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Abstract: ECG helps in diagnosing heart disease by recording heart activity. During long-term
measurements, data loss occurs due to sensor detachment. Therefore, research into the reconstruction
of missing ECG data is essential. However, ECG requires user participation and cannot be used for
continuous heart monitoring. Continuous monitoring of PPG signals is conversely low-cost and
easy to carry out. In this study, a deep neural network model is proposed for the reconstruction of
missing ECG signals using PPG data. This model is an end-to-end deep learning neural network
utilizing WNet architecture as a basis, on which a bidirectional long short-term memory network is
added in establishing a second model. The performance of both models is verified using 146 records
from the MIMIC III matched subset. Compared with the reference, the ECG reconstructed using
the proposed model has a Pearson’s correlation coefficient of 0.851, root mean square error (RMSE)
of 0.075, percentage root mean square difference (PRD) of 5.452, and a Fréchet distance (FD) of 0.302.
The experimental results demonstrate that it is feasible to reconstruct missing ECG signals from PPG.

Keywords: miss ECG reconstruction; electrocardiography; photoplethysmography; bidirectional
long short-term memory network; UNet

1. Introduction

An electrocardiography (ECG) signal is one of the most important bioelectrical signals
that is produced as a result of the cyclic contraction and expansion of the heart muscle [1].
An ECG signal is characterized by five peaks, P, Q, R, S, and T, which reflect the electrical
activity of the heart and can be measured using electrodes placed on the skin, thereby pro-
viding vital information for cardiovascular pathology [2]. Because ECG signals can directly
reflect cardiac electrophysiological processes, they have become essential for cardiologists
to diagnose cardiac arrhythmias and other cardiac diseases. ECG plays a vital role in
detecting various cardiovascular diseases and cardiac abnormalities by classifying various
virtual features. However, collecting ECG signals requires attaching electrode pads to the
body surface of a patient, as well as their active participation, so patient comfort is poor.
A PPG signal is a signal detected using photoelectric technology that can reflect changes
in the blood volume of peripheral blood vessels caused by cardiac activity. Methods for
its measurement have the advantages of portability and patient comfort [3]. During the
long-term measurement of ECG signals, there are two main problems: partial signal loss
due to sudden loosening of electrodes and damage due to motion artifacts and various
noises. In contrast, PPG is considered unobtrusive, low-cost, and convenient for continuous
monitoring. Although PPG technology has become popular in healthcare monitoring [4],
ECG remains the standard and fundamental method of measurement for medical diagno-
sis, with abundant supporting literature and research. It is known that the peak-to-peak
interval of PPG is highly correlated with the R-R interval (the time elapsed between two
consecutive R peaks) of ECG, suggesting the possibility of deriving ECG signals from
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PPG [3]. Therefore, based on these observations, we propose exploiting this correlation to
reconstruct the missing ECG signals directly from PPG measurements.

Some studies have used mathematics or deep learning techniques to reconstruct ECG
signals from PPG data. Three such examples are the discrete cosine transform (DCT) [5],
cross-domain joint dictionary learning (XDJDL) [6], and scattering wavelet transform
(SWT) [7] models, which have been proposed for reconstructing electrocardiograms from
PPG based on mathematical methods. The first two studies proposed linear regression
models using the correlation between PPG and ECG. However, the correlation between
ECG and PPG is not linear. The last study proposed a nonlinear model using the correlation
between PPG and ECG. The basis of these studies is the beat-to-beat reconstruction of
electrocardiograms from PPG. The accuracy of these methods depends on the accuracy of
the R wave in ECG and contraction seam extraction algorithms in PPG, which can reduce
the accuracy of ECG reconstruction. The computational parametric model [8], lightweight
neural network [9], deep learning models based on encoder–decoder [10], BiLSTM [11],
PPG2ECGps [12], P2E-WGAN [13], CardioGAN [14], Performer [15], transformed atten-
tional neural network [16], and banded kernel ensemble method [17] have been proposed
for reconstructing electrocardiograms from PPG based on deep learning methods. In [8],
the author proposed a computational parametric model that extracts features from PPG
to predict ECG parameters. Although their system estimates ECG parameters with over
90% accuracy on benchmark hospital datasets, the need for complete ECG waveform recon-
struction is a barrier to the widespread adoption of their system. Two studies [9,10] took
the beat-to-beat reconstruction of ECG from PPG as a basis, segmenting beats based on the
signal period during preprocessing. However, cycle alignment and segmentation result in
loss of temporal information, such as pulse transit time and heart rate variability, which
are essential clinical factors. Some studies [11–16] used segment reconstruction of ECG
signals from PPG as a basis. The models proposed in the first two studies targeted specific
subjects and could not be generalized to multiple subjects, representing a limitation. In [13],
the correlation coefficient between the reference and reconstructed electrocardiogram was
only 0.835. In [14–16], the authors used other evaluation metrics to verify the model
performance and did not calculate the correlation coefficient between the reference and
reconstructed electrocardiograms. In [17], the authors proposed a banded kernel ensemble
method to convert low-quality sources (PPG) into high-quality targets (ECG). Unlike the
solutions based on neural networks, this algorithm does not impose any computational
burden in the transformation task after obtaining the trained model. However, in all of
these studies, reconstruction was carried out when ECG signals were not missing.

There have been some studies on the reconstruction or prediction of missing physio-
logical signals. Two studies [18,19] involved the reconstruction or prediction of missing
PPG signals. In [18], missing segments were predicted using a personalized convolutional
neural network (CNN) and long short-term memory (LSTM) models using the short-term
history of the same channel data. In [19], the authors proposed a method for short-history
prediction of missing and highly corrupted data segments of time series PPG data based on
a recurrent neural network (RNN). Three studies [20,21] focus on predicting missing ECG
signals. In [20], the authors proposed an interpolation method based on parametric model-
ing to retrieve missing samples in ECG signals. In [21], the authors proposed the prediction
of missing segments of ECG signals based on a bidirectional long short-term memory
recurrent neural network (LSTM-RNN). Two studies [22,23] involved the reconstruction of
missing cardiovascular (ECG and PPG) signals. In [22], A novel method for reconstructing
damaged segments based on signal modeling is proposed. In [23], a model-based approach
is proposed to reconstruct corrupted or missing intervals of ECG signals acquired along
with PPG signals. However, these studies did not utilize the correlation between ECG and
PPG to reconstruct ECG signals. This study proposes a deep learning method to reconstruct
missing ECG signals from PPG measurements. In the existing PPG reconstructed ECG
model, there are no missing signals in the ECG signal in the training dataset. In this study,
however, the ECG signals are missing from the training set. Every recording of the ECG
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signal in this study was missing 1 s, 2 s, 3 s, or 4 s. This study proposes a neural network
model that combines a dual-UNet structure and a bidirectional long short-term memory
network. The performance of this model is validated using the MIMIC III matched subset.

2. Materials and Methods

This section discusses the dataset used in this study, the ECG and PPG signal pre-
processing procedures, the proposed deep neural network structure, and the metrics for
evaluation of model performance. Figure 1 is the flowchart for the model, with the training
and verification process shown in Figure 1a and the testing process in Figure 1b.

(a) Flowchart of training and validation

(b) Flowchart of testing

Figure 1. Flowchart for reconstructing missing ECG signals from PPG signals. ECG and PPG signals
were segmented into segments with 375 samples. The output of the learning model is a segment of
375 ECG samples. After stitching the ECG segments, a complete ECG signal is obtained.

2.1. Dataset

The data used to test the model in this study are from the MIMIC III matched subset [24].
The MIMIC III database contains a variety of physiological signals from intensive care unit
patients, with many records in this subset. In this study, 146 recordings were utilized from
various subjects, including lead II ECG and PPG signals. The sampling rate of both signals
is 125 Hz. The length of each record is 5 min.

2.2. Preprocessing

Data preprocessing includes filtering, alignment I, normalization, segmentation, dataset
splitting, and generation of missing data.

• Filtering. Filtering of the ECG and PPG signals. Through multidimensional compar-
ative analysis, Liang et al. [25] found that the fourth-order-type II Chebyshev filter
showed better filtering performance and significantly improved the signal quality index.
Therefore, a fourth-order Chebyshev bandpass filter is applied to the PPG signal with a
passband frequency of 0.5–10 Hz. Similarly, A fourth-order Chebyshev bandpass filter
was applied to the ECG signal with a passband frequency of 0.5–20 Hz. Since the
bandpass range of PPG is narrower than that of ECG, the passband frequency of the
ECG is selected as 0.5–20 Hz.

• Alignment I. Align the filtered ECG and PPG signals. Since there is a time lag (i.e., pulse
arrival time) between ECG and PPG, aligning the R-wave peak in the ECG signal
with the systolic peak in the PPG signal can remove the time lag. The R-wave peak
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in the ECG signal and the systolic peak in the PPG signal were detected using the
Pan–Tompkins method [26] and the block-based method [27], respectively. The third
contraction peak in the PPG signal is then aligned with the corresponding R peak in
the ECG signal. After the ECG and PPG are aligned, the PPG signal needs to move
forward so that the aligned ECG and PPG signals take less than 300 s.

• Normalization and Segmentation. After aligning the data, the PPG signal is scaled
to the range [0, 1]. Due to alignment, the length of signals will be less than 300 s. To
ensure that each record is the same length, we consider only the first 294 s of data and
ignore any data afterward. Specifically, each record is divided into 3 s.

• Dataset Splitting. The first 60% of each recording was used for training, the next 20%
was used for validation, and the remaining 20% was used for testing.

• Generation of Missing Data. To obtain missing ECG data, this study considered each
record with some loss. To verify the effectiveness of the model, this study tested each
record with a loss of 1 s, 2 s, 3 s, and 4 s. Figure 2 shows the 6 s segment of each ECG
missing either 1 s, 2 s, 3 s, or 4 s. Figure 3 shows the 6 s segment with no missing ECG
signal.

Figure 2. Missing ECG signal. (a) miss 1 s of ECG signal; (b) miss 2 s of ECG signal; (c) miss 3 s of
ECG signal; (d) miss 4 s of ECG signal.

Figure 3. No missing ECG signal. A 6 s segment of the ECG signal is shown.
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2.3. Model Architecture

The model structure of the proposed combination of WNet and BiLSTM is shown
in Figure 4. In Figure 4, the terms ‘Conv’, ‘ConvTrans’, and ‘Upsample’ represent a one-
dimensional convolution layer, a one-dimensional transposed convolution layer, and an up-
sampling layer, respectively. ‘Constantpad’ represents one-dimensional pads, which means
padding the input tensor bounds with a constant value. ‘ReLU’ and ‘Tanh’ refer to the activation
functions of the corresponding convolution layers. ‘BN’ represents a one-dimensional batch
normalization layer. ‘Dropout’ represents a dropout layer. ‘BiLSTM’ represents a bidirectional
long short-term memory layer. The slope of the ‘Dropout’ activation is set to 0.5.

Figure 4. The architecture of the proposed WNet-BiLSTM model. ‘Conv’, ‘ConvTrans’, and ‘Upsample’
represent a one-dimensional convolution layer, a one-dimensional transposed convolution layer, and
an upsampling layer, respectively. ‘Constantpad’ represents one-dimensional pads. ‘ReLU’ and ‘Tanh’
refer to the activation functions used in the corresponding convolution layers. ‘BN’ represents a one-
dimensional batch normalization layer. ‘Dropout’ represents a dropout layer. ‘BiLSTM’ represents
bidirectional long short-term memory. ’∗’ means multiplication.

As shown in Figure 4, the proposed WNet-BiLSTM model consists of two one-dimensional
convolutional UNet encoder–decoder structures [28] and a bidirectional long short-term mem-
ory network. In the proposed WNet-BiLSTM, one-dimensional convolutional layers are
followed by batch normalization [29] and ‘ReLU’ activation functions [30]. The last convo-
lutional layer of WNet-BiLSTM is directly activated by ‘Tanh’. Research on image analysis
has demonstrated the better performance of the method consisting of two U-blocks than
that with one [31,32]. The WNet model does not use pooling layers in the descent block but
uses one-dimensional convolutional layers. The kernel size and stride of the convolution are
set to 4 and 2, respectively. A one-dimensional transposed convolution layer is used in the
upsampling block. The kernel size and stride of the transposed convolutional layer are set to
4 and 2, respectively. Long short-term memory (LSTM) and bidirectional LSTM (BiLSTM) are
suitable for handling time series problems. BiLSTM models take longer than LSTM models to
reach equilibrium but provide better performance. The BiLSTM model can effectively solve
sequential and time series problems [33,34]. Research on generating ECG signals shows that
the BiLSTM model is robust in generating ECG signals [35]. In our study, WNet is first used
to reconstruct missing ECG signals from PPG. Compared with the WNet-BiLSTM model in
Figure 4, the WNet model structure only lacks the BiLSTM layer. Secondly, the WNet-BiLSTM
model reconstructs the ECG signal from PPG. Physiological signals (ECG, PPG) have time
rhythm features, and the BiLSTM layer can simultaneously extract contextual information
and bidirectional time rhythm features of the signal. Since the envelope of adjacent signals
mainly characterizes the rhythmic features of interbeat intervals, BiLSTM is applied between
the contraction and expansion paths of a specific downsampling block to characterize the
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signal envelope [36]. The dropout layer is added to improve the generalization ability of the
model and reduce overfitting.

2.4. Training Options

The WNet and WNet-BiLSTM models proposed in this study are trained using the Adam
optimizer. The neural network was trained for 500 epochs using a batch size of 128 pairs of
ECG and PPG fragments for all recordings. The learning rate is set to 0.001 and decays by
0.1 every 100 steps. All code was implemented in Python 3.9.16, and the neural network was
implemented using Pytorch 2.0.0. Both models were trained on a server with the following
configuration: CPU 11th generation Intel(R) Core(TM) i7-11700 @ 2.50 GHz and GPU NVIDIA
GeForce RTX 3060 Ti. The loss function used in this study is defined as follows:

Loss =
1
l

l

∑
i=1

(E(i)− Er(i))2 (1)

The Loss function uses the mean square error. E(i) and Er(i) represent the ith sample
points of the reference and reconstructed ECG signals, respectively. The variable l represents
the sample size of the reference ECG.

2.5. Stitching the Reconstructed ECG Segments and Alignment II

The neural network outputs reconstructed ECG segments that are 3 s in length, which
must be spliced together to form a continuous reconstructed ECG signal. When combining
two ECG segments, the second ECG segment is placed after the first. The spliced signal is
used as the first segment, and subsequent signal segments are further merged as the second
segment. This step is repeated until all test segments in the recording are connected. The
spliced ECG signals were aligned using cross-correlation. The primary intention of such
alignment is to improve the assessed similarity between the reconstructed ECG signal and
the reference signal.

2.6. Performance Evaluation

To evaluate the performance of the proposed model on both the reference ECG signal
and the reconstructed ECG signal, we use Pearson’s correlation coefficient (r) [37], root
mean square error (RMSE), Fréchet distance (FD) [38], and percentage root mean square
difference (PRD) for evaluation in the test set.

• Pearson’s correlation coefficient (r): Pearson‘s correlation coefficient is a statistical
measure used to evaluate the strength and direction of a linear relationship between
two variables. The absolute value of r is from 0 to 1. An absolute value of the
correlation coefficient close to 1 indicates a strong correlation, while an absolute value
close to 0 indicates a weak correlation. The formula for calculating r is

r = ∑l
i=1(E(i)− Ē)∑l

i=1(Er(i)− Ēr)

∑l
i=1(E(i)− Ē)2 ∑l

i=1(Er(i)− Ēr)2
(2)

In the given formula, E(i) and Er(i) represent the individual sample points of the
reference ECG signal and the reconstructed ECG signal, respectively, with both in-
dexed by i. The variable l represents the sample size of the reference ECG. The
symbols Ē and Ēr denote the mean value of the ECG signal and the reconstructed
ECG signal, respectively.

• Root mean square error (RMSE): Root mean square error (RMSE) is a metric used
to quantify the difference between a measured value of an ECG signal and its corre-
sponding reconstructed value. It evaluates the degree of deviation between predicted
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and actual values. The closer the value of RMSE is to zero, the smaller the deviation is
between the predicted and actual values. The formula for calculating RMSE is

RMSE =

√√√√1
l

l

∑
i=1

(E(i)− Er(i))2 (3)

• Percentage root mean square difference (PRD): Percentage root mean square difference
(PRD) is used to quantify the distortion between the ECG signal measurement E and
the reconstructed signal Er. The calculation formula of PRD is

PRD =

√
∑N

i=1(E(i)− Er(i))2

∑N
i=1 E(i)2

× 100 (4)

• Fréchet distance (FD): Fréchet distance (FD) is a measure that evaluates signal similarity
by analyzing the position and order of points on the electrocardiogram signal waveform
and synthesizing them into a curve. With this distance metric, the spatial arrangement
and order of the data points are considered when calculating the distance between two
curves, allowing for a more accurate assessment of the similarity between two time series
signals. The smaller the FD, the higher the similarity between the reference ECG signal
and its reconstructed ECG signal. The formula for calculating FD is

FD = min (max
i∈Q

(d(E(i), Er(i)))), Q = [1, m] (5)

The function d(∗) represents the Euclidean distance between two corresponding points
on the reference ECG signal and the reconstructed ECG signal curve. The variable
m represents the number of sampling points. The maximum distance under this
sampling is denoted as max

i∈Q
(d(E(i), Er(i))). The Fréchet distance is the value in the

sampling method that minimizes the maximum distance.

3. Results

After model training, we evaluated the reconstruction performance using test data. The
following results are obtained from the evaluation of the WNet and WNet-BiLSTM models on
the test set. The blue line in the figure represents the PPG signal, the black line represents the
reference ECG signal, and the red line represents the reconstructed ECG signal.

3.1. WNet Model Result

We first verify the performance of the WNet model when 1 s, 2 s, 3 s, and 4 s of ECG
data are missing. Figure 5 shows the model input, which is the PPG signal. Figure 6 shows
the experimental results for 1 s and 2 s of missing ECG signals. Figure 6a is a comparison
of the reference and reconstructed electrocardiograms when there is 1 s of missing ECG
signal. Figure 6c shows a comparison of the reference and reconstructed ECG signals
aligned using cross-correlation in Figure 6a. Figure 6b corresponds to the reference and
ECG signals when there is 2 s of missing ECG signal. Figure 6d compares the reference
and the reconstructed ECG signals after alignment using cross-correlation, as shown in
Figure 6b. When 1 s of ECG signal is missing, the r, RMSE, PRD, and FD values of the
reconstructed and reference ECG signals are 0.923, 0.055, 3.896, and 0.153, respectively.
After cross-correlation alignment, the r, RMSE, PRD, and FD values of the reconstructed
and reference ECG signals were 0.954, 0.043, 3.034, and 0.153, respectively. When the 2 s
of ECG signal is missing, the r, RMSE, PRD, and FD values of the reconstructed ECG and
reference ECG are 0.932, 0.052, 3.731, and 0.139, respectively. After using cross-correlation
alignment, the r, RMSE, PRD, and FD values of the reconstructed and reference ECG signals
were 0.953, 0.043, 3.103, and 0.139, respectively.
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Figure 5. Model input: PPG signal.

Figure 6. Reconstruction results for 1 s and 2 s of missing ECG signals: (a,b) represent the recon-
structed missing ECG results at 1 s and 2 s, respectively; (c,d) represent the experimental results
of (a,b) using cross-correlation alignment, respectively; r, RMSE, PRD, and FD represent Pearson’s
correlation coefficient, root mean square error, percentage root mean square difference, and Fréchet
distance. The black line represents the actual ECG signal (the reference ECG signal). The red line
represents the reconstructed ECG signal.

Figure 7 shows the experimental results when 3 s and 4 s of ECG signals are missing.
Figure 7a shows a comparison of the reference and reconstructed electrocardiograms
when there are 3 s of missing ECG signal. Figure 7c is a comparison of the reference
and reconstructed ECG signals aligned using cross-correlation in Figure 7a. Figure 7b
corresponds to the reference and reconstructed ECG signals when there is 4 s of missing
ECG signal. Figure 7d compares the reference and the reconstructed ECG signals after
alignment using cross-correlation, as shown in Figure 7b. When 3 s of ECG signal is missing,
the r, RMSE, PRD, and FD values of the reconstructed and reference ECG signals are 0.927,
0.053, 3.848, and 0.169, respectively. After using cross-correlation alignment, the r, RMSE,
PRD, and FD values of the reconstructed and reference ECG signals were 0.955, 0.042, 3.042,
and 0.169, respectively. When 4 s of ECG signal is missing, the r, RMSE, PRD, and FD
values of the reconstructed and reference ECG signals are 0.939, 0.049, 3.561, and 0.180,
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respectively. After using cross-correlation alignment, the r, RMSE, PRD, and FD values of
the reconstructed and reference ECG signals were 0.949, 0.044, 3.244, and 0.180, respectively.

Figure 7. Reconstruction results for 3 s and 4 s of missing ECG signals: (a,b) represent the recon-
structed missing ECG results at 3 s and 4 s, respectively; (c,d) represent the experimental results
of (a,b) using cross-correlation alignment, respectively; r, RMSE, PRD, and FD represent Pearson’s
correlation coefficient, root mean square error, percentage root mean square difference, and Fréchet
distance. The black line represents the actual ECG signal (the reference ECG signal). The red line
represents the reconstructed ECG signal.

Figure 8. Comparison of ECG reconstruction performance for Experiments I, II, III, and IV. The
statistics of (a) Pearson’s correlation coefficient r, (b) root mean square error (RMSE), (c) percentage
root mean square difference (PRD), and (d) Fréchet distance (FD) are summarized in the box plots.
The red wireframe represents the experimental results when 1 s, 2 s, 3 s, and 4 s of ECG signals are
missing, and the blue wireframe represents the experimental results when 1 s, 2 s, 3 s, and 4 s of ECG
signals are missing after using cross-correlation.
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From Figures 6 and 7, it can be determined that when 1 s, 2 s, 3 s, and 4 s of ECG
signals are missing, the r values of the reference and reconstructed ECG signals are 0.923,
0.932, 0.927, and 0.939, respectively. When there are 4 s of ECG signal missing, the r value
for the reference and reconstructed ECG signals is the highest. After cross-correlation
alignment, the r values of both the reference and reconstructed ECG signals increase to a
certain extent when there are 1 s, 2 s, 3 s, and 4 s of missing ECG signals.

Figure 8 is a box plot of the Pearson correlation coefficient, RMSE, PRD, and FD for 1 s, 2 s,
3 s, and 4 s of missing ECG signals. Here, the red wireframe represents the experimental
results when 1 s, 2 s, 3 s, and 4 s of ECG signals are missing, and the blue wireframe represents
the experimental results when 1 s, 2 s, 3 s, and 4 s of ECG signals are missing after using cross-
correlation. The dots and horizontal lines represent the mean and median values, respectively.
Experiments I, II, III, and IV represent 1 s, 2 s, 3 s, and 4 s of missing ECG signals, respectively.
As can be seen from Figure 8, the mean ranges of r, RMSE, PRD, and FD of the reference and
reconstructed ECG signals are [0.8, 0.9], [0.05, 0.1], [4, 6], and [0.2, 0.4], respectively. Figure 8
shows a more intuitive representation of the overall distribution of the model performance
indicators when missing 1 s, 2 s, 3 s, and 4 s of ECG signals.

Table 1. Comparison of the WNet model performance when 1 s, 2 s, 3 s, and 4 s of ECG signal are missing.
Note: NR stands for not reported. r, RMSE, FD, and PRD represent Pearson’s correlation coefficient,
root mean square error, Fréchet distance, and percentage root mean square difference, respectively.

Missing Data Length Alignment r RMSE PRD FD

Experiment I 1 s No 0.825 ± 0.110 0.081 ± 0.038 5.865 ± 1.674 0.297 ± 0.154
Yes 0.851 ± 0.077 0.075 ± 0.034 5.452 ± 1.403 0.302 ± 0.157

Experiment II 2 s No 0.824 ± 0.113 0.081 ± 0.038 5.857 ± 1.673 0.291 ± 0.161
Yes 0.849 ± 0.085 0.076 ± 0.034 5.457 ± 1.418 0.294 ± 0.164

Experiment III 3 s No 0.820 ± 0.112 0.082 ± 0.038 5.948 ± 1.697 0.303 ± 0.162
Yes 0.845 ± 0.083 0.077 ± 0.034 5.545 ± 1.447 0.307 ± 0.165

Experiment IV 4 s No 0.823 ± 0.106 0.081 ± 0.038 5.985 ± 1.724 0.309 ± 0.145
Yes 0.848 ± 0.080 0.076 ± 0.034 5.581 ± 1.508 0.314 ± 0.151

Table 1 shows the performance results of the WNet model when 1 s, 2 s, 3 s, and 4 s of
ECG signals are missing. It can be determined from Table 1 that there is little difference in
the r value of the reference and reconstructed ECG signals when the 1 s, 2 s, 3 s, and 4 s
of ECG signals are missing. After using cross-correlation alignment, the r values of both
the reference and reconstructed ECG signals increased by 0.25. Thus, the WNet model can
reconstruct missing ECG signals from PPG, and the model performance is improved to a
certain extent following cross-correlation alignment.

3.2. WNet-BiLSTM Model Result

In this section, we verify the performance of the WNet-BiLSTM model when 1 s, 2 s, 3 s, and 4 s
of ECG data are missing. Figure 9 is the input PPG signal. Figure 10 shows the experi-
mental results for 1 s and 2 s of missing ECG signals. Figure 10a,c shows the reference
and reconstructed ECG signals without and with cross-correlation alignment, respectively,
when there is 1 s of missing ECG signal. Figure 10b,d show the reference and reconstructed
ECG signals without and with cross-correlation alignment, respectively, when there are 2 s
of missing ECG signal. When there is 1 s of missing ECG signal, the r, RMSE, PRD, and
FD values of the reconstructed and reference ECG signals are 0.865, 0.074, 5.177, and 0.149,
respectively. After alignment using cross-correlation, the r, RMSE, PRD, and FD values of
the reconstructed and reference ECG signals were 0.959, 0.043, 3.021, and 0.149, respectively.
When there are 2 s of missing ECG signal, the r, RMSE, PRD, and FD values of the recon-
structed and reference ECG signals are 0.883, 0.068, 4.825, and 0.180, respectively, and after
using cross-correlation alignment, the r, RMSE, PRD, and FD values of the reconstructed
and reference ECG signals are 0.954, 0.043, 3.025, and 0.180, respectively.
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Figure 9. Input PPG signal.

Figure 10. Reconstruction results for 1 s and 2 s of missing ECG signals: (a,b) represent the recon-
structed missing ECG results at 1 s and 2 s, respectively; (c,d) represent the experimental results
of (a,b) using cross-correlation alignment, respectively. r, RMSE, PRD, and FD represent Pearson’s
correlation coefficient, root mean square error, percentage root mean square difference, and Fréchet
distance. The black line represents the actual ECG signal (the reference ECG signal). The red line
represents the reconstructed ECG signal.

Figure 11 shows the experimental results when missing 3 s and 4 s ECG signals.
Figure 11a,b is the reference ECG and reconstructed ECG with missing 3 s and 4 s ECG
signals. Figure 11b,d is the reference ECG and reconstructed ECG aligned using cross-
correlation in Figure 11a,b. The missing 3 s ECG signal uses cross-correlation alignment,
and the r of the reference ECG and reconstructed ECG increases from 0.862 to 0.953. The
missing 4 s ECG signal uses cross-correlation alignment, and the r of the reference ECG
and reconstructed ECG increases from 0.884 to 0.955.

It can be seen from Figures 10 and 11 that when 1 s, 2 s, 3 s, and 4 s of ECG signals are
missing, the r values of the reference and reconstructed ECG signals are 0.865, 0.883, 0.862,
and 0.884, respectively. When 4 s of ECG signal are missing, the r value of the reference and
reconstructed ECG signal is the highest. When 1 s, 2 s, 3 s, and 4 s of ECG signals are missing,
the use of cross-correlation alignment improves the effect of ECG signal reconstruction.
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Figure 11. Reconstruction results for 3 s and 4 s of missing ECG signals: (a,b) represent the recon-
structed missing ECG results at 3 s and 4 s, respectively; (c,d) represent the experimental results
of (a,b) using cross-correlation alignment, respectively. r, RMSE, PRD, and FD represent Pearson’s
correlation coefficient, root mean square error, percentage root mean square difference, and Fréchet
distance. The black line represents the actual ECG signal (the reference ECG signal). The red line
represents the reconstructed ECG signal.

Figure 12. Comparison of ECG reconstruction performance for Experiments I, II, III, and IV. The
statistics of (a) Pearson’s correlation coefficient r, (b) root mean square error (RMSE), (c) percentage
root mean square difference (PRD), and (d) Fréchet distance (FD) are summarized in the box plots.
The red wireframe represents the experimental results when 1 s, 2 s, 3 s, and 4 s of ECG signals are
missing, and the blue wireframe represents the experimental results when 1 s, 2 s, 3 s, and 4 s of ECG
signals are missing after using cross-correlation.
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Figure 12 is a box plot of the r, RMSE, PRD, and FD in the absence of
1 s, 2 s, 3 s, and 4 s of ECG signals. Here, the red wireframe represents the experimental
results when 1 s, 2 s, 3 s, and 4 s of ECG signals are missing, and the blue wireframe
represents the experimental results when 1 s, 2 s, 3 s, and 4 s of ECG signals are missing
after using cross-correlation. The dots and horizontal lines represent the mean and median
values, respectively. Experiments I, II, III, and IV represent 1 s, 2 s, 3 s, and 4 s of missing
ECG signals, respectively. Figure 12 shows a more intuitive representation of the overall
distribution of model performance indicators when 1 s, 2 s, 3 s, and 4 s of ECG signals
are missing.

Table 2 shows the performance results of the WNet-BiLSTM model when 1 s, 2 s, 3 s, and 4 s
of ECG signal are missing. As can be seen from Table 2, when 1 s, 2 s, 3 s, and 4 s of ECG
signals are missing, the r values of the reference and reconstructed ECG signals change. Using
cross-correlation alignment, the r values of both the reference and reconstructed ECG signals
improved. Thus, the WNet-BiLSTM model can reconstruct missing ECG signals from PPG, with
better model performance after cross-correlation alignment.

Table 2. Comparison of the UNet-BiLSTM model performance, with and without alignment of the
reconstructed with the reference ECG signal, and with and without alignment of the ECG signal with
PPG. Note: NR stands for not reported. r, RMSE, FD, and PRD represent Pearson’s correlation coefficient,
root mean square error, Fréchet distance, and percentage root mean square difference, respectively.

Missing Data Length Alignment r RMSE PRD FD

Experiment I 1 s No 0.817 ± 0.102 0.084 ± 0.038 5.984 ± 1.543 0.258 ± 0.149
Yes 0.845 ± 0.076 0.0758± 0.034 5.535 ± 1.377 0.259 ± 0.150

Experiment II 2 s No 0.820 ± 0.107 0.083 ± 0.039 5.976 ± 1.646 0.288 ± 0.168
Yes 0.846 ± 0.079 0.077 ± 0.034 5.554 ± 1.436 0.289 ± 0.165

Experiment III 3 s No 0.818 ± 0.102 0.084 ± 0.039 6.048 ± 1.724 0.292 ± 0.155
Yes 0.843 ± 0.081 0.078 ± 0.035 5.642 ± 1.624 0.297 ± 0.159

Experiment IV 4 s No 0.809 ± 0.107 0.085 ± 0.039 6.149 ± 1.813 0.304 ± 0.171
Yes 0.833 ± 0.089 0.080 ± 0.036 5.755 ± 1.721 0.304 ± 0.173

4. Discussion

As far as we know, only several articles have investigated missing ECG signals [20–23].
A study proposes an interpolation method based on parametric modeling to recover lost
segments of ECG signals [20]. A study proposed to predict missing segments of ECG
signals based on bidirectional long short-term memory recurrent neural networks [21]. A
study proposes a method to reconstruct damaged segments based on signal modeling [22].
The signals reconstructed here are physiological signals (ECG and PPG). However, they
all only use ECG to predict or recover missing ECG segments. One study proposed a joint
model of ECG and PPG to reconstruct ECG signals [23]. In this study, the inputs to the
model were ECG and PPG signals, and the output was the ECG signal. However, this study
only inputs the PPG signal into the model. As far as we know, there is currently no method
to reconstruct missing ECG signals from PPG.

In this study, the proposed WNet and WNet-BiLSTM models are used to reconstruct
missing ECG signals from PPG. Both models perform well in reconstructing the missing
ECG signals. It can be seen from Table 1 that the WNet model has the best reconstruction
effect when 1 s of ECG signal is missing. Specifically, when the 1 s ECG signal is missing in
the reconstruction, the Pearson’s correlation coefficient (r), root mean square error (RMSE),
percentage root mean square difference (PRD), and Fréchet distance (FD) of the reference
ECG and reconstructed ECG are 0.825, 0.081, 5.865, and 0.297, respectively. The Pearson’s
correlation coefficient (r), root mean square error (RMSE), percentage root mean square
difference (PRD), and Fréchet distance (FD) of the reference ECG and reconstructed ECG
after using cross-correlation are 0.851, 0.075, 5.452, and 0.302, respectively. It can be seen from
Table 2 that the WNet-BiLSTM model has the best reconstruction effect when 2 s of ECG
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signal are missing. Specifically, when the 1 s ECG signal is missing in the reconstruction, the
Pearson’s correlation coefficient (r), root mean square error (RMSE), percentage root mean
square difference (PRD), and Fréchet distance (FD) of the reference ECG and reconstructed
ECG are 0.820, 0.083, 5.976, and 0.288, respectively. The Pearson’s correlation coefficient (r),
root mean square error (RMSE), percentage root mean square difference (PRD), and Fréchet
distance (FD) of the reference ECG and reconstructed ECG after using cross-correlation are
0.846, 0.077, 5.554, and 0.289, respectively.

A comparison of the performance of the two models in Tables 1 and 2 demonstrates
that the WNet performs better than the WNet-BiLSTM model. Adding a BiLSTM layer did
not improve the model performance. Using cross-correlation alignment on the ECG signals
input to the model significantly improves the model performance.

In [23], a comparison of the reconstructed ECG signal and the reference ECG signal
and a box plot of the absolute error are given. It is aimed at a single signal model and only
gives a box plot of the absolute error without providing a specific value. This study focuses
on the group model, and four evaluation indicators are presented to verify the model’s
performance. In [23], the inputs are ECG and PPG. In this study, ECG can be reconstructed
by inputting only PPG. Therefore, the two studies cannot be compared. However, this
study has a broader applicable scope than [23].

While the two models demonstrated enhanced reconstruction of missing ECG signals,
they still have limitations, as discussed below.

• The correlation coefficient for the ECG signal of the reference and that reconstructed
using the model proposed in this study is only 0.851. In subsequent studies, the model
will be improved to obtain better model performance.

• The data used in this study are considered to have missing signals, but the actual missing
signals may be more complex. Thus, the application of the model has certain limitations.
In subsequent studies, real missing ECG signals should be used for reconstruction.

• Previous work has shown that the QRS complex is more important than the P and T
peaks [35]. The amplitude of the R peak in the reconstructed ECG is often smaller than
the true value. The loss function in this study cannot reconstruct the ECG more accurately
when using only the mean square error. Therefore, in subsequent research, QRSloss can
be introduced into the loss function to verify the performance of the model.

• Figure 13 is an arrhythmia signal selected from the data. The current dataset contains
arrhythmias and normal arrhythmias. In the study, the dataset was not divided into
normal and arrhythmias. In future research, we will study the correlation mechanism
between photoplethysmography and electrocardiogram signals under arrhythmias
and explore the correlation between the periodic and morphological changes in elec-
trocardiogram and photoplethysmography under different types of arrhythmias.

Figure 13. Arrhythmia ECG signal.
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5. Conclusions

In this study, a WNet model consisting of two U-shaped structures is first proposed.
Then, a bidirectional long short-term memory network is added to the WNet model in
establishing a second model. These two models are used to reconstruct missing ECG signals
from PPG. The input for our proposed model is the PPG signal of the 3 s segment, and the
output is the ECG signal of the 3 s segment. Cross-correlation alignment is used after the
model splices the output ECG signals. In order to verify the performance of the model, this
study compared the performance for 1 s, 2 s, 3 s, and 4 s of missing ECG signals. At the
same time, the model performance before and after using cross-correlation alignment was
compared. The experimental results show that it is possible to reconstruct the missing ECG
signals from PPG.
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