease in the absolute power of slow-wave (0.5–7.5 Hz) in the old
(51–85 years, N = 107) group compared to those of the young (18–50 year, N = 108) [32].
Finally, to our knowledge, no study has found statistically significant associations between
gamma rhythms in rsEEG signals and aging in healthy groups. Although it was not a resting
state, a study focusing on 32 Hz steady-state visual evoked potentials (SSVEPs) showed a
decrease in the gamma power of SSVEP with age in a large group of 236 participants [120].

4. Nonlinear Neural Dynamics

As an important analytical approach to an EEG time-series signal, nonlinear analysis
characterizes the temporal and spatial dynamics in a sequence of EEG data treated as
the evolution of an isolated point, called the state vector, over time in phase space. The
trajectory of the state vector in a particular coordinated dimension leads to specific temporal
and spatial dynamics that can be quantified as a set of nonlinear measurements. A variety
of nonlinear techniques have been proposed to extract informative nonlinear dynamics
reliably and efficiently by using the underlying specific concepts of dynamical properties,
such as complexity, predictability, stability, synchronization, and recurrence, in phase
space [21,121]. Regarding the relationship between aging and EEG analysis, various
types of nonlinear EEG measures have been proposed to examine the effects of aging on
individual measures across the lifespan or to distinguish a particular group across multiple
age groups, for example, young vs. older participants. Several types of measurements, such
as fractal dimension (FD) [119,122] or entropy-based complexity such as approximation
entropy (ApEn) [123], sample entropy (SampEn) [124], and multiscale entropy (MSE) [125],
are mainly considered age-related traits (Table 4). Several studies on age-related neural
activities in the brain have focused on entropy-based spatial and temporal complexity
measures [25,126]. The most well-known theory is that the loss of complexity is associated
with aging and disease [127]. According to this hypothesis, physiological aging leads to
a general loss of complexity in health dynamics, which impairs the ability to adapt to
physiological stress. Based on these findings, complexity measures are good indicators for
the assessment of age-related pathological conditions [25].
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4.1. Fractal Dimension

Theoretically, the fractal dimension refers to the minimum number of fractal coor-
dinates required to organize the EEG signals of the time series into a sequence of state
vectors in phase space [128–130]. It indicates the spatial complexity in a nonlinear dynamic
system; therefore, a higher FD value indicates a higher complexity in the corresponding
EEG time-series signals [128]. Two interesting studies on rsEEG signals have reported that
the FD value has an inverse U-shaped relationship with the lifespan [119,122]. This means
that it increases slightly in adulthood and then decreases significantly with increasing age.
These studies examined the value of homologous areas of interhemispheric symmetry
(HArS), which are higher when the values of FD in the right region are relatively higher
than in the corresponding left region and showed greater asymmetry in older individu-
als. Although there are differences in the most significant frontal [119] and parietal [122]
regions, the patterns of HArS are the same as those of left-higher-than-right FDs in older
participants. FD has also been used as an informative feature in ML-based models to
predict age from rsEEG signals [53]. In this study, the authors attempted to develop the best
models by comparing the performance of several ML-based classifiers with five sets of EEG
features computed from spectral, functional, and nonlinear analyses. The FD corresponds
to important nonlinear features for age prediction [53].

Table 4. Review of age-related nonlinear measures of resting-state EEG signals.

Measures Study Main
Results

Subjects
(Age Range (yr), Numbers (N))

Recording
Condition

Fractal
dimension

Zappasodi et al.
[119]

fractal dimension:
increase (<20 yr)
decrease (>50 yr)

young (16–25 yr, N = 10)
old (25–66 yr, N = 14)

older (66–86 yr, N = 16)
REO

Smits et al.
[122]

fractal dimension:
inverse U-shape with aging

healthy control
(20–89 yr, N = 41) REC

Entropy

Hogan et al.
[124]

sample entropy:
young > old

young (21.7 ± 3.1 yr, N = 20)
old (73.6 ± 4.1 yr, N = 17)

old declined (73.3 ± 4.7 yr, N = 18)

REO
REC

Alu et al.
[123]

approximate entropy:
young < old

young (24.7 ± 0.5 yr, N = 36)
old (70.1 ± 0.9 yr, N = 32) –

Multiscale
entropy

Takahashi et al.
[125]

multiscale entropy:
young > old

young (29.2 ± 3.8 yr, N = 13)
old (64.5 ± 4.2 yr, N = 15) REC

McIntosh et al.
[131]

sample entropy:
young > old

young (22 ± 3 yr, N = 16)
middle-age (45 ± 6 yr, N = 16)

old (66 ± 6 yr, N = 16)

auditory,
visual

stimulus

Waschke et al.
[75]

weighted-permutation entropy
neural irregularity: increase
neural variability: decrease

19–74 yr
(N = 19)

auditory
stimulus

4.2. Entropy-Based Complexity

ApEn, proposed by Pincus [132], is used to quantify the degree of complexity within
a time-series signal by measuring the regularity of a dynamic system coordinated by the
corresponding signal. Compared to other complexity measures, such as the correlation
dimension or the Lyapunov exponent, ApEn has the advantage of robustness, as it can
measure more noise or smaller sample sizes by accepting a lower resolution in phase
space [25]. However, ApEn tends to overestimate the level of regularity and give inconsis-
tent results. To compensate for these drawbacks, SampEn was proposed by Richman and
Moorman [133]. Both ApEn and SampEn are based on the same principle of determining
the regularity of a time-series signal based on the frequencies of similar patterns in phase
space. Regarding the entropy-based complexity measures with aging, one EEG study exam-
ined the significant difference in sample entropy across three groups of participants, young
(21.7 ± 3.1 years, N = 20), older control (73.6 ± 4.1 years, N = 17), and older (73.3 ± 4.7 years,
N = 18) adults, during four types of EEG recording sessions, namely REC, REO, memory
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encoding, and memory recognition [124]. Young adults showed a pronounced hemispheric
asymmetry on the SampEn, with a higher SampEn in the right temporal and left parietal
regions. When looking at the characteristics of EEG-complexity asymmetry in the temporal
region, the statistical difference between the right and left areas was significant in the young
group and borderline significant in the older group [124]. Another recent study investigated
the effect of aging on ApEn in the rsEEG signal acquired from two age groups, young
(24.7 ± 0.5 years, N = 36) and old (70.1 ± 0.9 years, N = 32) adults. This study showed
that a higher ApEn (higher complexity) was observed in the central, parietal, and occipital
areas in the old group, indicating less cerebral connectivity in aging processes [123]. In
contrast to the loss of complexity theory, both entropy-based complexity studies on aging
have shown that a higher complexity is observed in the younger group than in the older
group, although there are some corresponding areas.

4.3. Multiscale Entropy

Like ApEn and SampEn, MSE was also developed to estimate the complexity of time-
series signals. However, unlike entropy-based complexity measures, MSE is fundamentally
based on multiple time scales in a signal, which can be expressed as fine- or coarse-grained
sequences [134,135]. The use of multiple coarse-grained sequences enables the detection
of memory or history effects in time series across multiple time scales. It enables the
distinction between noise and meaning complexity and captures long-range temporal
correlations in the dynamics [134,135]. Based on information-processing theory, a series of
EEG and MEG studies focused on the relationship between resting-state neural dynamics
and behavioral outcomes in cognitive tasks and the effects of aging on the properties of
dynamic systems. To accomplish this, these studies mainly used rest–task–rest experimental
paradigms and employed MSE to measure the complexity or variability in neural signals
during pre- and post-rest conditions. Takahashi et al. recruited 28 participants, including
13 young (29.2 ± 3.8 years) and 15 older (64.5 ± 4.2 years) healthy individuals, to perform
the intermediate task as a passive response on photic stimulation (PS). The EEG signals
recorded before and after PS in the resting state were used to calculate the MSE, and
significant changes in the MSE were examined in both age groups. The difference in MSE
between the two groups was not statistically significant; however, significantly higher
MSE after PS was observed only in young participants. Based on the above evidence, this
study supports the hypothesis that a loss of complexity and reduced functional response
is observed with increasing age [125]. McIntosh et al. obtained EEG and MEG data from
individual cognitive tasks. In the EEG session, individuals belonging to three age groups,
young (22 ± 3 years, N = 16), middle aged (45 ± 6 years, N = 16), and old (66 ± 6 years,
N = 16), participated in visual perceptual matching and delayed-match-to-sample tasks.
While the EEG signals were not recorded in a pure resting state that were built into 0.5–2.0 s
epochs with 0.5 prestimulus, the neural complexity measured by the MSE in those signals
revealed two interesting findings related to aging: entropy increased at fine scales and
lowered at coarse scales with increasing age. The authors interpreted this as evidence that
aging leads to a neural shift from long-range connections to local processing [131]. As an
extension of the McIntosh et al. study, Wang et al. intensively investigated the complexity of
2.5 s EEG signals with eyes open during the resting state before and after the task in groups
of young, middle-aged, and older subjects [17]. The neural complexity in the EEG signal
was calculated using MSE and could be divided into two temporal scales: fine (2–16 ms)
or coarse (40–50 ms). Partial least squares (PLS) analysis assessed the trend or difference
in the two temporal scales of MSE with aging groups and revealed age-related changes
in resting-state dynamics across the MSE. Consistent with the findings of McIntosh et al.,
young participants had less MSE on the fine scale and more MSE on the coarse scale
in the parietal cortex and posterior cingulate compared to the older adult group. This
supports the hypothesis that aging leads to a shift from the distributed neural population
to local neural processing in posterior areas [17]. Finally, one study on neural noise in the
neocortex associated with information processing used weighted-permutation entropy
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(WPE) to measure neural irregularity (complexity and variability) in EEG signals during
prestimulus durations. It investigated the effect of complexity in ongoing EEG signals on
sensory encoding and perceptual decisions [75]. By assessing the intraclass correlation
coefficients of the pre-stimulus WPEs of healthy participants (19–74 years, N = 19), this
study found that the participants’ age correlated positively with mean WPE, with EEG
variability decreasing from trial to trial and EEG frequency spectra becoming flatter. It
was emphasized that the measurement of neural activity during ongoing activity plays an
important role in the prediction of sensory and perceptual decisions (neural state) and the
changes of these nonlinear dynamics in aging (neural traits) [75].

5. Spatial Topography
5.1. Brain Connectivity

Brain connectivity analysis characterizes the functional (unidirectional) and effective
(bidirectional) connections in the brain using multidimensional neurophysiological data,
such as fMRI and EEG signals [20,26]. For decades, numerous studies on brain connectivity
have investigated the specific characteristics of pathological and psychological disorders
and various cognitive states in the brain by evaluating meaningful measures of brain
properties based on graph theory [136–140]. Before presenting the effects of aging on EEG
connectivity during the resting state, we address overall resting-state fMRI connectivity
in the context of aging. Indeed, fMRI studies have focused on examining BOLD signals
recorded in the resting state to reveal changes in certain spatial and functional features
with age. There are two well-known hypotheses related to aging: the hemispheric asym-
metry reduction in older adults (HAROLD) [141] and the posterior–anterior shift in aging
(PASA) [104]. In the HAROLD model, older adults showed a significant reduction in func-
tional hemispheric lateralization (more homogenous and more bilateral) in the prefrontal
cortex (PFC) during task performance compared to younger people. In the PASA model,
older adults tend to show less activation of posterior regions and increased activation of
anterior regions. This suggests that older people have a frontal over-engagement and a
decline in the functional integrity of the posterior regions. The HAROLD model is strongly
associated with episodic memory encoding and retrieval, working memory, perception, and
inhibitory control [141]. The PASA models are not restricted to a specific cognitive function
and can potentially affect activity at rest [142]. With regard to the DMN and its relation-
ship to other networks, a decrease in large-scale connections related to anterior–posterior
connectivity was observed in the DMN with increasing age, which can be attributed to
disruptions in white-matter integrity [143]. In addition, reduced segregation in the sen-
sorimotor system has been associated with aging. Aging has been reported to lead to a
decrease in intra-system correlations and an increase in inter-system correlations [144]. In
contrast to the spatial and anatomical structures of the BOLD signals, the EEG connectivity
analysis is based on the temporal and spectral dynamics of the multidimensional signals.
For simplicity, we divided a study of EEG connectivity related to aging into spectral and
nonspectral connectivity, which were examined within a specific frequency band before
the connectivity measurements were made (Table 5). For example, the analysis of phase
synchrony and its different variants, namely, phase-lag index (PLI), mean phase coherence
(MPC), and cross-frequency coupling (CFC), were restricted to specific frequency bands of
interest, as these analyses are mathematically based on the degree of phase synchronization
within or between predefined narrow frequency ranges across multiple EEG signals. De-
rived from the cross-spectral density matrix resulting from the multivariate autoregression
(MVAR) model across multiple EEG signals, other methods of spectral connectivity, such as
spectral coherence, spectral Granger causality, and partial directed coherence, have been
widely used to characterize functional and effective connectivity in the brain.

Previous studies have addressed the relationship of aging to alpha and beta rhythms
in the context of spectral connectivity in aging humans. Knyazev et al. investigated the
differences in the number of important hubs between younger (21.8 ± 3.0 years, N = 76)
and older (64.3 ± 6.7 years, N = 70) participants. To this end, they performed a phase
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synchronization analysis of REO and REC EEG signals to individually construct five types
of functional connectivity within the delta, theta, alpha, beta, and gamma rhythms and
then identified a group of important hubs in the brain. These experiments showed a
significant decrease in global connectivity and fewer hubs in the posterior alpha and
beta rhythms with increasing age but not in the delta, theta, and gamma rhythms [31].
Moezzi et al. investigated the properties of five connectivity networks corresponding
to the delta, theta, alpha, beta, and gamma rhythms. They used them as input vectors
for a support vector machine (SVM)-based classifier to classify binary age groups as
younger (24.3 ± 6.1 years, N = 22) and older (71 ± 6 years, N = 22) adults with 93%
accuracy in age group classification [145]. In contrast to the findings from the Knayzev
et al. study [31], Moezzi et al. found that, with age, the global connections in the beta
rhythm increased, but those in the delta, theta, alpha, and gamma rhythms decreased. The
most significant decrease in the weight of connections with increasing age was observed
in the posterior regions of the alpha rhythm [145]. In addition, a neurodevelopmental
study found a significant difference in corticocortical and thalamocortical connectivity
between the delta, theta, alpha, and beta rhythms. Using REO and REC signals from
two different age groups of school-aged children (10.1 ± 1.3 years, N = 17) and adults
(25.1 ± 3.8 years, N = 17), the authors compared the differences in directed source-level brain
networks constructed using dynamic imaging of coherent sources and renormalized partial
directed coherence methods [34]. They observed two outcomes. In adults, corticocortical
information flow was observed in all rhythms from parietal to frontal sources, but in
children, it was observed in the opposite direction (from frontal to parietal sources). In
addition, there was unidirectional thalamocortical connectivity (from the thalamus to other
cortical regions) with the alpha and beta rhythms in adults; however, this connectivity was
bidirectional in children [34]. Another study reported that the alpha rhythm is strongly
affected by aging compared to other rhythms [99]. Scally et al. reported that not only is
there a significantly slowed individual alpha peak frequency but also reduced global power
and connectivity in the upper alpha band (10–12 Hz) by comparing different measures of
phase synchronization of REC-EEG signals in the two age groups of older (69.8 ± 4.9 years,
N = 32) and young adults (20.3 ± 2.1 years, N = 37) [99].

In the context of nonspectral connectivity in aging, Petti et al. constructed weighted
and directed connectivity in REO-EEG signals using partial directed coherence based on a
general linear Kalman filter acquired from healthy participants (20–63 years, N = 71) and
individually computed five measures to characterize the corresponding networks: node
strength, characteristic path length, clustering coefficient, (global and local) efficiency, and
weight [146]. Through a correlation analysis of these measures across the lifespan, they
showed that weight, clustering, and local and global efficiency decreased linearly, but
path length increased linearly with aging. They reported that the brain network became
more random with increasing age. Since the accuracy on additional binary classification
tasks was greater than 80% in the young (23.8 ± 1.1 years, N = 20) and middle age groups
(46.1 ± 5.3 years, N = 20), they also established the usefulness of these network measures
in manifesting the effects of aging [146]. Consistent with the findings of Petty et al., a
more recent study also supports the randomly organized network in aging. Javaid et al.
examined the significant differences in network-efficiency matrices computed from REO
and REC EEG signals between middle-aged (50.5 ± 5.8 years, N = 20) and older participants
(71.0 ± 5.5 years, N = 20) and found that aging produces a more random brain network by
demonstrating a significant decrease in node strength, clustering coefficients, and local and
global efficiency in the older adult group [147]. Modularity is one of the most important
network measures for aging. Modularity measures the degree to which a network can be
divided into distinct and relatively unrelated modules, called groups or clusters. Higher
modularity scores indicate a greater division of the network into separate modules, which
generally indicates a well-organized or well-segregated network. In a recent study, the
difference in the modularity index between younger (25–35 years, N = 30) and older
(60–80 years, N = 30) people was examined using the LEMON database [142]. The REO
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and REC EEG signals were localized using the exact low-resolution brain electromagnetic
tomography (eLORETA) method, and two types of functional connectivity across sources
were constructed using a cross-correlation time scale and mutual information (MI). When
comparing the modularity index values of these constructed networks, the authors found
that older people exhibited significantly lower modularity than young adults. In other
words, older people exhibited less-segregated network structures in which different and
unrelated areas were more strongly interconnected. This result is consistent with the
decreasing segregation of the brain network with increasing age.

Table 5. Review of age-related spatial measures of resting-state EEG signals.

Measures Study Main
Results

Subjects
(Age Range (yr), Numbers (N))

Eyes
Condition

Brain
connectivity

Michels et al.
[34]

RPDC (adults):
parieto-occipital → fronto-central

children (10.1 ± 1.3 yr, N = 17)
adults (25.1 ± 3.8 yr, N = 17)

REO
REC

Knyazev
et al.
[31]

Lagged-phase synchronization
number of hubs: young > old

(more random and less connected)

young (18–35 yr, N = 76)
old (51–80 yr, N = 70)

REO
REC

Petti et al.
[146]

Partial directed coherence
efficiencies, path length, clustering, &

global strength: decrease

20–63 yr
(N = 71) REC

Scally et al.
[99]

PLI, WPLI (upper alpha):
young > old

young (20.30 ± 2.06 yr, N = 37)
old (69.75 ± 4.91 yr, N = 32) REC

Moezzi et al.
[145]

imaginary coherence
alpha: young > old
beta: young < old

young (19–37 yr. N = 22)
old (63–85 yr, N = 22) REO

Javaid et al.
[147]

global and local efficiency: decrease
clustering coefficient: decrease

node strength: decrease

middle-age (41–60 yr, N = 20)
elderly (61–84 yr, N = 20)

REO
REC

Perinelli
et al.
[142]

intra-area connectivity:
parietal, temporal: young < old

frontal: young > old

young (25–35 yr, N = 30)
old (60–80 yr, N = 30) from

LEMONDB

REO
REC

EEG
microstates

Koenig et al.
[148]

asymmetric: decrease
symmetric: increase

6–80 yr
(N = 496) REC

Tomescu
et al.
[149]

gender effect (only in old):
microstate C and D

6–87 yr
(N = 179) REC

Zanesco
et al.
[45]

microstate A,B (GEV): young < old
microstate C,E (GEV): young > old
mean duration (all): young < old

young (25–35 yr, N = 153)
old (59–77 yr, N = 74) from

LEMONDB
REC

5.2. EEG Microstates

For whole-brain network properties in multiple EEG signals, an EEG microstate anal-
ysis is crucial to detect temporal changes in a series of global patterns of scalp potential
topographies. Based on the demonstration of the existence of a quasi-stable spatial dis-
tribution system for several milliseconds, all time-series EEG signals can be interpreted
in terms of different patterns of spatial distribution called EEG microstates [150,151]. In
general, EEG microstates were initially constructed using the global field power as the root
mean square of the squared potential differences at all electrodes divided by the number of
electrodes and identified as a fixed number of microstates by a k-means clustering analy-
sis. For decades, there have been some questions regarding the possible number of EEG
microstates required to optimally represent the majority of EEG signals with only a few
topographies. Numerous studies have reported that only four clustering maps can explain
the proportion of global variance of 64–84% [152]. These four dominant microstates were
labeled microstates A, B, C, and D [19]. The spatial properties of these four microstates
were defined as the right-frontal left-posterior (microstate A), left-frontal right-posterior
(microstate B), midline frontal–occipital (microstate C), and midline frontal (microstate D)
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topographies. The characteristics of these microstates were represented by various mea-
sures, such as average duration, frequency of occurrence, coverage, global variance, and
the transition probability of a particular microstate to others.

Unsurprisingly, previous rsEEG studies focused on the relationship between EEG
microstate measurements and aging (Table 5). Koenig et al. extracted the four microstate
class topographies in the REC EEG signals of recruited participants of all ages (6–80 years,
N = 496) [148]. They demonstrated the significant interactions of microstates with age
and developmental stage by eliciting that the asymmetric microstates (belonging to mi-
crostates A and B) diminished while symmetric microstates (belonging to microstates C
and D) increased with age. Moreover, the changes in these patterns differentiated the four
distinct developmental stages: childhood (<12 years), early adolescence (12–16 years), late
adolescence (>16 and <21 years), and adulthood (>21 years) [148]. Another EEG microstate
study by Tomescu et al. reported significant differences in the dynamics of these four EEG
microstates in relation to sex and age by comparing several parameters for each microstate
in the REC-EEG signals of participants of all age groups (6–87 years, N = 179) [149]. Not
EEG microstates A and B, but EEG microstates C and D have the primary effect and interac-
tion with sex and age accompanied by developmental stages [149]. A recent study explored
the meaningful correlates of temporal dynamics of rsEEG microstates using the LEMON
database [45]. They selected five representative EEG microstates of global field power
using k-means clustering and extracted three parameters: the global explained variance,
mean microstate duration, and frequency of occurrence of each microstate. Regarding
the main effect of age, older participants had a greater globally explained variance (GEV)
for microstates A and B and a lower GEV for microstates C and E. In addition, this study
showed that older adults tended to have a long duration and low occurrence of microstates,
which is consistent with the results of the two studies mentioned above [148,149].

6. State-of-the-Art Signal Processing and AI Models
6.1. Riemannian Manifold

Mathematically, the overall procedure of EEG analysis, from obtaining raw signals
to finally deciding on specific goals, is deeply associated with a series of linear operations
of the matrix [153]. For example, the raw EEG signals recorded at the scalp sites are
linked to the EEG sources in the brain by a lead-field matrix, which is calculated linearly
by solving the inverse problem. A variety of spatial filters, which are useful tools to
improve the signal-to-noise ratio during EEG preprocessing, are theoretically based on
linear operations between time-series signals and trained weights of spatial filters. Several
linear classifiers, such as the Naive Bayes classifier, linear discriminant analysis, and
SVM, have been used extensively for BCI applications. From the perspective of linear
operations, some EEG studies have focused on the advantage of manipulating informative
EEG features on the Riemann manifold for the classification and detection of empirical data.
In particular, the covariance structure of multichannel EEG signals, such as covariance
and cross-spectral matrices, has been widely used as one of the most useful EEG features
that enable the visualization of informative spectral features in single EEG signals and
the construction of brain networks in specific frequency bands derived from functional or
effective connectivity across multichannel EEG signals. Due to the property of symmetric
positive definition in covariance matrices, it can be used as a set of samples, features, and
vectors on a Riemannian manifold satisfied with some properties of distance (non-negative,
symmetric, and triangular inequality) in the metric distance space. Under these conditions,
all information on the Riemannian manifold at a given point can be invariantly projected
onto the tangent space (Euclidean space) using a logarithmic map [154,155]. In contrast to
statistical source localization or unsupervised spatial filtering approaches that explicitly
aim to generate or infer source-level neural activity in the brain from sensor-level electrical
activity on the scalp, manipulation of covariance features in the Riemann manifold is
directly linked with the linear operation associated with regression, classification models,
and signal processing [9].
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For example, Riemannian manifolds are of interest in EEG-based BCI studies [154–156].
Barachant et al. developed a Riemannian-based kernel algorithm to classify binary or
multiclass motor imagery trials. In this Riemannian-based kernel, half vectorizations of
the covariance matrices obtained from the EEG signals of the MI trials were projected onto
the tangent space at a given reference point as the geometrical mean on the Riemannian
manifold. A linear SVM classifier used these EEG features processed on the kernel and
performed better than the common spatial pattern method, the most popular spatial
filtering method in BCI applications [154,156]. Recently, two interesting EEG studies
have used EEG processing on the Riemannian manifold to predict a person’s age [9,50]
(Table 6). First, Sabbagh et al. reported the superior performance of the Riemannian
manifold for predicting the age of a participant by comparing three types of regression
models (upper, Riemannian, and source power comodulation) in combination with the
optimal tuning of multiple hyperparameters and functional options. To do this, a large-
scale EEG database, which is named the TUH database and was introduced in Section 2.1.
in this review, was used. The least mean absolute error (MAE) of age prediction in the
Riemann regression models was consistent with the results of another large-scale MEG
database [9]. Second, an international EEG research consortium studies the age-dependent
developmental trajectories of the brains of healthy and diseased individuals [50]. To
achieve this goal, they focus on the proper definition of descriptive parameters (DPs) that
characterize the information on anatomical and physiological features in the brain and
investigate the effect of age on these DPs and age prediction using the DPs. As one of
the best examples of age-dependent DPs, the cross-spectral matrix was primarily adopted
due to the advantage of EEG manipulation on the Riemannian manifold. In short, a
cross-spectral matrix can be defined as the product of spectral transformations using a
multi-tapper approach or Fourier and wavelet transforms of multiple time-series signals
so that it can be used to identify the spectral relationship between them. As a form of
cross-covariance in the frequency domain, the cross-spectral matrix has a symmetric and
positive-definite Hermitian property that enables the manipulation of the Riemannian
manifold. In this study, a new DP, called the HarMNqEEG norm, was defined by projecting
these cross-spectral matrices onto the Riemannian manifold in combination with the z-
transform for age-independent brain-development deviations. They created a large-scale
EEG database with data from nine countries and extensively studied the relationship
between EEG norms and aging.

6.2. CNN/RNN Models

To develop reliable models for predicting a person’s age from rsEEG, recent stud-
ies have actively attempted to adopt state-of-the-art ML or DL algorithms to reveal the
statistical relationship of lifespan aging with a bundle of individual EEG features and
distinguishing specific age groups (Table 6). In line with other AI research fields, previous
regression models and classifiers for aging in EEG signals were originally based on vari-
ous decision trees or artificial neural networks (ANN). Several famous tree-based models
can be learned using ensemble methods, such as bagging, boosting, and stacking. These
include random forest and gradient boosting algorithms and their variants. In ANN, the
convolution neural network (CNN) and recurrent neural network (RNN) underlie several
previous DL-based models related to the aging of EEG signals. Van Leeuwen et al. adopted
the architecture of CNN from EEGNet, which is one of the famous CNN-based classifiers
for BCI application [157], to predict the stage of age and sleep [158]. The 1 min 18-channel
EEG signals, which are sourced from a database of 8522 EEG signals of patients aged
18–85 years, were passed through the CNN-based classifiers and resulted in the classifica-
tion of three age groups (18–29, 30–39, and 40–49 years) with an area under the receiver
operating characteristic (AUC) performance of 0.924 [158]. Using the Tulsa-100 database,
Al Zoubi et al. developed the brain age gap estimation (BrainAGE) model, which consists
of a general linear model to combine the weights from a set of five different regression
algorithms to estimate age from EEG signals. This model used a set of five EEG features as
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the input and resulted in an age-estimation performance with a correlation of 0.6 across
the lifespan [53]. Age predictions based on CNN models have also become popular. In a
recent study, age prediction was performed on the TD-Brain EEG database with 1346 EEG
sessions (1274 participants with a mean age of 38.67 ± 19.21 years) by using CNN-based
models with 5 s 26-channel EEG signals during both REO and REC. The authors reported
that the proposed model achieved an MAE of 5.96 years between the actual and predicted
age and emphasized the central role of the frontocentral area in age prediction [159].

In the RNN-based model, a recent EEG study intensively employed long short-term
memory (LSTM)-based approaches for age prediction [160]. As an RNN variant, the LSTM
method avoids the main drawback of RNN architecture, known as the vanishing gradient
problem, which results in insufficient weight updates. Kaushik et al. (2019) employed a
hybrid deep bidirectional LSTM (BLSTM)-LSTM network to classify six age groups from
6–55 years [160]. The REC-EEG signals recorded by the smart EEG device (Emotive Epoc)
were first filtered within the five spectral bands using the discrete wavelet transform (DTW),
and these filtered signals were used in the stacked deep BLSTM-LSTM model. Among
these, the beta rhythm (12–30 Hz) resulted in the highest classification accuracy of 93.69% in
the six age groups. In contrast to the RNN-based model, the same emotive EEG dataset was
used in the study by Kaushik et al. in other age-prediction studies [161]. Like the Kaushik
et al. study, Kaur et al. also used the same six age groups and performed the same DWT
to filter the five EEG rhythms. Compared to the SVM and ANN classifiers, the random
forest classifier performed best in classifying the six age groups with an accuracy of 88.33%.
Among the five bands, the beta rhythm was the most informative for age prediction. Based
on the evidence of the usefulness of the beta rhythm in the above two studies, a more recent
study also focused on the beta rhythm to perform regression analysis and classify the six
different age groups, which consisted of patients aged ≥30 years, by re-sampling for a
more balanced dataset from a total of 564 participants of TUAB. Compared to several RNN
variants, they showed that BLSTM models with the beta rhythm as an input performed
best in age classification [7]. Unlike other studies that have suggested spectral properties
associated with age, these three LSTM studies have consistently examined the feasibility of
beta rhythm associated with age.

6.3. Self-Supervised Learning Model

From the perspective of model training in ML or DL approaches, most of the age-
related regression or classification models presented in this review belong to supervised
learning. In supervised learning, the procedure of model training for high performance, in
which the optimal weights of all corresponding hidden layers in the network are determined
by iteratively updating these weights from the initial random parameters, requires a large
set of labeled training data. However, creating a reliable training dataset that is labeled or
annotated by experts is expensive and time consuming. Moreover, since model training
from initial random weights in supervised learning cannot guarantee optimal weights for
high performance, alternative training methods that do not require labeled datasets have
been proposed to reduce the shortcomings of supervised learning. As an unsupervised
learning method, self-supervised learning (SSL) models have gained acceptance in various
practices and research areas of DL models. Recently, sophisticated studies have been
conducted in EEG research to develop regression and classification models for various
purposes [162–164].

Recent EEG studies have adopted the SSL approach to perform two individual classifi-
cation tasks, which correspond to the discrimination of sleep stages (five classifications) and
the detection of normal EEG (two classifications) [43] (Table 6). To achieve this, the authors
trained two types of CNN-based classifiers by using the SSL approach, which consists
of two different tasks: pretext and downstream. A pretext task is an auxiliary task used
to generate surrogate signals using unlabeled data. It is used to pre-train a deep neural
network using a large dataset without much annotated data. The network learns to solve
these pretext tasks, allowing it to learn meaningful representations and features from the
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data. These learned representations can then be transferred and fine-tuned for downstream
tasks for which only a small amount of labeled data is available. Downstream tasks refer
to actual tasks or applications to which the learned representations of the pre-trained
model are transferred and fine-tuned. After pre-training the model on pre-wall tasks with
unlabeled data, the representations learned by the model can be used as a starting point
for various supervised or unsupervised tasks where labeled data is limited or expensive
to obtain. The main advantage of SSL is that the model can learn useful representations
from a large amount of unlabeled data and transfer this knowledge to downstream tasks,
which often contain relatively few labeled samples. To pre-train the models, three types
of default tasks were performed: relative positioning, temporal shuffling, and contrastive
predictive coding to generate a bundle of surrogate datasets to solve artificial problems. The
pretrained CNN model based on StagerNet was applied to a specific classifier for five sleep
stages in the Physionet EEG database and successfully achieved a maximum performance
of 72.3%. Another CNN classifier based on ShallowNet classified abnormal and normal
EEG signals in the TUAB database with an accuracy of 79.4% [43]. Extending the study by
Banville et al., Wagh et al. proposed EEG classifiers based on the Resnet-18 backbone in
SSL for three specific goals [8]. Among them, the binary classification for young (<45 years)
versus old (>45 years) age groups was examined using the TUAB and LEMON databases.
Pretext tasks consisted of three types of SSL tasks: hemispheric symmetry (HS), behavioral
state estimation (BSE), and age-contrastive (AC) tasks. Expressed in individual terms, the
HS pretext exploits the properties of hemispheric symmetry across real and augmented
datasets. The BSE bias utilizes the relationship between delta and beta powers, and the
AC tasks use the contrastive triplet defined by the difference between the young and old
age groups. Compared to the combination of pretext tasks and CNN-based models, the
Resnet-18 backbone model trained in both the BSE and AC pretext tasks showed the best
performance of 0.987 AUC values for binary age classification in the LEMON database.
This study is a good example of a state-of-the-art SSL model effectively used for processing
EEG signals and age prediction.

Table 6. Review of artificial intelligence methods for age estimation by resting-state EEG signals.

Study Subjects
(Age Range (yr), Numbers (N))

Key
Methods

Best Results
(Classification, Regression)

Sabbagh
et al. [9]

TUAB DB
(10–95 yr, N = 1385)

Covariance matrix
Riemmannain

MAE: 8.21 yr
(see the Figure 5 in [9])

Li et al.
[50]

1564 EEGs from 9 countries
(including CHBMP DB)

HarMNqEEG
Riemmannain -

Van Leeuwen
et al. [158]

18–85 yr
(N = 8522) CNN AUC: 0.924

(classification across 3 age groups)
Al Zoubi et al.

[53]
T–1000 DB

(mean age: 34.8 yr, N = 468) 5 ML models MAE: 6.87 ± 0.69 yr
RMSE: 8.46 ± 0.59 yr

Engemann
et al. [6]

LEMON DB (20–77 yr, N = 227)
CHBMP DB (18–68 yr, N = 282)
TUAB DB (10–95 yr, N = 1385)

5 approaches
LEMON DB (MAE: 7.75 ± 1.78 yr)
CHBMP DB (MAE: 6.48 ± 0.60 yr)
TUAB DB (MAE: 7.75 ± 0.56 yr)

Khayretdinova
et al. [159]

TD-Brain DB
(5–88 yr; N = 1274) CNN MAE: 5.96 ± 0.33 yr

Kaur et al.
[161]

6–55 yr
(N = 60) Random Forest Accuracy: 0.883

(classification across 6 age groups)
Kaushik et al.

[160]
6–55 yr
(N = 60)

Deep
BLSTM-LSTM

Accuracy: 0.937
(classification across 6 age groups)

Jusseaume
et al. [7]

TUAB DB
(2–88 yr, N = 388) BLSTM Accuracy: 0.90; MAE: 6.5 yr; RMSE: 9.1 yr

(classification across 6 age groups)

Banville et al.
[43]

TUAB DB
(10–95 yr, N = 1385) SSL

Not aging prediction
classification accuracy: 0.794

(between normal and abnormal EEG)
Wagh et al.

[8]
TUAB DB (10–95 yr, N = 2328)

LEMON DB (20–77 yr, N = 216) SSL AUC: 0.872 (TUAB), 0.987 (LEMON)
(classification across young and old)
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7. Conclusions

Aging significantly mediates a variety of characteristics that are reflected in a set of
local or global EEG features based on the linear or nonlinear dynamics of EEG signals.
Although the trend of life-course changes in individual EEG features remains controver-
sial, we can summarize the four important age-related characteristics of rsEEG signals as
follows (Table 7).

First, aging slows the frequency of the alpha rhythm in EEG signals, which has
been closely associated with a decline in cognitive performance and slower information-
processing speed [108,165]. The age-related increase in delta and theta rhythms in senile
diseases with dementia might be quantitatively measured as the decrease in the median,
center frequencies, or individual alpha peak frequency [18,59,99]. Second, aging causes
random EEG signals. However, the meaning of the term randomness should be interpreted
carefully. In this case, it means the flatness of the 1/f noise in the PSD of a single EEG signal,
which is mainly measured as a decline in the aperiodic exponent [76,82]. These patterns con-
sistently show that aging increases background noise and reduces the signal-to-noise ratio,
which consequently interferes with the inhibitory control of neural mechanisms [69,166] re-
lated to pathological diseases, with declines in cognitive and motor performance [68,71,167].
Third, aging hinders the neural efficiency of brain networks that are constructed using
EEG connectivity methods with network dynamics [146,168,169]. Compared with the
well-organized brain networks of young healthy adults with good neural differentiation
and network segregation, which have a high degree of modularity, older adults have a
tendency towards neural inefficiency due to the loss of network segregation with low mod-
ularity [31,170–172]. This evidence indicates that the network connections corresponding to
task-relevant and task-irrelevant regions are gradually ignored with aging, which impairs
cognitive performance [170,173]. Finally, aging evokes a compensatory mechanism fol-
lowed by a deficit in neural structures [174–176]. Consistent with neuroimaging studies, the
fundamental patterns of the bilaterality (HERA) [141] and frontal engagement (PASA) [104]
models in EEG networks have been extensively investigated as important examples of
age-dependent spatial patterns related to compensatory mechanisms. In particular, age-
related EEG asymmetries have been expressed using spectral power or entropy-based EEG
complexity, identifying the significant bilaterality in aging [119,122,141,177].

As described above, most previous studies have focused on investigating the relation-
ship between age-related EEG features with aging to understand the underlying neural
mechanisms. Recently, however, these features have attracted considerable interest as
critical inputs to ML/DL-based models for age prediction and classification. Thus, the
development of reliable descriptive parameters obtained from rsEEG signals measured
with different EEG hardware devices from multiple institutions worldwide aims to en-
able more efficient information transfer and management along with the development
of a reliable age-prediction model. In addition, EEG models recently developed to solve
various issues (related or unrelated to age) require large-scale and complex structures. As
a generative model in the DL domain, the SSL model offers a fundamentally different
approach to traditional classification models based on feature engineering and linear or
quadratic classifiers. In addition to the development of ML/DL-based models, research is
needed on estimating the informative role and importance of individual model features
and, conversely, the use of models in identifying links with the neural mechanism of aging.
As highlighted above, jumping to conclusions without considering the different features of
individual EEG measurements in aging and the age range of interest may lead to erroneous
results or misconceptions regarding outcomes. In the relationship between spectral power
and aging, different selections using absolute or relative power, as well as different types
of normalization transformations, may lead to substantially different or even completely
opposite results. In addition, defining specific age groups by simply using common terms
such as “young” and “older” leads to a hasty conclusion without accounting for cases
where the relationship changes dramatically based on specific age ranges during the period
of neurodevelopment. While research on the relationship between aging and rsEEG signals
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remains unclear, advances are underway in several areas, such as novel algorithms for
improved measurement of spectral power that separate periodic and aperiodic components
for more robust performance, as well as analytical approaches in EEG signals that reconcile
differences between neural activity occurring in sources and EEG signals measured by
sensors by processing in manifold dimensions of the feature domain. Given increasing
societal interest in aging, EEG research is expected to lead to technological advances.

Table 7. Summary of main age-related characteristics and the corresponding relevant evidence.

Age-Related
Characteristics Study Main Relevant Evidence

Slow
rhythm

Stacey et al. [23] peak frequency: young > old
Scally et al. [99] IAPF: young > old

Donoghue et al. [72] center frequency: young > old
Chiang et al. [96] peak frequency: younger > older

Cesnaite et al. [59] IAPF: decrease

Randomness
or

Regularity

Voytek et al. [68] 1/f slope at visual, parietal, frontal: young > old (flatten)
Donoghue et al. [72] exponent, offset at Cz: young > old (flatten)
Pathania et al. [82] exponent at frontal, central, parietal: young > old (flatten)
Cesnaite et al. [59] 1/f slope at fronto-central: decrease (flatten)

Alu et al. [123] approximate entropy at central, parietal, occipital: young < old
Nobukawa et al. [171] complexity of DPS at frontal alpha: young < old

Knyazev et al. [31] number of hubs at posterior: young > old (more random)
Waschke et al. [75] neural irregularity: increase; neural variability: decrease
Hogan et al. [124] sample entropy: young > old

Takahashi et al. [125] multiscale entropy: young > old
McIntosh et al. [131] sample entropy: young > old

Neural
inefficiency

Petti et al. [146] efficiencies, path length, clustering, global strength: decrease
Javaid et al. [147] global, local efficiency, clustering coefficient, node strength: young > old

Knyazev et al. [31] number of hubs at posterior: young > old (less connected)
Perinelli et al. [142] modularity: young > old

Nobukawa et al. [171] interhemispheric connectivity at frontal alpha: young > old
Scally et al. [99] PLI, WPLI (upper alpha): young > old

Spatial
alternation

Michels et al. [34] RPDC: from parieto-occipital to fronto-central
Moezzi et al. [145] imaginary coherence: alpha: young > old; beta: young < old
Perinelli et al. [142] intra connectivity: frontal: young > old; parietal, temporal: young < old
Koenig et al. [148] asymmetric microstates: decrease; symmetric microstates: increase
Zanesco et al. [45] mean duration, microstate A,B: young < old; C,E (GEV): young > old
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46. Kumral, D.; Şansal, F.; Cesnaite, E.; Mahjoory, K.; Al, E.; Gaebler, M.; Nikulin, V.V.; Villringer, A. BOLD and EEG signal variability

at rest differently relate to aging in the human brain. NeuroImage 2020, 207, 116373. [CrossRef] [PubMed]
47. Mahjoory, K.; Cesnaite, E.; Hohlefeld, F.U.; Villringer, A.; Nikulin, V.V. Power and temporal dynamics of alpha oscillations at rest

differentiate cognitive performance involving sustained and phasic cognitive control. NeuroImage 2019, 188, 135–144. [CrossRef]
[PubMed]

48. Bosch-Bayard, J.; Aubert-Vazquez, E.; Brown, S.T.; Rogers, C.; Kiar, G.; Glatard, T.; Scaria, L.; Galan-Garcia, L.; Bringas-Vega, M.L.;
Virues-Alba, T.; et al. A Quantitative EEG Toolbox for the MNI Neuroinformatics Ecosystem: Normative SPM of EEG Source
Spectra. Front. Neuroinformatics 2020, 14, 33. [CrossRef] [PubMed]

49. Valdes-Sosa, P.A.; Galan-Garcia, L.; Bosch-Bayard, J.; Bringas-Vega, M.L.; Aubert-Vazquez, E.; Rodriguez-Gil, I.; Das, S.; Madjar,
C.; Virues-Alba, T.; Mohades, Z.; et al. The Cuban Human Brain Mapping Project, a young and middle age population-based
EEG, MRI, and cognition dataset. Sci. Data 2021, 8, 45. [CrossRef] [PubMed]

50. Li, M.; Wang, Y.; Lopez-Naranjo, C.; Hu, S.; Reyes, R.C.G.; Paz-Linares, D.; Areces-Gonzalez, A.; Hamid, A.I.A.; Evans, A.C.;
Savostyanov, A.N.; et al. Harmonized-Multinational qEEG norms (HarMNqEEG). NeuroImage 2022, 256, 119190. [CrossRef]
[PubMed]

51. Mayeli, A.; Al Zoubi, O.; Henry, K.; Wong, C.K.; White, E.J.; Luo, Q.; Zotev, V.; Refai, H.; Bodurka, J. Automated pipeline for EEG
artifact reduction (APPEAR) recorded during fMRI. J. Neural Eng. 2021, 18, 0460b4. [CrossRef] [PubMed]

52. Al Zoubi, O.; Mayeli, A.; Tsuchiyagaito, A.; Misaki, M.; Zotev, V.; Refai, H.; Paulus, M.; Bodurka, J. EEG Microstates Temporal
Dynamics Differentiate Individuals with Mood and Anxiety Disorders from Healthy Subjects. Front. Hum. Neurosci. 2019, 13, 56.
[CrossRef]

53. Al Zoubi, O.; Ki Wong, C.; Kuplicki, R.T.; Yeh, H.W.; Mayeli, A.; Refai, H.; Paulus, M.; Bodurka, J. Predicting Age from Brain EEG
Signals—A Machine Learning Approach. Front. Aging Neurosci. 2018, 10, 184. [CrossRef]

54. Ko, J.; Park, U.; Kim, D.; Kang, S.W. Quantitative Electroencephalogram Standardization: A Sex- and Age-Differentiated
Normative Database. Front. Neurosci. 2021, 15, 766781. [CrossRef] [PubMed]

55. Kim, T.; Park, U.; Kang, S.W. Prediction model for potential depression using sex and age-reflected quantitative EEG biomarkers.
Front. Psychiatry 2022, 13, 913890. [CrossRef] [PubMed]

56. Alexander, L.M.; Escalera, J.; Ai, L.; Andreotti, C.; Febre, K.; Mangone, A.; Vega-Potler, N.; Langer, N.; Alexander, A.; Kovacs,
M.; et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci. Data 2017, 4, 170181.
[CrossRef] [PubMed]

57. Tröndle, M.; Popov, T.; Dziemian, S.; Langer, N. Decomposing the role of alpha oscillations during brain maturation. eLife 2022,
11, e77571. [CrossRef] [PubMed]

https://doi.org/10.1016/j.neuroimage.2013.04.030
https://doi.org/10.1002/ana.410160403
https://doi.org/10.1016/j.neulet.2010.05.037
https://doi.org/10.1016/j.biopsycho.2017.09.010
https://doi.org/10.1073/pnas.0700668104
https://doi.org/10.1038/sdata.2018.308
https://doi.org/10.1136/bmjopen-2017-016620
https://www.ncbi.nlm.nih.gov/pubmed/29371263
https://doi.org/10.3389/fnins.2016.00196
https://www.ncbi.nlm.nih.gov/pubmed/27242402
https://doi.org/10.1088/1741-2552/abca18
https://www.ncbi.nlm.nih.gov/pubmed/33181507
https://doi.org/10.1109/spmb.2015.7405423
https://doi.org/10.1016/j.neuroimage.2020.116631
https://www.ncbi.nlm.nih.gov/pubmed/32062082
https://doi.org/10.1016/j.neuroimage.2019.116373
https://www.ncbi.nlm.nih.gov/pubmed/31759114
https://doi.org/10.1016/j.neuroimage.2018.12.001
https://www.ncbi.nlm.nih.gov/pubmed/30517844
https://doi.org/10.3389/fninf.2020.00033
https://www.ncbi.nlm.nih.gov/pubmed/32848689
https://doi.org/10.1038/s41597-021-00829-7
https://www.ncbi.nlm.nih.gov/pubmed/33547313
https://doi.org/10.1016/j.neuroimage.2022.119190
https://www.ncbi.nlm.nih.gov/pubmed/35398285
https://doi.org/10.1088/1741-2552/ac1037
https://www.ncbi.nlm.nih.gov/pubmed/34192674
https://doi.org/10.3389/fnhum.2019.00056
https://doi.org/10.3389/fnagi.2018.00184
https://doi.org/10.3389/fnins.2021.766781
https://www.ncbi.nlm.nih.gov/pubmed/34975376
https://doi.org/10.3389/fpsyt.2022.913890
https://www.ncbi.nlm.nih.gov/pubmed/36159938
https://doi.org/10.1038/sdata.2017.181
https://www.ncbi.nlm.nih.gov/pubmed/29257126
https://doi.org/10.7554/eLife.77571
https://www.ncbi.nlm.nih.gov/pubmed/36006005


Bioengineering 2024, 11, 418 26 of 30

58. Loeffler, M.; Engel, C.; Ahnert, P.; Alfermann, D.; Arelin, K.; Baber, R.; Beutner, F.; Binder, H.; Brähler, E.; Burkhardt, R.; et al. The
LIFE-Adult-Study: Objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany.
BMC Public Health 2015, 15, 691. [CrossRef] [PubMed]

59. Cesnaite, E.; Steinfath, P.; Jamshidi Idaji, M.; Stephani, T.; Kumral, D.; Haufe, S.; Sander, C.; Hensch, T.; Hegerl, U.; Riedel-Heller,
S.; et al. Alterations in rhythmic and non-rhythmic resting-state EEG activity and their link to cognition in older age. NeuroImage
2023, 268, 119810. [CrossRef] [PubMed]

60. van Dijk, H.; van Wingen, G.; Denys, D.; Olbrich, S.; van Ruth, R.; Arns, M. The two decades brainclinics research archive for
insights in neurophysiology (TDBRAIN) database. Sci. Data 2022, 9, 333. [CrossRef] [PubMed]

61. Matoušek, M.; Petersén, I. Automatic evaluation of EEG background activity by means of age-dependent EEG quotients.
Electroencephalogr. Clin. Neurophysiol. 1973, 35, 603–612. [CrossRef] [PubMed]

62. Breslau, J.; Starr, A.; Sicotte, N.; Higa, J.; Buchsbaum, M.S. Topographic EEG changes with normal aging and SDAT. Electroen-
cephalogr. Clin. Neurophysiol. 1989, 72, 281–289. [CrossRef]

63. Dustman, R.E.; Shearer, D.E.; Emmerson, R.Y. EEG and event-related potentials in normal aging. Prog. Neurobiol. 1993, 41, 369–401.
[CrossRef]

64. Klass, D.W.; Brenner, R.P. Electroencephalography of the Elderly. J. Clin. Neurophysiol. 1995, 12, 116–131. [CrossRef]
65. van der Hiele, K.; Bollen, E.L.E.M.; Vein, A.A.; Reijntjes, R.H.A.M.; Westendorp, R.G.J.; van Buchem, M.A.; Middelkoop, H.A.M.;

van Dijk, J.G. EEG Markers of Future Cognitive Performance in the Elderly. J. Clin. Neurophysiol. 2008, 25, 83–89. [CrossRef]
66. Herrmann, C.S.; Rach, S.; Vosskuhl, J.; Strüber, D. Time–Frequency Analysis of Event-Related Potentials: A Brief Tutorial. Brain

Topogr. 2014, 27, 438–450. [CrossRef]
67. He, B.J. Scale-free brain activity: Past, present, and future. Trends Cogn. Sci. 2014, 18, 480–487. [CrossRef]
68. Voytek, B.; Kramer, M.A.; Case, J.; Lepage, K.Q.; Tempesta, Z.R.; Knight, R.T.; Gazzaley, A. Age-Related Changes in 1/f Neural

Electrophysiological Noise. J. Neurosci. 2015, 35, 13257–13265. [CrossRef]
69. Hong, S.; Rebec, G. A new perspective on behavioral inconsistency and neural noise in aging: Compensatory speeding of neural

communication. Front. Aging Neurosci. 2012, 4, 27. [CrossRef]
70. Gao, R.; Peterson, E.J.; Voytek, B. Inferring synaptic excitation/inhibition balance from field potentials. NeuroImage 2017, 158,

70–78. [CrossRef]
71. Pani, S.M.; Saba, L.; Fraschini, M. Clinical applications of EEG power spectra aperiodic component analysis: A mini-review. Clin.

Neurophysiol. 2022, 143, 1–13. [CrossRef]
72. Donoghue, T.; Haller, M.; Peterson, E.J.; Varma, P.; Priyadarshini, S.; Gao, R.; Noto, T.; Lara, A.H.; Wallis, J.D.; Knight, R.T.; et al.

Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 2020, 23, 1655–1665. [CrossRef]
73. Whitten, T.A.; Hughes, A.M.; Dickson, C.T.; Caplan, J.B. A better oscillation detection method robustly extracts EEG rhythms

across brain state changes: The human alpha rhythm as a test case. NeuroImage 2011, 54, 860–874. [CrossRef]
74. Wen, H.; Liu, Z. Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal. Brain

Topogr. 2016, 29, 13–26. [CrossRef]
75. Waschke, L.; Wöstmann, M.; Obleser, J. States and traits of neural irregularity in the age-varying human brain. Sci. Rep. 2017,

7, 17381. [CrossRef]
76. Gerster, M.; Waterstraat, G.; Litvak, V.; Lehnertz, K.; Schnitzler, A.; Florin, E.; Curio, G.; Nikulin, V. Separating Neural Oscillations

from Aperiodic 1/f Activity: Challenges and Recommendations. Neuroinformatics 2022, 20, 991–1012. [CrossRef]
77. Dave, S.; Brothers, T.A.; Swaab, T.Y. 1/f neural noise and electrophysiological indices of contextual prediction in aging. Brain Res.

2018, 1691, 34–43. [CrossRef]
78. Cellier, D.; Riddle, J.; Petersen, I.; Hwang, K. The development of theta and alpha neural oscillations from ages 3 to 24 years. Dev.

Cogn. Neurosci. 2021, 50, 100969. [CrossRef]
79. Segalowitz, S.J.; Santesso, D.L.; Jetha, M.K. Electrophysiological changes during adolescence: A review. Brain Cogn. 2010, 72,

86–100. [CrossRef]
80. Alvarez, F.P.; Destexhe, A. Simulating cortical network activity states constrained by intracellular recordings. Neurocomputing

2004, 58–60, 285–290. [CrossRef]
81. Xue, M.; Atallah, B.V.; Scanziani, M. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 2014, 511,

596–600. [CrossRef]
82. Pathania, A.; Euler, M.J.; Clark, M.; Cowan, R.L.; Duff, K.; Lohse, K.R. Resting EEG spectral slopes are associated with age-related

differences in information processing speed. Biol. Psychol. 2022, 168, 108261. [CrossRef]
83. Hill, A.T.; Clark, G.M.; Bigelow, F.J.; Lum, J.A.G.; Enticott, P.G. Periodic and aperiodic neural activity displays age-dependent

changes across early-to-middle childhood. Dev. Cogn. Neurosci. 2022, 54, 101076. [CrossRef]
84. Berger, H. Über das Elektrenkephalogramm des Menschen. Arch. Psychiatr. Nervenkrankh. 1929, 87, 527–570. [CrossRef]
85. Bazanova, O.M.; Vernon, D. Interpreting EEG alpha activity. Neurosci. Biobehav. Rev. 2014, 44, 94–110. [CrossRef]
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