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Powered by biomedical data mining and machine learning technologies, smart health-
care uses cutting-edge medical innovative tools to facilitate the development of sophisti-
cated decision support systems for disease diagnosis and health informatics. By analyzing
large medical datasets, biomedical data mining and machine learning technologies enable
the smart healthcare systems to identify subtle patterns and correlations that may be missed
by human observation, which helps predict the likelihood of disease progression based
on previous medical history and provide early intervention and personalized treatment
plans. The smart healthcare systems can also analyze the real-time data of physiological
conditions of patients from different sources, such as electronic health records, electrophys-
iological signals, imaging, and genomic data, to provide clinicians with accurate treatment
recommendations, drug interactions, and potential adverse effects.

Since the end of 2019, the COVID-19 pandemic has made a significantly impact on
global public health. The mutation and highly contagious nature of the SARS-CoV-2 virus
caused rapid spread of interpersonal COVID-19 infections all over the world, resulting in
widespread economic recessions and disruptions of social activities. During the early stages
of the COVID-19 pandemic, hospitals and clinics were inundated with patients, leading to
shortages of essential medical supplies. This situation calls for robust contingency plans
and stockpiles of critical resources to respond effectively to public health emergencies.

The signs and symptoms of COVID-19 include dry cough, fever, pneumonia, lym-
phopenia, fatigue, myalgia, dyspnea, sneezing, and chills. The early detection and diagnosis
of COVID-19 played pivotal roles in monitoring the pandemic’s progression and informing
on public health circumstances. Timely identification of infected cases enabled prompt
implementation of some control strategies, such as isolation, social distancing, contact
tracing, and quarantining, to reduce viral transmission within communities. When the
infected individuals were identified, immediate isolation was an effective way to prevent
further infections in the broader community. Timely diagnosis ensures that infected in-
dividuals receive appropriate medical care for early intervention to reduce the risk of
severe symptoms. In this case, the limited healthcare resources, such as hospital beds,
personal protective equipment, ventilators, and intensive care unit (ICU) admissions, could
be allocated more effectively. Early detection and diagnosis of COVID-19 can allow for
the identification of high-risk groups, for example, the elderly or those with underlying
health conditions, who could be more susceptible to severe COVID-19 complications. This
ensures the appropriate targeted interventions and preventive strategies are considered to
protect the high-risk population.

Several COVID-19 detection techniques have been developed and regularly used in prac-
tice [1–3]. The prevailing detection methods include reverse transcription-polymerase chain
reaction (RT-PCR), reverse transcriptase-loop-mediated amplification (RT-LAMP), immunoassay
antibody detection for point-of-care testing (POCT), biosensor-based detection, radiography
imaging screening, and acoustic detection based on cough and breathing sounds [1–3].

The RT-PCR technique is a specialized form of PCR specifically designed for the detection
of RNA molecules [1]. Such a technique is reliable and able to handle a high volume of samples
simultaneously and produce results within a few hours. RT-PCR became the benchmark
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detection method for SARS-CoV-2; because it directly measures the presence of viral genetic
material, RT-PCR could provide higher sensitivity and accuracy than alternative methods
detecting viral antigens or antibodies. The RT-PCR process mainly involves two consecutive
reactions: first, the RNA is converted into complementary DNA by reverse transcriptase;
second, the polymerase chain reaction amplifies the complementary DNA samples using gene-
specific primers, illustrating the presence of the target gene through the use of fluorescently
labeled TaqMan hydrolysis probes. Although RT-PCR has been extensively used as the gold
standard diagnostic method for the diagnosis of COVID-19, concerns are still being raised for
tackling its potential limitations and maintaining confidence in the testing results [1].

The RT-LAMP technique is an alternative COVID-19 diagnosis method that could
meet the demand for rapid, robust, and highly sensitive testing [1]. The RT-LAMP reaction
requires four to six primers and occurs at the temperature range of 60–65 ◦C, ensuring
its testing accuracy and efficiency. With a single-step reverse transcription reaction of
unpurified RNA, the LAMP reaction could significantly accelerate sample processing and
reduce the overall reaction time for viral detection (less than approximately 2 h compared
to the RT-PCR testing time) [1].Both RT-PCR and RT-LAMP can be used for viral infection
chain tracing, and novel biomedical data mining methods would work effectively to identify
the possible spread of COVID-19 infections in communities.

COVID-19 could also be identified through antigen and antibody tests, which are also
referred to as POCT detection [2]. According to immunology principles, the presence of the
SARS-CoV-2 antigen indicates an active viral infection. But antigen density depends on individual
immune reactions. In screening practice, the antibody-based detection of SARS-CoV-2 is more
sensitive than antigen-based detection. The detection of immunoglobulins M (IgM) and G (IgG)
are most commonly used for screening of SARS-CoV-2 antibodies. During the viral infection,
IgG concentrations in the serum significantly exceed those of IgM. Therefore, immunoassays,
such as enzyme-linked immunosorbent assays (ELISAs) and lateral immunoassays in the form of
colloidal gold or immunofluorescence, can be effectively utilized for SARS-CoV-2 detection [2].

Radiology examinations such as chest X-ray or lung computed tomography are also
effective methods used for diagnosis of COVID-19 [3]. The CT imaging features associated
with COVID-19 infection include ground-glass opacities (the presence of hazy, non-specific
areas of increased lung density), patchy and peripheral regions of the lungs, and asymmetric
opacities areas between the left and right lung. Manual screening of CT images is time
consuming, and the recently developed artificial intelligence and machine learning methods
have been effectively utilized for identification of COVID-19 signs and monitoring the
progression of the disease. The topics of advanced image analysis methods of X-ray or CT
images falls into the scope of this Special Issue.

Recent studies have provided some evidence that the respiratory patterns such as
breathing, coughs, or vocal sounds of patients infected with COVID-19 are altered and
distinct from those of healthy individuals [3,4]. Therefore, the respiratory signal processing
and auscultation data analysis techniques can be effectively applied to distinguish the
pathological patterns of speech recordings acquired by stethoscope or acoustic sensors.
Advanced machine learning algorithms and deep learning models are promising to identify
the subtle changes in breathing and cough patterns related to viral infection. This Special
Issue plans to feature the latest research works on pathological speech pattern analysis
related to respiratory diseases and dysphonia.

Surveys have shown that many COVID-19 survivors continue to suffer from long
COVID even after initial recovery from SARS-CoV-2 infection [4,5]. Long COVID refers to
a multi-system disease with symptoms that may last several years or even a lifetime [4]. In
general, symptoms of long COVID include fatigue, muscle pain, palpitations, cognitive
impairment, dyspnoea, anxiety, chest pain, and arthralgia [5]. The persistence and diversity
of these long-term neo-coronavirus symptoms reflect chronic damage to multiple organ
systems, placing significant burden on the quality of life for COVID-19 survivors.

The pathophysiology of long COVID involves multiple aspects [4]. In the respiratory
system, SARS-CoV-2 initially infects the alveolar epithelial cells, potentially triggering a chronic
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inflammatory response leading to the sustained production of inflammatory cytokines and
reactive oxygen species. This chronic inflammation may cause fibrotic changes in lung tissue,
impairing lung function. A proportion of COVID-19 survivors exhibit signs of respiratory
distress, lung damage, breathing difficulties, or reduced exercise capacity. To address the respi-
ratory sequelae of long COVID, smart healthcare systems could integrate multiple diagnostic
tools and technologies, including advanced sensors for lung function tests; high-resolution
lung CT imaging to assess fibrosis and inflammation; wearable devices like smartwatches for
monitoring vital signs; and machine learning models to analyze extensive medical data for
disease pattern recognition, prognosis prediction, and personalized treatment suggestions. Such
smart healthcare solutions could provide comprehensive assessment and monitoring, aiding in
improving treatment outcomes and quality of life for COVID-19 survivors.

Long COVID can also lead to some cardiovascular disorders [4]. The ACE2 receptors on
cardiomyocytes provide a pathway for SARS-CoV-2 infection, potentially leading to myocardi-
tis and cell death. Chronic inflammation and cellular damage may result in cardiac fibrosis,
increasing the risk of arrhythmias and coagulation disorders. Autonomic nervous system
inflammation can lead to postural orthostatic tachycardia syndrome (POTS). Studies have
indicated that COVID-19 patients may experience persistent myocardial inflammation and
cardiac damage, including those not hospitalized. The monitoring of cardiovascular sequelae
could be implemented with continuous heart activity tracking with smart echocardiogram
devices, along with arrhythmia detection by using high-precision sensors. Advanced imaging
techniques like echocardiography, powered by deep learning algorithms, could be used to
analyze images and identify signs of myocarditis or other cardiac damage.

Dysfunction of the central nervous system (CNS) is another characteristic of long
COVID-19 [6]. Chronic neuroinflammation may cause neurodegenerative diseases, because
SARS-CoV-2 can cross the blood–brain barrier, further promoting neuroinflammation in
brain tissue. Such an inflammatory and hypercoagulable state could increase the risk of
thrombotic events and cause autonomic nervous system dysfunction. Dysfunction of the
CNS in the brain may result in long-term cognitive impairments and other neuropsychiatric
symptoms like chronic malaise, sleep disturbances, loss of taste and smell, and post-
traumatic stress disorder. Machine learning algorithms can assist in the analysis of magnetic
resonance imaging or CT scans to identify the subtle abnormal changes and potential
inflammatory regions in the brain structure. Long-term EEG monitoring could be used
to detect abnormal neurological patterns for comprehensive assessment and personalized
treatment to improve prognosis and quality of life.

In addition, long COVID can also affect other organs such as the kidneys, pancreas,
and gastrointestinal tract [4]. Excessive inflammation in the renal tissue may lead to
glomerulosclerosis and reduced kidney function. Pancreatitis and systemic inflammation
can impair pancreatic function, while changes in the gastrointestinal system may result
in microbiome imbalances and damage to gastrointestinal integrity. With smart medical
diagnostic tools, physicians can comprehensively assess and manage the renal, pancreatic,
and gastrointestinal sequelae in long COVID patients, offering more precise medical care.

This Special Issue is dedicated to leveraging biomedical data mining and machine learn-
ing technologies to delve into the pathophysiological mechanisms of this multisystem disease,
as well as the long-term repercussions of COVID-19. These advanced technologies can assist
in the precise monitoring and prediction of the clinical features of long COVID and effectively
discover key clinical factors, laying a solid foundation for the development of scientifically
rigorous and multidisciplinary integration of treatment plans. By integrating innovative
biomedical data mining and machine learning technologies, smart healthcare systems can
provide more accurate and efficient diagnostic solutions [7] and treatment opportunities [8],
aiming towards the purpose of significantly improving overall healthcare quality and reha-
bilitation outcomes [9]. In this Special Issue, we strive to highlight the recent development
of biomedical data mining and machine learning technologies for the diagnosis of infectious
diseases and chronic diseases; the topics also cover the theoretical advances and practical ap-
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plications of deep learning neural network architectures for physiological signal measurement
and data analysis [10].
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