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Abstract: This paper focuses on the use of local Explainable Artificial Intelligence (XAI) methods,
particularly the Local Rule-Based Explanations (LORE) technique, within healthcare and medical set-
tings. It emphasizes the critical role of interpretability and transparency in AI systems for diagnosing
diseases, predicting patient outcomes, and creating personalized treatment plans. While acknowl-
edging the complexities and inherent trade-offs between interpretability and model performance,
our work underscores the significance of local XAI methods in enhancing decision-making processes
in healthcare. By providing granular, case-specific insights, local XAI methods like LORE enhance
physicians’ and patients’ understanding of machine learning models and their outcome. Our paper
reviews significant contributions to local XAI in healthcare, highlighting its potential to improve
clinical decision making, ensure fairness, and comply with regulatory standards.
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1. Introduction

The advent of artificial intelligence (AI) technologies has been transformative for
healthcare, offering unprecedented capabilities in disease diagnosis, patient outcome
prediction, and the development of tailored treatment plans. However, the increasing
complexity and opacity of AI algorithms have amplified the need for transparency and
interpretability in their decision-making processes. This has led to the rise of Explainable
Artificial Intelligence (XAI), particularly focusing on local interpretation methods such as
the LORE (Local Rule-Based Explanations) [1], to make AI decisions in healthcare settings
more transparent and comprehensible [2,3].

XAI seeks to equip AI algorithms with explanations, enabling healthcare professionals
to gain insights into the rationale behind AI-generated decisions and predictions. XAI
methodologies can be broadly divided in two families: global [4] and local [5] methods.
While global methods aim at explaining the general reasoning of an AI model, local
methods have the goal of explaining why an AI model gave a certain output for a particular
instance, i.e., the data of a particular patient or the diagnostic images belonging to a specific
individual. The application of local XAI methods addresses the demand for precise, case-
by-case explanations, which are paramount for clinical decision making, enhancing patient
care, and fostering trust in AI systems among healthcare providers and patients [6–13].

Significance of Local XAI in Healthcare. The integration of AI in healthcare has
been both celebrated for its potential and scrutinized for its challenges, including issues of
interpretability, potential biases, and ethical concerns [14–16]. Local XAI methods, such as
LORE, offer nuanced, instance-specific explanations that are essential for understanding
complex AI decisions in medical contexts [17]. These explanations not only build confidence
in AI technologies but also aid in identifying and correcting biases, ensuring ethical usage,
and complying with healthcare regulations [18].
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Interpretability at the local level allows healthcare professionals to comprehend the
reasoning behind specific AI decisions, facilitating their trust in and collaboration with AI
systems. Moreover, local explanations play a crucial role in elucidating AI outcomes to
patients, empowering them with knowledge about their care processes and decisions.

Challenges and Opportunities in Applying Local XAI. While local XAI methods
present a promising approach for enhancing interpretability in healthcare AI, they also
introduce challenges such as maintaining model performance and ensuring the relevance
and comprehensibility of explanations to end-users. Balancing the complexity of healthcare
data with the need for understandable, actionable insights requires innovative solutions
and continuous advancements in XAI techniques.

To address these challenges, this paper explores a variety of local XAI approaches,
emphasizing the contribution of the LORE method for its ability to generate detailed,
rule-based explanations relevant to individual cases. Such techniques are pivotal in trans-
lating the intricate patterns recognized by AI models into intelligible information, thereby
improving the clinical utility of AI and fostering a collaborative healthcare environment.

The Focused Approach of the XAI Project. The XAI Project G.A. 834756) (https:
//xai-project.eu/, accessed on 14 March 2024) is an ERC-funded project focused entirely on
the development of Explainable AI models. In the XAI Project, one of the most prominent
domains of research has been local explainability in healthcare AI [19], aiming to refine and
promote the application of methods like LORE for better decision-making processes. By
concentrating on the development of local XAI techniques, the project seeks to address the
specific interpretability needs of healthcare professionals and patients, ensuring that AI
systems are not only accurate but also transparent and trustworthy.

In summary, this paper presents a focused narrative on the role of local XAI methods in
healthcare, illustrating how such approaches can surmount the interpretability challenges
posed by complex AI models. Through detailed case studies and analysis of the LORE
method, it aims to showcase the tangible benefits of local explainability in improving
patient care, ensuring ethical AI use, and enhancing the acceptance of AI technologies in
medical settings.

2. Related Work

The exploration of Explainable Artificial Intelligence (XAI) in healthcare settings,
particularly through the lens of local interpretation methods like Local Rule-Based Expla-
nations (LORE) [1], has garnered considerable attention. This section delves into advance-
ments in the interpretability and transparency of AI models in healthcare, emphasizing the
importance of local XAI methods and their contributions to the field.

Recent efforts have aimed at enhancing the interpretability of healthcare AI models,
with Rajkomar et al. proposing an “Explainable AI Framework for Health” that integrates
rule-based models, gradient-based methods, and attention mechanisms for generating
interpretable healthcare predictions [20]. This framework’s application to patient mortality
prediction has enabled healthcare professionals to derive actionable insights from the
model’s decision-making process, showcasing the utility of comprehensive XAI approaches
in clinical settings.

Ribeiro et al.’s Anchors method represents another noteworthy advancement, offering
rule-based explanations tailored to individual predictions [21]. By concentrating on locally
faithful explanations, the Anchors method has empowered healthcare practitioners with
a clearer understanding of the factors influencing AI predictions in specific scenarios. Its
application across various healthcare domains underscores the method’s effectiveness in
improving interpretability at the local level.

The SHAP (SHapley Additive exPlanations) framework, introduced by Lundberg et
al., utilizes game theory to allocate feature importance values for individual predictions,
thus providing a detailed view of how each input affects the model’s output [22]. Applied
in contexts such as hospital readmission prediction, disease progression modeling, and

https://xai-project.eu/
https://xai-project.eu/
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electronic health records analysis, SHAP has been instrumental in enhancing transparency
and interpretability in healthcare AI.

Furthermore, interpretability techniques like LIME (Local Interpretable Model-agnostic
Explanations) and LORE (Local Rule-Based Explanations) have seen wide adoption in the
healthcare sector [1,23]. LIME’s approach to generating local explanations by approximat-
ing complex model decision boundaries complements LORE’s use of a genetic algorithm to
create a synthetic neighborhood for a local interpretable predictor. This predictor, in turn,
facilitates the generation of meaningful explanations that include decision rules and coun-
terfactual scenarios, thereby illuminating the influence of specific factors on outcomes [1].
These techniques have been applied to a range of healthcare domains, from disease pre-
diction to medical imaging and clinical decision support, demonstrating their versatility
and impact.

Caruana et al.’s work on developing intelligible models for healthcare contexts, such
as pneumonia risk prediction and hospital readmission, further highlights the progress
in creating interpretable AI systems for clinical use [24]. By employing decision trees and
rule-based models, their research has contributed significantly to the field, enhancing both
the transparency and the adoption of AI in clinical practice.

The integration of domain knowledge and expert input into XAI approaches marks
an evolving research direction, promising to enrich interpretability and align AI decision-
making processes with established medical practices. This blend of technical innovation
and domain expertise is crucial for advancing the application of local XAI methods in
healthcare, ensuring that AI-assisted decision making is both transparent and grounded in
clinical realities [25].

In conclusion, advancements in XAI for healthcare, particularly the focus on local
methods, highlight a growing commitment to enhancing AI model transparency and inter-
pretability. These efforts underscore the field’s progress towards developing AI systems
that are not only technically proficient but also understandable and trustworthy for health-
care professionals and patients alike, fostering improved decision making, patient care,
and adherence to regulatory standards.

3. Methodology

Before discussing the specific methodologies supporting our research, it is crucial to
contextualize our work within the broader landscape of artificial intelligence technologies,
particularly deep learning. Deep learning [26], a subset of machine learning, has emerged
as a transformative force in various domains, including healthcare. It refers to the de-
velopment of algorithms that can learn and make decisions or predictions based on data.
These algorithms, known as neural networks, are designed to mimic the human brain’s
architecture and function, processing vast numbers of data to identify patterns and insights
that are not immediately apparent to human observers.

As outlined in the seminal work [27], deep learning involves multi-layered neural
networks that learn and make inferences from data in a way that captures the complexity
and subtlety of the information being processed. This capability makes deep learning
particularly valuable in healthcare, where the ability to analyze and interpret complex
medical data can lead to more accurate diagnoses, personalized treatment plans, and,
ultimately, better patient outcomes.

The key methodologies used in the project are related to the LORE method, introduced
by Guidotti et al. [1]. LORE is a powerful framework for generating local and interpretable
explanations for machine learning models. LORE utilizes a genetic algorithm to create
a synthetic neighborhood, which serves as the basis for training a local interpretable
predictor. This predictor captures the underlying logic of the model’s decision-making
process, enabling the derivation of meaningful explanations.

One of the key characteristics of LORE is its ability to provide transparent and un-
derstandable explanations for individual predictions. By focusing on local interpretability,
LORE aims to explain the reasoning behind a specific prediction rather than the overall
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behavior of the model. This makes it particularly useful in situations where interpretability
at the instance level is crucial, such as in healthcare and finance.

The explanations consist of two main components. First, a decision rule is derived
from the logic of the local interpretable predictor. This decision rule sheds light on the
factors that influenced the model’s decision, providing insights into the important features
and their corresponding weights. This information helps in understanding the key drivers
behind the prediction. Additionally, LORE produces a set of counterfactual rules as part of
the explanation. These counterfactual rules suggest modifications to the instance’s features
that would lead to a different outcome. By providing actionable suggestions for changing
the input variables, LORE enables users to explore what-if scenarios and understand how
small changes can influence the model’s predictions.

The availability of the LORE framework, along with the accompanying code (https:
//github.com/riccotti/LORE, accessed on 14 March 2024), facilitates its adoption and
implementation in various domains. In the next sections, different research projects are
described. They leverage over the LORE methodology from different points of view.

Detailed LORE Framework

LORE operates on the principle of providing instance-specific explanations by creating
a local, interpretable model around a prediction of interest. It begins by selecting an instance
for which an explanation is desired. Then, it generates a synthetic dataset that mimics the
locality of the original instance through a genetic algorithm. This local dataset is used to
train a simple, interpretable model, such as a decision tree, which serves to approximate
the behavior of the complex model near the instance. The explanation is then derived from
this interpretable model in the form of rules, which highlight the decision-making process
for the specific instance.

Implementation Steps: Selection of Target Instance: Choose the specific prediction or
instance that requires explanation.

Synthetic Neighborhood Generation: Utilize a genetic algorithm to generate a synthetic
dataset that represents the local decision boundary around the target instance.

Training of Interpretable Model: Train a simple model, like a decision tree, on this
synthetic dataset to capture the local decision logic of the complex model.

Derivation of Explanation: Extract rules from the interpretable model that explain
the prediction of the target instance. These rules offer insights into which features and
conditions influence the decision.

LORE’s ability to provide clear, case-specific explanations makes it highly valuable
in healthcare settings, where understanding the rationale behind AI-driven diagnostic
or prognostic predictions is crucial. For instance, LORE has been applied to interpret AI
decisions in predicting patient outcomes, understanding disease progression, and personal-
izing treatment plans. Its interpretability supports clinical decision making, enhances trust
among medical practitioners, and facilitates patient communication.

LORE distinguishes itself from other XAI methods like LIME or SHAP primarily
through its emphasis on generating a synthetic neighborhood around an instance. This
approach allows LORE to provide highly localized explanations that are directly relevant
to the specific case at hand. While LIME also focuses on local interpretability, it approxi-
mates the model’s decision boundary linearly, which might not capture complex nonlinear
relationships as effectively as LORE’s method. SHAP, on the other hand, provides a global
interpretation by assigning importance values to features based on their contribution to the
model’s output. LORE’s advantage lies in its detailed, rule-based explanations that can be
more intuitively understood by healthcare professionals for specific patient cases.

4. XAI Frameworks for Healthcare
4.1. DoctorXAI

An ontology-based approach, as described in “Doctor XAI: an ontology-based ap-
proach to black-box sequential data classification explanations” [28], aims to provide

https://github.com/riccotti/LORE
https://github.com/riccotti/LORE
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explanations for the black-box predicting of multi-labeled, sequential, ontology-linked
data [29]. The methodology involves the use of ontologies, which are formal represen-
tations of knowledge, to capture domain-specific concepts and relationships [30]. This
paper focuses on explaining Doctor AI [31], a multi-label classifier which takes as input the
clinical history of a patient in order to predict the next visit.

In greater detail, the methodology begins by selecting real neighbors, which are data
points closest to the instance to be explained, either through a standard distance metric
or ontology-based similarities. A synthetic neighborhood is then generated by perturb-
ing the real neighbors to maintain locality. The challenge lies in generating meaningful
synthetic instances, and here the authors leverage the ICD-9 ontology to ensure the expres-
siveness of the neighborhood. Unlike other techniques, the perturbations are not applied
directly to the instance to be explained to prevent homogeneity in the neighborhood. Two
alternative paths are followed; see Figure 1: the red path involves normal perturbation
and encoding/decoding steps to transform the data for interpretable models, while the
blue path involves ontological perturbation directly on sequential data. In both paths,
the synthetic neighborhood is labeled by the black-box model and used to train an in-
terpretable model, such as a multi-label decision tree. Rule-based explanations are then
extracted from the decision tree. The methodology extends the general framework with
novel contributions for dealing with structured and sequential data. These components
can be independently incorporated into the explanation pipeline based on the nature of the
data point to be explained.

Figure 1. DoctorXAI explanation pipeline from [28].

The authors use the MIMIC-III dataset [32] which contains de-identified health-related
data associated with over 40,000 patients who stayed in critical care units of the Beth Israel
Deaconess Medical Center between 2001 and 2012. In the experiments conducted, the



Bioengineering 2024, 11, 369 6 of 17

ontology-based approach is compared against other existing methods for generating expla-
nations. Various evaluation metrics, such as accuracy, coverage, and coherence, may be em-
ployed to assess the quality and comprehensibility of the explanations provided by the ap-
proach. The results of the experiments highlight the efficacy of the ontology-based approach
in generating meaningful explanations for black-box sequential data classification models.
The approach demonstrates its ability to capture domain-specific knowledge, extract rele-
vant features, and provide interpretable explanations that enhance the understanding of the
underlying decision-making process (DoctorXAI demo: https://kdd.isti.cnr.it/DrXAI-viz/,
accessed on 14 March 2024); see Figure 2.

This paper suggests future work in exploring alternative synthetic neighbor generation
for sequential data and assessing the impact of random components. Additionally, the
authors plan to extend the technique to explain how black-box regressors predict continuous
outcomes, which is relevant in healthcare for risk stratification prediction tasks.

Figure 2. Doctor XAI explanation presented to the participants of the experiment. In the image,
distinct dots represent a single visit of a patient, and distinct colors represent the relevance of each
dot to the algorithmic decision. Dots associated with irrelevant conditions remain gray, whereas
those deemed relevant are depicted in blue. Additionally, DoctorXAI highlights, as yellow dots, any
conditions absent from the patient’s clinical history that could have altered the algorithmic suggestion.

DoctorXAI has been proven to enhance physicians’ interactions with machine learning
models. In the work of Panigutti et al. [33], the authors conduct a rigorous, survey-
based analysis of physicians’ interactions with an AI-based Clinical Decision Support
System equipped with DoctorXAI. The results indicate that the explanations provided by
DoctorXAI enhance the trust between physicians and the AI-based system.

4.2. FairLens

The pervasive application of AI in critical areas, especially healthcare, has brought to
the forefront the challenges associated with unintended biases. These biases, if unchecked,
can have profound implications, especially when decisions impact patient care. Recog-
nizing this, in [34], the authors present FairLens, a tool designed to audit, discover, and
explain biases in AI systems, particularly those deployed in clinical settings. A general
overview of FailLens is presented in Figure 3.

FairLens is rooted in a multi-step approach:

https://kdd.isti.cnr.it/DrXAI-viz/
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• Stratification of Patient Data: Before any analysis, the tool stratifies available patient
data based on various attributes, including age, ethnicity, gender, and insurance type.
This stratification allows for a more granular analysis of how the AI model performs
across different patient subgroups.

• Performance Assessment: Once stratified, FairLens evaluates the model’s performance
on these subgroups. It identifies areas where the model might be underperforming or
showing biases. This step is crucial as it pinpoints specific patient groups that might
be adversely affected by the model’s decisions.

• Explanation of Model Errors: Going beyond mere identification, FairLens delves into
the reasons behind the model’s errors. Using advanced XAI techniques, the tool
determines which elements in a patient’s clinical history contribute to the model’s
inaccuracies. This step is pivotal as it not only highlights the errors but also provides
insights into why they occur.

Figure 3. FairLens pipeline from [34].

The FairLens pipeline is a systematic process that ensures a comprehensive audit of
the AI model. At first, the patient data are divided based on predefined conditions, creating
various groups. Each group is then scored based on the model’s performance, providing a
quantitative measure of the model’s accuracy for that subgroup.

Post-scoring, the groups are ranked. This ranking serves as an indicator, highlighting
groups where the model’s performance is low-grade. Selected groups (based on ranking or
expert input) undergo a detailed inspection. Here, the model’s predictions are compared
against actual data to identify over-represented or under-represented conditions.

For mislabeled conditions, FairLens provides explanations. It identifies clinical condi-
tions that are frequently misclassified and elucidates the elements in patients’ histories that
influence these misclassifications. The entire analysis culminates in a comprehensive report
that details the findings, providing both a bird’s-eye view and in-depth insights.

FairLens represents a significant step forward in ensuring that AI models, especially
those in healthcare, are free from detrimental biases. By providing a systematic method-
ology and a clear pipeline, it offers a robust framework for auditing black-box clinical
decision support systems. The tool’s ability to not just identify but also explain biases
makes it invaluable for healthcare professionals, ensuring that AI-driven decisions are both
accurate and fair.

4.3. MARLENA

Machine learning models, especially deep learning ones, have become central to many
decision-making systems in healthcare. They assist in diagnosis, predict disease spread, and
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help in identifying high-risk patient groups. However, the inherent lack of transparency in
these models can lead to mistrust, potential biases, and even legal implications. MARLENA
(Multi-label Rule-based ExplaNAtions) [35] is introduced as a solution to the interpretability
challenge. It is designed to provide explanations for decisions made by multi-label black-
box classifiers. The main idea of miming the local behavior of a black-box is common with
other approaches such as LIME [23] and LORE [1]. However, none of these approaches
is applicable to explain multi-label black-box classifiers. An overview of MARLENA is
presented in Figure 4. The novel methodology is broken down into three primary steps:

• Synthetic Neighborhood Generation: Before explaining a decision, MARLENA first
creates a synthetic neighborhood around the instance in question. This neighbor-
hood is populated with data points that are similar to the instance, ensuring that the
explanation is localized and relevant.

• Learning a Decision Tree: Using the synthetic neighborhood, MARLENA constructs
a decision tree. Decision trees are inherently interpretable, making them suitable for
this purpose.

• Deriving Decision Rules: From the constructed decision tree, MARLENA extracts
decision rules that provide a clear and concise explanation for the black-box decision
concerning the instance.

The core methodology revolves around the generation of a neighborhood around the
instance that needs elucidation. This is crucial because the explanation is intended to be
local, focusing on the behavior of the black-box classifier concerning that specific instance.

To generate this neighborhood, MARLENA employs two strategies. Constructing
a Core Real Neighborhood: This involves identifying real instances from the dataset
that are close to the instance in both the feature space and decision space. This real
neighborhood provides a foundation upon which synthetic neighbors can be generated.
Generating Synthetic Neighbors: Based on the empirical distributions of the instance’s
features derived from the real neighborhood, MARLENA generates synthetic neighbors.
These neighbors are designed to mimic the behavior of the black-box classifier in the
vicinity of the instance. Once the neighborhood is established, MARLENA proceeds with
the construction of the decision tree and the extraction of decision rules.

Figure 4. From [35]. A graphical representation of mixed neighborhood generation starting from
a sample dataset with three different labels. (1st) a dataset sample, and the arrow points out the
instance to explain x; mixed neighborhood generation: (2nd) real instances close to x with respect to
the feature space; (3rd) real instances close to x with respect to the target space; (4th) a merge of the
previous sets of instances. Unified core real neighborhood: (5th) real instances close to x with respect
to feature and target spaces, i.e., the real core neighborhood.

MARLENA offers a structured approach to demystifying decisions made by multi-
label black-box classifiers. By focusing on local explanations and leveraging interpretable
models like decision trees, the method ensures that the explanations provided are both
meaningful and relevant.
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4.4. The International Skin Imaging Collaboration

ABELE (Adversarial Black-box Explainer generating Latent Exemplars) [36] is a local
model-agnostic explainer that takes an image and a black-box classifier as input and returns
a set of exemplar and counter-exemplar images, as well as a saliency map.

Exemplars and counter-exemplars are synthetically generated images classified with
the same outcome as the input image and with an outcome other than the input image,
respectively. They can be visually analyzed to understand the reasons for the decision. The
saliency map highlights the areas of the input image that contribute to its classification and
areas that push it into another class.

ABELE works by generating a neighborhood in the latent feature space using an
Adversarial Autoencoder (AAE [37]). The image to be explained is passed as input to the
AAE where the encoder returns the latent representation using latent features. A genetic
approach maximizing a fitness function was adopted to accomplish the neighborhood
generation. In this respect, ABELE takes advantage of a latent version of LORE.

After the generation process, for any instance in the neighborhood, ABELE checks
the validity of the instance by querying the discriminator and decoding it into an image.
Then, it queries the black-box classifier with the image to obtain the class. Given the local
neighborhood, ABELE builds a decision tree classifier trained on the neighborhood labeled
with the black-box classifier. The surrogate tree is intended to locally mimic the behavior of
the black-box classifier in the neighborhood. It extracts the decision rule and counter-factual
rules enabling the generation of exemplars and counter-exemplars.

The overall effectiveness of ABELE lies in the goodness of the encoder and decoder
function adopted. The better the AAE, the more realistic and useful the explanations
will be.

In recent years, deep learning, particularly through convolutional neural networks
(CNNs), has significantly advanced the detection and diagnosis of skin cancer lesions [38–41],
achieving diagnostic accuracies comparable to dermatologists. This progress promises
improved early detection rates and broader access to high-quality diagnostic services. How-
ever, the effectiveness of these models in clinical settings hinges on their interpretability and
the transparency of their decision making, ensuring healthcare professionals can integrate
AI insights confidently into patient care. In [42–45], a case study on skin lesion diagnosis
using a ResNet classifier trained on the ISIC (International Skin Imaging Collaboration)
dataset is presented. The classifier’s decisions are explained using ABELE.

A user interaction module was implemented as a web application to present the
results of the classification and the corresponding explanation. The module communicates
with a backend that exposes the functionalities of the black-box and ABELE via a RESTful
interface (https://kdd.isti.cnr.it/isic_viz/, accessed on 14 March 2024). The visual space
of the application is organized into two sections (see Figure 5). The upper part shows the
instance under analysis with the classification returned by the ResNet on the left and a
synthetic counter-exemplar image returned by ABELE on the right. The lower part of the
module shows four exemplars, i.e., a set of images returned by ABELE that have the same
label assigned by the ResNet to the instance under analysis.

The customization of the autoencoder, specifically an Adversarial Autoencoder (AAE),
is crucial in this case study due to the complexity of the image classification task and
the limitations of the dataset. The ISIC dataset, which is used for training the ResNet
classifier [46], presents challenges such as fragmentation, imbalance, lack of uniform digiti-
zation, and shortage of data. Training an AAE in a standard fashion without addressing
these issues results in poor performance, mainly due to a persistent mode collapse.

To overcome these challenges, a collection of cutting-edge techniques were imple-
mented, including Mini Batch Discrimination and Denoising autoencoders. The model of
AAE adopted is a Progressive Growing AAE, which helps achieve more stable training
of generative models for high-resolution images. The main idea is to start with a very
low-resolution image and, step by step, add blocks of layers that simultaneously increase

https://kdd.isti.cnr.it/isic_viz/
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the output size of the generator model and the input size of the discriminator model until
the desired size is achieved. In this case, the desired size is 224 × 224 pixels.

The latent space dimension is kept fixed, so the discriminator always takes as input
tensors of the same size. The incremental addition of the layers allows the Progressive
Growing AAE to first learn large-scale structure and progressively shift the attention to
finer detail. This approach greatly reduces mode collapse and enables the generation of
varied and high-quality synthetic skin lesion images.

The customization of the AAE is necessary to make it usable for the complex image
classification task addressed by the ResNet classifier. After a thorough fine-tuning of all
three network structures (encoder, decoder, and discriminator), the Progressive Growing
AAE with 256 latent features achieves a reconstruction error measure through RMSE that
ranges from 0.08 to 0.24 depending on whether the most common or the rarest skin lesion
class is considered. This customization allows ABELE to generate meaningful explanations
and can be tested in a survey involving real participants.

Figure 5. A user visualization module to present the classification and the corresponding explanation.
The upper part presents the input instance and a counter-exemplar. The lower part shows four
exemplars that share the same class as the input.

A survey was conducted involving domain experts, beginners, and unskilled people
to assess the effectiveness of the explanations provided by ABELE. The results of the survey
show that the usage of explanations increases trust and confidence in the automatic decision
system. This phenomenon is more evident among domain experts and people with the
highest level of education. After receiving wrong advice from an AI model, domain experts
tend to decrease their trust in the same model for future analysis.

The survey was designed to validate the effectiveness of the explanations returned by
ABELE for skin lesion diagnosis. The main purpose was to validate the effectiveness of
the explanations in assisting doctors and medical experts in the diagnosis and treatment of
skin cancers, as well as to investigate their confidence in automatic diagnosis models based
on black-boxes and on the explanations provided by the explainer.

The survey was organized into ten questions composed of various points. Participants
were presented with an unlabeled skin lesion image randomly chosen from the dataset and
its explanation as generated by ABELE. They were asked to classify the given image among
two different given classes exploiting the explanation. Participants were also presented
with a labeled image and they were asked to quantify their level of confidence in the
black-box classification. The same labeled image was then presented with the visual aid
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of the explanation returned by ABELE, and they were asked to quantify their confidence
once more after looking at the explanations. Participants were also asked to quantify how
much the exemplars and counter-exemplars helped them to classify skin lesion images in
accordance with the AI and how much they trust the explanations.

The survey results support the hypothesis that explanation methods without a consis-
tent validation are not useful. The results also highlight the analysis of the latent space of
the autoencoder made available by ABELE. The latent space analysis suggests an interesting
separation of the images that can hopefully be helpful in separating similar classes of skin
lesions that are frequently misclassified by humans.

5. Discussion and Conclusions

This paper has discussed the integration and application of Explainable Artificial
Intelligence (XAI) within healthcare, focusing on the challenges, developments, and future
directions of XAI in medical diagnostics and patient care. Throughout the ERC XAI project,
significant progress has been made in understanding the complex dynamics of XAI in
healthcare, its potential benefits, and the inherent challenges encountered.

Challenges and Overcoming Strategies. One of the primary challenges encountered
during the project was the complexity of medical data and the difficulty of generating
accurate, comprehensible explanations for AI-based decisions. The heterogeneity of health-
care data, along with the high stakes involved in medical decision making, necessitates
explanations that are not only technically accurate but also easily understandable by health-
care professionals. To address this, we adopted a multi-faceted approach integrating local
explanation generation with formal verification methods. This approach ensured that
explanations were both locally relevant and globally consistent with the classifier’s logic,
thereby enhancing the trustworthiness and explainability of AI systems in healthcare.

Importance and Challenges in Healthcare. In the medical field, the adoption of
XAI methods faces unique challenges, including ensuring patient privacy, dealing with
high-dimensional data, and the critical need for accuracy. Despite these challenges, the
importance of XAI in healthcare cannot be overstated. Detailed, understandable AI expla-
nations empower clinicians to make informed decisions, foster patient trust, and enhance
the overall effectiveness of medical treatments. Our work, through projects like DoctorXAI
and MARLENA, demonstrates the feasibility and value of applying XAI to a range of
healthcare applications, from diagnosing skin lesions to evaluating cardiac risk.

Future Directions and Methodologies. Looking forward, the field of XAI in health-
care is poised for rapid growth and innovation. Future methodologies should focus on
improving the robustness and versatility of explanation models, incorporating more di-
verse data types (e.g., genomic data, electronic health records), and exploring new forms of
explanations (e.g., visual explanations, interactive models). Additionally, there is a need
for more interdisciplinary research that combines insights from data science, medicine,
psychology, and ethics to develop XAI systems that are not only technically proficient but
also ethically sound and aligned with patient care goals.

Integrating XAI with Medicine. The future of XAI in healthcare lies in its seamless
integration as a decision support system, complementing, not replacing, human expertise.
For this to be realized, XAI systems must be designed with openness, transparency, and
interpretability at their core. This approach will ensure that healthcare professionals can
trust and effectively use AI recommendations, leading to improved patient outcomes.

Building Trust among Healthcare Professionals. To build and maintain trust in
XAI systems among medical practitioners, it is essential to focus on user-centered design
principles, ensuring that explanations are relevant, actionable, and tailored to the user’s
expertise level. Avoiding overly complex or opaque AI models and instead emphasizing the
transparency and reliability of explanations will be key. Additionally, ongoing education
and training for healthcare professionals on the capabilities and limitations of AI will play
a critical role in fostering a collaborative environment where AI and human expertise work
hand in hand.
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In our exploration of Explainable Artificial Intelligence within healthcare, a significant
aspect that emerges is the imperative of human–machine collaborative decision making.
This symbiotic interaction underscores the philosophy that the greater involvement of
human judgment alongside AI can significantly enhance the explainability and ethical
dimensions of healthcare decisions. The interplay between human insight and AI’s analyti-
cal skills promises to elevate clinical decision making to new heights, fostering a deeper
trust and understanding between healthcare providers and the technology they leverage.
Moreover, this collaboration can serve as a cornerstone for ethical AI use, ensuring deci-
sions are not only accurate but also transparent and aligned with patient values and needs.
As we look towards the future, the integration of human expertise with sophisticated
AI algorithms will be crucial in navigating the complex ethical landscape of healthcare,
ensuring that AI-assisted decisions are made with a comprehensive understanding of
patient care, thereby reinforcing the essence of medicine and underscoring its profound
human-centric nature.

In conclusion, the integration of XAI into healthcare holds tremendous promise for
enhancing medical diagnostics, patient care, and treatment outcomes. By continuing to
address the challenges, leveraging the strengths of AI and human expertise, and focusing
on patient-centered outcomes, the future of XAI in healthcare is bright. With sustained
research and development, XAI can become an indispensable tool in the medical field,
offering insights and explanations that support clinical decision making and contribute to
the advancement of personalized medicine.

6. Future and Ongoing Work

As we venture into the future of XAI in healthcare, the emphasis on human–machine
collaborative decision making will play a pivotal role in shaping research and development
directions. Our forthcoming projects aim to delve deeper into models and frameworks
that not only advance the technical capabilities of XAI but also enhance its alignment with
human expertise and ethical considerations in clinical settings. This will involve developing
systems that are capable of incorporating feedback from healthcare professionals directly
into the AI learning process, thus refining the accuracy and applicability of AI outputs in a
real-world context. Moreover, the exploration of the ethical and regulatory implications of
these collaborative systems will be fundamental. By fostering a more integrated approach
to AI in healthcare, where technology and human expertise complement each other, we
anticipate not only bridging the gap between AI’s potential and its practical application
but also contributing to the development of AI systems that are both ethically responsible
and highly effective in enhancing patient care outcomes.

We present a sketch of our ongoing projects that aim to further develop and expand
this promising area.

6.1. Cardiac Risk Evaluator

In an upcoming work we present VERIFAI-LORE, a framework designed to enhance
the trustworthiness and explainability of AI-based classifiers. This is achieved through a
unique integration of search-based approaches, machine-learned explanations, satisfiability
solving, and theorem proving. Specifically, it utilizes LORE (Local Rule-Based Explanations)
to generate local explanations for classifications by sampling around an instance and
constructing a decision tree. These explanations comprise logic rules and counter-rules,
indicating the attributes that contributed to a classification and conditions for a different
classification, respectively.

However, recognizing that these explanations may be locally valid but undercon-
strained for certain instances, VERIFAI-LORE introduces a formal verification step. This
step involves translating the model into Java and writing a JML (Java Modeling Language)
contract in the form of precondition–postcondition pairs to verify the consistency of an
explanation with the classifier through theorem proving. This allows the framework to
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ensure that explanations are not only statistically valid but also logically consistent across
all possible inputs, addressing the challenge of underconstrained explanations.

The integration of explanation generation and formal verification in the VERIFAI-
LORE framework aims to provide globally consistent and locally valid explanations for each
classification, thereby enhancing classifier trustworthiness. The framework is evaluated in
a case study on the prognosis of Acute Coronary Syndrome (ACS) [47], demonstrating its
capability to provide classifications with associated confidence levels and explanations that
are formally verified for consistency. The evaluation shows that checking the JML contract
for explanations takes on average 12.6 s and 304.5 MB for consistent explanations and
68.7 s and 326.5 MB for underconstrained explanations, indicating that underconstrained
explanations occur infrequently. This contributes to advancing trustworthy and explainable
classification. A visual interface (https://kdd.isti.cnr.it/cre_vue/#/, accessed on 14 March
2024) has been made public and allows for the appreciation of the quality of explanations
based on custom inputs entered by the user. Figure 6 demonstrates the explanation of the
outcome related to test data.

Figure 6. User visualization module to present the classification and the corresponding explanation
of the outcome related to test data consisting of age: 47, heart rate: 83, Systolic Blood Pressure: 135,
creatinine: 1.1, cardiac arrest at admission: no, ST segment deviation on EKG: no, TN (abnormal cardiac
enzymes): no, and KILLIP class: no CHF.

6.2. Prostate Imaging Cancer AI

This ongoing project involves the application of local explanation algorithms to a differ-
ent context—a prostate cancer MRI dataset [48–51]. This dataset, collected in collaboration
with the Prostate Cancer Unit at Ospedale Careggi of Florence and the PI-CAI Grand Chal-
lenge (https://pi-cai.grand-challenge.org/, accessed on 14 March 2024), is composed of
T2-weighted, Apparent Diffusion Coefficient (ADC), and DWI magnetic resonance images.
Our goal is to harness the power of local methods in generating meaningful explanations
for complex imaging analyses to improve our understanding of prostate cancer diagnostics
(Figure 7). The project will not only focus on enhancing the explainability of local methods

https://kdd.isti.cnr.it/cre_vue/#/
https://pi-cai.grand-challenge.org/
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but will also delve into an innovative realm of cross-domain explanations between different
modalities, i.e., image and tabular data. By doing so, we plan to bridge the gap between
different imaging modalities and foster a more integrated, comprehensive understanding
of prostate cancer diagnosis, thereby contributing to more effective patient management
and treatment outcomes.

Figure 7. A saliency map extracted from a 3-channel multimodal classifier comprising T2W, ADC,
and DWI images of a prostatic gland with a high-grade prostate lesion. Each activation map sizes the
contribution of each modality.

6.3. Diabetology

An upcoming project in collaboration with the Diabetology Department at Cisanello
University Hospital (Pisa, Italy) explores the application of Explainable AI data describing
patients’ conditions before and after liver transplantation. Leveraging a fairly small dataset
of roughly 450 patients including pre- and post-operative factors, we aim to develop
Explainable AI models with the objective of answering a number of questions regarding
the effect of liver transplantation on patients [52]. Using explanations as a lens to inspect
the models, we are going to investigate possible effects on the onset of diabetes, patient
survival, and graft survival. The key challenges involve the highly imbalanced dataset, with
the survival rate significantly higher than mortality, and the low number of samples. We
plan to apply data balancing techniques cautiously to maintain the integrity of real-world
examples so that Explainable AI techniques can still extract meaningful insights from the
predictive models. The ultimate goal is to identify key factors contributing to survival
rates and understand the relationship between a patient’s diabetic condition and survival
outcome, thereby offering physicians a way to find new and actionable insights.

6.4. DoctorXAI++

DoctorXAI [28] has been proven to be highly beneficial to clinicians for understanding
a machine learning model’s decision and for improving trust in the model output [33].
The various components of the DoctorXAI architecture, however, can be improved, in
light of recent advancements in the model’s performance and in generative AI techniques.
This project has the objective of improving DoctorXAI by applying more modern deep
learning models to the updated MIMICIV [53] dataset with the ICD10 ontology. The initial
experiments we have performed in this direction have the objective of investigating the
synthetic neighborhood generation mechanism of DoctorXAI, improving it with the use
of Large Language Models (LLMs), trained to approximate the original data distribution.
LLMs show the potential of learning the original ontology directly from the data. This may
indicate that LLMs can be used both to perform predictions and to replicate ontology-based
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explanations using only the raw ICD data. A general schema of our approach is shown in
Figure 8.

Figure 8. General schema of DoctorXAI++.
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