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Abstract: In recent years, the proliferation of wearable healthcare devices has marked a revolutionary
shift in the personal health monitoring and management paradigm. These devices, ranging from
fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have
also transformed the way individuals engage with their health data. By continuously monitoring
health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels,
wearable technology offers insights into human health, enabling a proactive rather than a reactive
approach to healthcare. This shift towards personalized health monitoring empowers individuals
with the knowledge and tools to make informed decisions about their lifestyle and medical care,
potentially leading to the earlier detection of health issues and more tailored treatment plans. This
review presents the fabrication methods of flexible wearable healthcare devices and their applications
in medical care. The potential challenges and future prospectives are also discussed.

Keywords: flexible wearable devices; flexible substrates; healthcare monitor; self-healing materials;
vital signal

1. Introduction

Due to the increasing concern about health and the scarcity of medical labor, the
need for real-time and rapid diagnostic tests is becoming increasingly apparent [1–3].
Wearable sensors have shown strong application potential in the medical field, such as
real-time monitoring, in vitro diagnosis, body composition analysis, and energy harvesting,
obtaining detailed information about the body and helping doctors to diagnose patients
and carry out accurate and timely treatment [4,5]. Wearable sensors provide a novel and
convenient means of diagnosis and treatment and, to a certain extent, reduce the high cost
of hospitalization and the number of visits to the hospital and also, for some patients who
are afraid of hospitals, provide a reassuring measurement means to obtain an accurate
heart rate, blood pressure, and other data.

Basically, wearable sensors can be divided into two categories: (a) physical sensors
and (b) chemical sensors [6]. Biosensors are an emerging interdisciplinary field in which a
wide range of technologies can be found. However, it has also been reported that wearable
electrochemical sensors have attracted less attention than physical sensors over the past
decade [7]. Most biosensors directly measure changes in physical quantities, such as strain,
pressure, displacement, velocity, and acceleration, etc.

Thanks to the rapid development of engineering technology, electronic technology
has expanded wearable healthcare device measurement and application range. Flexible
wearable devices have three main parts: a substrate, an active element, and an electrode [8].
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From early rigid biosensors to later flexible sensors that can be attached to jagged skin
surfaces, wearability is no longer limited to specific areas of the human body. Most of these
devices can be worn in the teeth, mouth, neck, chest, arms, wrists, ankles, legs, and other
areas, and can continuously provide real-time monitoring of various body information,
including temperature, heart rate, blood oxygen, blood pressure, calorie consumption,
step count, gestures, swallowing and so on. In addition, some wearable sensors can be
directly fixed onto clothing [5]. Due to the diversity of human skin, sweaty environments,
stretching, and strenuous exercise, wearable sensors must overcome these challenges. It
is crucial to choose a suitable material, which requires softness, stretchability, comfort,
portability, breathability, good biocompatibility, and cost economy [9]. These materials
offer wearable healthcare devices a broader range of applications.

At present, many reviews have reported on wearable sensors, but the details of the
materials and applications still need to be integrated. In addition, the rapid development
of materials in recent years has also promoted research outcomes of multiple types of
biosensor devices based on multiple detection principles in the healthcare field and it is
necessary to organize and review them. In this review, we analyze the types of materials,
such as polymers, liquid metals, composites, etc., used in wearable medical sensor devices
and report current research hotspots on biodegradable materials and self-healing materials
in detail. We introduce their definition, performance, advantages, potential applications,
and challenges. In addition, we report on the latest applications of wearable devices over
the past few years, introducing the principles of wearable devices and their applications
in healthcare. In the final section, we present the challenges and potential problems of
wearable devices. We expect this review to generate widespread interest and promote the
development of wearable sensors in multi-disciplinary fields.

2. Materials and Methods

Manufacturing flexible wearable sensors is limited by material and film thickness.
Functional printing technologies are commonly used to process flexible sensors, including
inkjet printing, roll-to-roll gravure printing, screen printing, 3D printing, stamp printing,
and lithography. In recent years, there has been extensive coverage of these technolo-
gies [10–17].

Wearable biosensors are in direct or indirect contact with the skin during use, which
requires that the material does not pose an additional threat to health and ensures comfort.
Most wearable sensors are in direct contact with the skin for a long time, and biocompati-
bility also needs to be considered [18]. Biocompatibility is a property of living tissue that
reacts to an inactive material, generally referring to the compatibility between the material
and the host, according to the International Standards Organization (ISO). Substrate is the
key to sensor comfort and materials such as metal foil, polymer, silicone, rubber, and so
on are commonly used [6,19–22]. In general, the materials of biosensors can be divided
into: (1) inorganic materials based on metal, carbon, and oxide materials; (2) organic mate-
rials such as polymers, small molecules, and natural biomaterials; (3) compound/mixed
material in order to realize the function and structure of complementary properties [23].
However, inorganic materials tend to lack mechanical flexibility, and organic materials also
face the challenges of poor stability and potential health threats [24]. In addition, wearable
biosensors based on active nanomaterials need to focus on biocompatibility to determine
the host’s immune response to the material and dose issues under different contact methods
such as skin contact, wound contact, and microneedle invasion, etc.

This section will introduce the representative substrate materials for wearable, flexible
devices, including polymer categories such as polydimethylsiloxane (PDMS), polyimide
(PI), and polyurethane (PU), as well as environmentally friendly degradable materials and
self-healing materials, which have been the focus of research in recent years.

With the rapid development of polymers in recent years, a variety of biosensors
based on synthetic polymers have been manufactured, thanks to their excellent flexibility,
energy supply, and electrical conductivity. Polymers used in biosensors can be divided into
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thermoplastic polymers, thermosetting polymers, elastomers, liquid crystalline polymers,
polymer gels, piezoelectric polymers, intrinsically conductive polymers, and polymer
composites, etc.

2.1. Elastomers

Elastomers exhibit rubber-like elasticity behavior. One of the most commonly used
elastomers is PDMS, which is widely used in microfluidic chips, micropumps, electronic
skin, and wearable sensors [25]. PDMS and its composites are common flexible sub-
strates [26] with good chemical inertness, stability over a wide temperature range, variable
mechanical properties, transparency, and the ability to define bonded, unbonded areas
with ultraviolet light [27], which is essential for bonding electronic materials to the sub-
strate surface.

Flexible sensors based on PDMS substrates can be manufactured using conductive
materials, such as silver nanowires (AgNWs), silver nanoparticles, graphene, graphene
oxide (rGO), carbon nanotubes (CNTs), and carbon black (CB), etc. Zhang et al. [28] reported
a type of adhesive wearable sensor on hairy scalps. Measuring electroencephalogram (EEG)
requires the instrument be in close contact with the scalp. However, compared to the
arm, face, and other skin, the scalp is covered with a lot of hair, significantly affecting
the sensor’s bonding effect. They designed and developed a composite sensor based on
CNT-PDMS with a surface consisting of a series of conical microstructure arrays (CMSAs),
which are suitable for the complex scalp hair environment. The CMSA sensor is made
by the viscosity-controlled dip-up process (VCDP), which involves dipping a third of
the radius of an array of glass beads fixed to a glass slide into a small pool of multiwall
carbon nanotube-PDMS-silicone oil tuned to the correct viscosity (Figure 1a). The conical
microstructure is formed by gently lifting and pulling the touch. After curing the precursor
at 100 ◦C, the mold is removed to obtain CMSAs. Because of its small size, only a small
amount of conductive gel is applied to each cone head, and the air between the scalp and
the sensor can be gently squeezed out to attach to the scalp (Figure 1b,c) and accurately
measure the EEG. It does not cause any skin irritation up to 6 h of wear, which shows that it
has good biocompatibility. In addition, biomimetic PDMS substrate with surface patterning
is also a research hotspot. Wang et al. [29] reported a kind of PDMS thin film substrate with
a surface biomimetic microstructure constructed and Ti3C2TxMXene/bacterial cellulose
(BS) as an induction layer with a flexible wearable sensor (Figure 1d). The complementary
design of PDMS and BC/MXene intercalation can adjust the compression rate and improve
the response sensitivity under high and low pressure, respectively. Moreover, the chain
effect of BC and MXene nanosheets can increase interface stability and improve cycle
performance (8000 compression-release cycles). The as-prepared pressure sensor features
high sensitivity (528.87 kPa−1), a low detection limit (0.6 Pa), and a fast response speed
(response time of 45 ms and recovery time of 29 ms). Zhao et al. [30] reported a multi-walled
carbon nanotube/PDMS resistance strain sensor and pressure sensor. Using a simple and
fast microstructure transfer method, a resistive pressure sensor with high sensitivity and
wide linear range was fabricated by introducing a biomimetic spinous microstructure. A
resistive pressure sensor can produce prominent and continuous dynamic responses under
bending/restoring and stretching/releasing behavior (Figure 1e).

Liao et al. [31] coupled PDMS and PU and produced non-invasive, high-tensile sweat
sensors. PDMS provides a flexible substrate and PU optimizes the adhesion between the
electrode (Figure 1f) and the substrate, increasing the hydrophobicity of the electrode
surface by introducing graphene–carbon nanotube materials. The sensor demonstrated a
wide detection range of NH4

+ from 10−6 M to 10−1 M with high stability and sensitivity,
showing a high sensitivity of 59.6 ± 1.5 mV/log [NH4

+] and an LOD lower than 10−6 M.
Under a strain of 40%, the sensor still showed a sensitivity of 42.7 ± 3.1 mV/log [NH4

+].
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test proved better than using pure PDMS. Images reprinted from [31] with permission. 
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film except for the sensor electrodes. PI, by incorporating different materials, is also a 
means of extending its scope of application. Kou et al. [39] mixed graphene quantum dots 
into PI to construct artificial synapses with high sensitivity and a wide corresponding 
range, which has a promising application in wearable bio-flexible sensors. Similarly, the 
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Figure 1. Flexible wearable healthcare devices on PDMS. (a) flow chart shows the fabrication of
the CMSA sensor; (b) the microstructure of CMSA sensor; (c) the CMSA sensor can stick to the
scalp to measure the EEG. Images reprinted from [28] with permission; (d) schematic diagram of the
thin PDMS film-based sensor applied for portable human physiological signal acquisition. Images
reprinted from [29] with permission; (e) image shows the integration of the resistive sensors with
a smart glove for gesture recognition and perception detection. Images reprinted from [30] with
permission; (f) adhesion between the electrodes and the PDMS composite substrate after the tensile
test proved better than using pure PDMS. Images reprinted from [31] with permission.

2.2. Thermosetting Polymers

Thermosetting polymers are formed by the irreversible curing of a viscous polymer.
For example, the PI film is a stable material at high temperatures and strong acids and
bases with high mechanical strength, which makes the processing and modification of PI
compatible with more processes and is suitable for use as a base material for sensors [32–34].
However, PI is usually not colorless and does not recover under tremendous pressure, lim-
iting its application in wearable, transparent, flexible sensors [35]. The advent of colorless
polyimide (CPI) [36,37] has broadened the production of high-performance flexible sensors.

Moon et al. [38] developed bare amino acid-mediated cationic amphiphilic surfaces
based on PI for wound healing and monitoring pH. Because PI surfaces are unsuitable for
wound healing and have poor blood compatibility and low oxygen permeability. They
modified the PI surface via a simple waterborne dipping process, which did not affect its
physical properties. The modified PI surface can inhibit bacterial contamination through
repulsion and simultaneously kill bacteria because it has cationic amphiphilic properties.
The pH sensor was made with an Ag/AgCl reference electrode and polyaniline with Nafion
resin deposited by screen printing. The entire device is covered with a modified PI film
except for the sensor electrodes. PI, by incorporating different materials, is also a means of
extending its scope of application. Kou et al. [39] mixed graphene quantum dots into PI to
construct artificial synapses with high sensitivity and a wide corresponding range, which
has a promising application in wearable bio-flexible sensors. Similarly, the combination
of graphene and PI is also a means of preparing wearable sensors. Liu et al. [40] made
a durable sensor by laser direct writing. In previous reports, lasers can directly induce
PI tape into 3D porous graphene without any precursor [41]. Graphene is induced on
PI by pulsed ultraviolet picosecond lasers. Digitally designed graphene patterns grown
from the PI fabric surface follow the woven direction of the fiber, which demonstrates
excellent sensitivity (GFmax = 27) in assembled strain sensors. Experimental results also
showed that good linearity, low minimum strain response limit (strain = 0.08%), and good
mechanical durability for over 1000 cycles can be achieved by using appropriate laser
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energy. In addition, real-time detection for finger and wrist bending and muscle tension
proved the ability of the PI fabric strain sensors to monitor human-body activities.

2.3. Thermoplastic Polymers

Thermoplastic polymers can perform a reversible phase transition between solids and
liquids [42]. Thermoplastic PU (TPU), one kind of thermoplastic material, has excellent
elasticity, chemical stability, processing convenience, and cost-effectiveness [43–45]. TPU
has a strong affinity with a variety of carbon and metal nanomaterials [46], and it has also
been reported that cellulose nanocrystals (CNCs) are added to PU [47]. This combination
of sensors combines the advantages of both, showing excellent tensile properties, a wide
sensing range, excellent electrical conductivity, and high sensitivity [48]. In terms of
microstructure design, the combination of a porous, cracked bionic structure, and the
superior tensile properties of TPU can significantly improve the sensor’s sensitivity to a
certain extent. The accuracy of the structural design can be a critical factor in improving
the performance of sensors based on TPU substrates [49]. Vossmeyer et al. [50] combined a
patternable crosslinked gold nanoparticle (GNP) film as an active conductive layer with a
biodegradable PU film as a flexible substrate. A simple, clean, fast, scalable, and highly
reliable contact printing method has been developed for transferring patterned GNP films
to biodegradable PU films. The biodegradable PU film was prepared by casting, with a
thickness of about 250 µm and a transmittance of about 92%. The GNP film is prepared
on a slide through a layer-by-layer spin-coating procedure, where a sharp blade is used to
scratch the GNP film on the glass substrate to obtain the desired size and shape. The PDMS
impression then facilitates the transfer by touching the GNP surface. A small amount of
water tunnel glass and GNP interface area are transferred to the PDMS impression by
stripping the glass substrate. Finally, the PDMS stamp is placed on a biodegradable PU
film, heated to 60 ◦C for 3 min, cooled to 0 ◦C for 3 min, and the GNP is transferred to the
PU film. Combined with the soft PU substrate, the GNP-based sensor with a relatively low
gauge factor of ≈101 enabled the accurate detection of subtle physiological signals, for
example, measurements of well-resolved pulse waves and the action of laryngeal muscles
during swallowing and speaking.

2.4. Liquid Crystalline Polymers

Liquid crystalline polymers can generate stable liquid crystal mesophase polymers
under appropriate temperatures, pressures, and concentrations while having the properties
of liquid flow and solid anisotropy. Liquid crystalline polymers can modulate the propaga-
tion of light in the external stimulation and have been widely used in the field of display,
which also shows the potential to be an optical sensor, applied in ionic skin, photon skin,
and electronic skin. Bai et al. [51] reported a study inspired by chameleon skin, presenting
dual-sensing ironic skin (DSI-skin) based on electromechanical and mechanochromic mate-
rial with multiple sensing functions, antibacterial properties, and antifreeze energy supply.
This DSI-skin was fabricated by introducing Al3+ ions to offer ionic conductivity and highly
substituted hydroxypropyl cellulose (HPC) to form cholesteric liquid-crystal structures in a
poly (2-amino-4-pentenoic acid sodium-co-acrylamide) (PASCA) hydrogel scaffold. HPC
is also reported by Hu et al. [52], who introduced additional photoelectric signal sensing
capabilities to a double-network of ion conductive hydrogels with a high tensile strength,
elongation, and toughness, greatly expanding this dual-mode flexible sensor’s important
applications in writing recognition and electronic skin.

In addition, polymer-dispersed liquid crystal (PDLC) devices are also potential ma-
terials for intelligent electronic display applications, and such devices can be reversibly
switched between transparent and opaque by voltage stimulation. For example, Zhang
et al. [53] proposed self-assembled AgNWs micro nets. The stretchable transparent conduc-
tive electrodes (STCEs) were prepared by embedding them in a PDMS-flexible substrate.
Based on this STCEs-assembled PDLC device with interactive pressure capabilities and
stretchable capabilities, it can be used for sensing and light modulation. This kind of flexi-
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ble liquid crystal polymer device has great application prospects in the field of wearable
sensing healthcare devices.

2.5. Polymer Gels

Polymer gels, reported since 1978, are cross-linked polymer networks that swell in
solvents that can respond to external environment change (pH, temperature, solvents,
etc.) and perform a discontinuous and reversible change in the volume [54]. This feature
inspired researchers to incorporate its response characteristics in wearable device appli-
cation interests, such as releasing drugs [55], monitoring motion [56], and changing the
tissue adhesion characteristics [57]. In addition, by combining gels and pressure-sensitive
polymers (PVDF, PLA, etc.), strain sensors and pressure sensors with excellent performance
can be fabricated.

Qin et al. [58] reported a hydrogel strain sensor with strong tensile strength (166 kPa),
super-tensile properties (>1600%), and low delay in the detection of intense human activity
and subtle physiological activity. It can be used as a bioelectrode for monitoring ECG
and EMG. This hydrogel integrates hydroxypropyl methylcellulose (HPMC) and poly-
(3,4-ethylenedioxythiophene): poly-(styrene sulfonic acid) (PEDOT: PSS) into a covalently
cross-linked PAM network, which has good toughness and electrical conductivity, which
shows potential applications in wearable healthcare electronic devices. Recently, it has also
been pointed out that flexible electronic devices show difficulty in distinguishing ultra-
small vibrations due to very low pressure, complex waveforms, and high noise sensitivity.
To this end, Peng et al. [59] reported a sensor based on anisotropic conductive biphasic
liquid metal-polymer gels that can detect more subtle vibration signals. The material is
made by curing silicone polymers using conductive biphasic liquid metals (LMs) and
insulating copper oxide particles with anisotropic conductivity. Even a small deformation
can change the electrical contact of the particles and significantly affect the resistance
to recognize extremely small signals with a high gauge factor (GF: 12,787 at strain and
4121 kPa−1 in stress). This strategy provides a new design idea for ultra-sensitive flexible
electronic devices.

2.6. Intrinsically Conducting Polymers and Piezoelectric Polymers

Intrinsic conductive polymers (ICPs) have the electric, magnetic, and optical properties
of metals and semiconductors [60] and are composed of conjugated sequences of double
bonds or aromatic groups through redox conversion. The charge transfer complexes are
formed by doping [61]. Common examples are polyacetylene (PA), polypyrrole (PPy),
polyaniline (PANi), polythiophene (PTh), and PEDOT: PSS. ICPs also have other properties.
For example, PEDOT and its derivatives, which have high transparency in the visible
range, also expand potential applications of flexible transparent electrodes in wearable
devices [62–64].

2.7. Biodegradable Materials

To avoid environmental pollution caused by large-scale use and to simplify the use
of wearable devices, degradable materials have also received continuous attention from
researchers [65]. Biodegradable materials have attracted extensive research interest due
to their transparency, environmental friendliness, renewability, and piezoresistive effects.
Many biodegradable materials have been reported in these years [66,67]. These materials in-
clude degradable polymers, semiconductors, and hydrolyzed metals, which can be partially
or completely degraded under the appropriate pH, pressure, temperature, microorganisms,
and other external environmental conditions. Natural polymers are common materials for
biodegradable sensors, such as protein-based polymers (collagen, gelatin), and polysac-
charides (starch, cellulose). In addition, synthetic biodegradable materials can be more
customized for specific physical and chemical properties and mass production. These ma-
terials can be processed by electrospinning, 3D printing, and melt-spinning, etc. A variety
of degradable materials (Figure 2a) can be used to build sensing and energy-harvesting
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wearable devices, including polylactic acid (PLA), polylactic glycolic acid (PLGA), material
poly (L-lactic acid) (PLLA), poly-γ-glutamic acid (PGA), polycaprolactone (PCL) and so
on [68]. Degradable polymers are usually degraded by cracking at unstable sites along the
backbone of the polymer chain. These materials can be accelerated by biological enzymes,
facilitated by reactive oxygen species (ROS) at the wound site, are dependent on ester bonds
in the polymer to decompose in acid and base, temperature, and the physiological compo-
sition of body fluids to facilitate the degradation process. In addition, in addition to silicon
nanomembranes, semiconductor materials have been reported for their degradable applica-
tions [69]. Mg, Mo, W, Fe, and other metal materials are also used in biodegradable sensors.
The effects of oxidation products and decomposition products of these metal materials
on the human body need to be considered [70]. In addition, triboelectric/piezoresistive,
natural materials, etc., have significantly promoted the development of environmentally
friendly wearable sensors.

Guo et al. [71] reported a biodegradable sensor based on PLA sheets and porous
MXene (Figure 2b,c). The flexible wearable transient pressure sensor is fabricated by
impregnating MXene nanosheets into tissue papers (MXene/tissue paper) with a porous
structure, recyclability, low cost, degradability, and reliable elasticity. A biodegradable
PLA sheet and a PLA sheet patterned with an interdigitated conductive electrode are
then sandwiched between them. The as-prepared wearable pressure sensor achieves
high sensitivity, a low detection limit (10.2 Pa), ultrasensitive loading sensing of a sugar
granule (2.3 mg), fast response (11 ms), low power consumption (10–8 W), and excellent
reproducibility over 10,000 cycles and is biodegradable (Figure 2d).

Venkatarao et al. [72] reported a preparation method of a wearable device that writes
graphene directly onto cellulose paper by preparing graphene particles into graphene
pencils, which are directly written onto 120-micron thick paper to make a sensor. This
sensor identifies different breathing patterns and rates by peak current and frequency. When
measured after the individual drank water, the response increased by 25–35%, indicating
that the individual’s water and levels could be monitored. Because graphene nanosheets
can induce thermal radiation effects, a 34% enhancement in the fall time of the breath
sensor was observed when infrared illumination was received. In addition, protein-based
biodegradable composites (Figure 2e,f) are also one of the research hotspots [73,74].

2.8. Self-Healing Materials

Current wearable medical devices are often limited to substrates or electrodes. In the
complex movement of the human body, it is easy to cause wear and even damage to the
components. Even minor wear and tear can significantly shorten the life of a wearable
sensor, resulting in a waste of resources and difficulty in controlling the life cycle. Therefore,
a hot spot of research is in developing a wearable medical device like human skin with
self-healing functions. In recent years, substrate materials with self-healing functions have
grown rapidly, greatly extending the use time of wearable devices.

The mechanism property of self-healing material can be divided into extrinsic and
intrinsic [75]. Extrinsic self-healing materials usually contain microcapsules as well as
vascular networks or other agents and structures that can be activated when the material is
damaged. For example, when the material of the pre-embedded microcapsule is damaged,
the capsule will break under the excitation of cracks, and by the capillary effect, release
into the crack of the material to repair the crack [76], which can respond to various types
of damage, and has a good healing efficiency. This method also has disadvantages: the
possibility of leakage of the repair agent in the capsule and the concentration that directly
affects the self-healing performance of the device and the repair efficiency of the capsule will
be greatly reduced after multiple injuries. In addition, the self-healing vascular networks
mimics the function of biological blood vessels. When the material is damaged, the vascular
network at the corresponding position also breaks and the internal healing agent can be
precisely released to achieve the purpose of self-healing the device. Compared to the
microcapsules, the integrated nature of the vascular network makes it easier to refill, also
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with a greater repair area [77]. However, the impact of the presence of the vascular network
on the structural integrity of the device needs to be considered and the complexity and cost
of the process can also be a challenge.
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Figure 2. Wearable healthcare devices based on biodegradable material. (a) Biodegradable de-
vices in various applications with various materials. Images reprinted from [68] with permission;
(b) Schematic illustration of PLA/MXene sensor performance; (c) photograph of the flexible wear-
able transient pressure sensor; (d) biodegradable sensor’s performance in NaOH solution. Images
reprinted from [71] with permission; (e) Microfabrication flow chart of the biosensor via photolithog-
raphy of photo fibroin and sericin-based biocomposites. Images reprinted from [74] with permission;
(f) MXene/protein-based biocomposites biodegradable performance in NaOH solution. Images
reprinted from [73] with permission.

In contrast, intrinsic self-healing materials do not require external healing agents,
which are reliant on dynamic covalent bonding reactions and non-covalent bonding in-
teractions [78,79], such as Diels–Alder and retro-Diels–Alder reactions, trithiocarbonate
reshuffling reactions, triazolinedione-based click, and dynamic urea bonds, as well as
hydrogen bonds, metal-ligand bonds ionic interactions, π–π interactions, host–guest inter-
actions, and Van der Waals interactions. Materials based on dynamic covalent bonds mostly
require external stimuli to activate the healing process, such as light, heat, and electricity,
etc. Supramolecular interactions based on non-covalent bonds can achieve self-healing.
Such intrinsic materials can undergo multiple self-healing periods, reduce costs, and allow
wearable devices to have a greater sustainable performance. This section will focus on
self-healing wearable devices based on hydrogels and liquid metals.

Yimyai et al. [80] proposed a method of incorporating phosphomolybdic acid (PMA)
into a dynamic polyurethane polymer network with a reversible self-healing photochromic
elastic composite (photoPUSH) of disulfide bonds (PUSH), which can change color by
electron donor groups without an additional doping dose (Figure 3a,b), has good tensile
properties and durability, and uses dynamic bonds to repair extreme mechanical damage.
The adhesive properties also make it easy to integrate with other materials. Based on this
material, the team developed an ultraviolet (UV) sensor sticker that can be attached to
various surfaces and change from colorless to blue after eight hours of natural sunlight. At
the same time, wearable wristbands with integrated UV-sensing patches have also been
created, which can self-heal at 70 ◦C after undergoing extreme cutting (Figure 3c). In
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addition, the wristband can repair and sense in wet environments, which is not possible for
many wristbands relying on electronics and water-sensitive substrate sensors.

Flexible conductive hydrogels are widely used in wearable devices [81–84]. By in-
corporating conductive polymers, ionic conductive materials, and fillers, the conductivity
of hydrogels can be significantly increased. The combination of biocompatible materials
can show low cytotoxicity and prolong wearing time. Seong et al. [85] report 3D print-
able, self-adhesive, self-healing, and conductive ionotropic hydrogels based on polyvinyl
alcohol (PVA), pectin, tannic acid (TA), and borax, called PVA–pectin–tannic acid (PPT)
hydrogels. The hydrogels exhibit strong adhesion to pig skin, gloves, glass, and plastic,
excellent electrical conductivity exhibiting sufficient sensitivity [gauge factor (GF) = 2.5],
and a wide sensing range (approximately 2000%). The complex pattern of self-healing
(Figure 3d) can be printed directly on the flexible substrate, which can be used as a wearable
strain sensor to monitor various human movement behaviors. The Cicoira group [86] also
reported a self-healing conductive film, mixing poly(3,4-ethylenedioxythiophene) doped
with polystyrene sulfonate (PEDOT: PSS), ethylene glycol (EG), and TA preparation, has a
strong adhesion on a variety of substrates. This film is non-cytotoxic, and the epidermal
electrodes of the vegetation of these materials have low skin-electrode impedance at low
frequencies (1–100 Hz) and have high-quality electrocardiogram (ECG) and electromyo-
gram (EMG) signal recording. Similarly, Wang et al. [84] reported wearable devices, based
on the hydrogel network, that can detect tiny body movements and gestures and identify
different handwriting. More recently, Sun et al. [87] integrated MXene nanosheets into a
hydrogel (PBM hydrogel) that utilizes dynamic reversible borax ester bonds and multiple
hydrogen bonds between the components to achieve up to 97.8% self-healing efficiency
and strong self-adhesive capabilities (Figure 3e,f). The skin sensor based on this hydrogel
has a fast response time (10 ms) and can detect various human movement signals.
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Figure 3. Self-healing wearable sensors based on hydrogels. (a) Tensile stress–strain curves of
photoPUSH substrate sensors before and after healing; (b) “M” shape photoPUSH hydrogel was
subsequently healed at 70 ◦C for 24 h; (c) photoPUSH-based UV sensor can perform normally after
healing. Images reprinted from [80] with permission; (d) images of PPT hydrogels exhibiting rapid
self-healing abilities. Images reprinted from [85] with permission; (e) PBM can be reshaped after
cutting in pieces; (f) Stretch curve of PBM hydrogel after self-healing at different times and healing
efficiency of PBM hydrogels after tensile fracture healing. Images reprinted from [87] with permission.

In addition, liquid metal is a very promising material for medical applications. It is
widely used in flexible devices based on the manufacturing, patterning, and LM particle
composites [88,89]. In addition to its inherent ability to conduct electricity, liquid metal
has the properties of both liquid and metal, which makes it widely used in stretchable
flexible electronics [90–92]. Wearable functional devices often use metal patterns to achieve
various properties. Liquid metal is easier to process into patterns. Also, due to its flow
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characteristics, it is possible to control the distribution of liquid metal in the device and
self-healing of the metal pattern or metal network. LM can be modified to improve its
application range, such as electromechanical functionalization, sintering [93–95], thermal
functionalization [96,97], biochemical functionalization [83,98], electromagnetic functional-
ization [99], magnetic functionalization [83,100], and self-healable functionalization [101].
To obtain self-healing properties, there are two main methods: exogenous self-healing meth-
ods, and the combination of healing agents based on microcapsules or microvessels ; and
intrinsic self-healing methods, which rely on dynamic reversible covalent or non-covalent
bonds to repair damaged areas (Figure 4a–c) [101]. Recently, Mao et al. [102] reported a
self-healing and recyclable wearable thermoelectric device (Figure 4d,e). The device is
integrated from dynamic covalent thermoset polyimide, LM, and thermoelectric legs to
develop a self-healing and recyclable flexible thermoelectric device (f-TEDs) that achieves a
standardized power density of 1.54 µW·cm−2·K−2. with a high coefficient of performance
(COP) at 3.91 under 7 ◦C temperature difference, which leads to a low power consumption
of ~38 W for the cooling of regular human body. It provides more application prospects for
developing a wearable energy collection and personal thermal management.
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Figure 4. Liquid-metal-based wearable healthcare devices. (a) schematic illustration of the self-healing
mechanism following damage, the LM trace autonomously reconfigures and maintains electrical
conductivity; (b) resistance as a function of time for high-aspect-ratio damage from a razor blade
shows that the circuit is autonomously reconfigured without intervention or loss of conductivity;
(c) when severe damage is induced, the counter maintains operation, which requires all four traces
to constantly maintain electrical conductivity. Images reprinted from [101] with permission; (d) the
figure shows the principle of the device fabrication process and healing properties; (e) photos of a
broken device before and after self-healing. Images reprinted from [102] with permission; (f) principle
of self-healing of LMCNF-2 hydrogel; (g) real-time detection of resistance of the hydrogel over several
cut and self-healing processes. Images reprinted from [103] with permission.

The combination of flexible hydrogel and LM is also a novel preparation idea. Feng
et al. [103] reported a novel method based on constructing a double cross-linked network
cellulose-based LM hydrogel (LMCNF) (Figure 4f,g) based on hydrogen and hydrogen
dynamic boronic ester bonds through the introduction of LM, achieving a good antibacterial
performance and EMI shielding performance. This sensor exhibits self-healing properties
due to the dynamic hydroxy–borate network, and the tensile properties can be recovered af-
ter 60 min of self-healing; LM realizes the material’s high electrical conductivity (22.08 S/m),
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good EMI shielding (23.86 dB) and antibacterial properties, which have great application
potential in wearable devices.

3. Applications

Different body parameters reveal health status, diseases, and sub-health. Wearable
biosensors can collect an extensive range of data in real time for a long time, which enables
continuous health monitoring [104], early warning [105–109], and disease screening [110].
Figure 5 shows the significant improvement timeline. Wearable sensors have developed to
self-power, work in real-time, and possess multiplex sensing.
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2022 [112,113] and 2023 [114].

The first wearable sensors are based on a variety of physical mechanisms (called first-
generation), such as temperature, pressure, stress, strain, piezo resistance, and piezoelectric
effect, etc. Afterward, wearable sensors based on biofluids (called second-generation)
appear. In this section, we will provide some representative examples of physical-based
sensors applications, and then focus on the applications of biochemical-based sensors.

3.1. First Generation: Physical-Based

The first-generation wearable biosensor devices are based on physical mechanisms
and can be smartphones, smart watches, shoes, or headphones [111]. Figure 6 shows
some typical examples. Among them, smartwatches have been widely accepted. Many
applications, such as pedometers on smartwatches or smartphones, are designed for
travel history, fitness, and exercise [111,115,116]. Travel history is widely used during the
coronavirus disease (COVID-19) pandemic [115].
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Some sensors are used to monitor vital signs [118], including respiration [119], tem-
perature [120–123], blood pressure [124,125], heart rate, and pulse [126–130]. For example,
wearable piezoresistive sensors can monitor the pulse and electrocardiograph accurately,
even during running [131,132]. For a healthy adult, a normal respiration rate is typically
between 12–20 breaths per minute (bpm) . The rate can reach 60 bpm during high-intensity
exercise. Wearable sensors supply real-time monitoring and diagnosis, which may help
patients with respiratory diseases, such as sleep apnea, asthma, and chronic obstructive
pulmonary disease (COPD) [119].

Some sensors focus on gait analysis for fracture healing. Wearable sensors can contin-
uously monitor the gait status and reach the healing process [133,134]. They can also be
applied to some diseases, such as Parkinson’s disease [135]. Most are stress, strain sensors,
and IMUs attached to the patient’s leg, shoes, or bottom of their foot [136–138].

In addition to physical health, wearable biosensors are also used in human psycho-
logical health. EEG, skin conductance (SC), ECG, and EMG are common stress detection
methods [139,140]. Waleed uses heart rate, skin temperature, breathing rate, and skin
conductance to monitor construction workers’ physical and mental stress and achieve an
accuracy of 94.7% [141]. Florian et al. [142] reported that heart-rate variability (HRV) and
breathing-rate variability (BRV) change a lot when the non-anxiety-induced and anxiety-
induced states change. There are so many types of physical-based wearable sensors. Here,
we mainly focus on bioelectrical sensors (EEG, ECG, EMG), and inertial measurement
units (IMU).

3.1.1. Bioelectrical Sensors

The human body can generate bioelectricity, and it can be collected to record and trace
the bioelectrical activity of neurons, which reflects body status. EEG, ECG, and EMG are
three types of medical techniques used to record the electrical activity of the brain, heart,
and muscles, respectively.
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EEG first appeared in 1924, and now EEG examination is popularized in global hospi-
tals as a mature technology. It is currently the most sensitive method to reflect the status of
the brain [143]. EEG has been widely used to monitor the status (brain death [144], sleep
abnormalities [145], etc.) of severe patients [146–148] and can save many lives by monitor-
ing epileptic seizures, status epilepticus, and acute ischemic stroke in real-time [146,149].
Zhuang et al. reported spinal cord stimulation may facilitate the recovery of conscious-
ness, and they used an EEG test to predict the process [150]. Thanks to the boom in deep
learning, many deep learning models are developed and combined with EEG to detect
mental fatigue [151], Parkinson’s disease [152], depression [153], schizophrenia [154,155],
epilepsy [156–158], and neurocognitive disorders [159,160]. In addition to symptom detec-
tion, EEG is reported to localize the epileptogenic zone [161,162] and it has the potential to
guide the surgery. Kucikiene et al. [163] found different EEG features of focal epilepsy and
psychogenic nonepileptic seizures. In recent years, the braincomputer interface (BCI) has
become a hot spot, and EEG is a core aspect. BCI provides a novel humanmachine interface
(HMI) to control artificial limbs or external assistive devices [164].

In 1887, Waller first introduced the ECG. In 1903, Einthoven invented the first practical
ECG device and was awarded the Nobel Prize for this achievement. ECG has become the
core of critical conditions diagnoses like ventricular tachycardia, atrial fibrillation, and
acute myocardial infarction [165]. The advent of wearable ECGs has enabled long-term
monitoring of ECG time variations, leading to the development of dynamic ECG. Recently,
Pham et al. presented that dynamic ECG changes can be a new risk marker of sudden
cardiac death [166]. Similar to EEG, with the recent explosive development of AI, combining
AI with ECG is promising. Soh et al. used machine learning and energy waveform
electrocardiogram to detect subclinical left ventricular dysfunction [167]. Zhang et al.
used an information bottleneck-based multi-scale network to detect ECG arrhythmia [168].
Lee et al. applied AI and ECG to measure filling pressure and left ventricular diastolic
function [169]. Chen et al. used deep learning and ECG to detect pediatric congenital heart
disease [170].

EMG can monitor muscle status for sports rehabilitation, HMI, giant analysis, and
stroke rehabilitation [171–174]. Park et al. [175] developed reusable dermal surface EMG to
control lower extremity robotic legs. Its serpentine electrode pattern enhances its effective
contact area, durability, stretchability, and signal-to-noise ratio (SNR). Chand et al. used
surface EMG dynamic muscle fatigue assessment [172]. Li et al. presented a 3D-printed,
flexible, and stretchable smart textile for ECG and EMG [176].

3.1.2. IMU

IMUs are sensors based on inertia and relevant measuring mechanisms. Two typi-
cal IMUs, accelerometers, and gyroscopes, are used to measure specific forces and rota-
tions [177]. Micro-electromechanical-systems (MEMS) technology makes IMUs portable
and wearable [178]. Wearable IMUs are widely used in gait parameters [179,180], Parkinso-
nian and seizure attack detection [181], monitoring exercise [181], postural feedback [182],
human movements analysis [183], HMI [184], and so on.

IMUs are widely used for HMI and feedback control systems. Dey and Schilling [185]
proposed a prediction network based on IMU to predict foot angle trajectory in real time,
offering a possible architecture control of powered intelligent prostheses. Peng [186]
developed an aerial continuum manipulator using IMU. Its closed-loop kinematic controller
enhanced robustness. Zhang et al. [187] used exosuits based on IMU to reduce users’ energy
consumption by 14%.

Additionally, wearable IMUs are used to monitor the safety behaviors of scaffolding
workers [188], enhance human location with Wi-Fi sensing [189,190], count exercise repeti-
tion [191], and assessment of knee moments [192]. More applications of IMUs can be found
in these reviews [193–199].
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3.2. Second Generation: Biochemical-Based

Serum and blood plasma have been the gold standard for diagnosis for a long
time [200]. However, taking blood is invasive and painful, thus, it’s unsuitable for real-
time, point-of-care diagnosis. Therefore, people desire alternative solutions with other
body fluids, such as saliva, sweat, tears, and interstitial fluid (ISF). Wearable biosensors
using these body fluids belong to the second generation. Table 1 lists their features and
comparisons. Figure 7 shows their schematic diagram. The biomarkers in these biofluids
can reveal the human body’s status. A variety of active materials can detect the sub-
stances in biofluids. Biomarkers are usually converted to photosignals or electrical signals
by some active materials, like micro/mano-structured bioelectronic devices(M/NBDs),
surface-enhanced Raman spectroscopy (SERS), molecularly imprinted polymers (MIPs),
biofluidic material-based carriers (BMCs), MXene, aggregation-induced emissions (AIEs)
bioprobes, and metal-organic frameworks (MOFs) [116,201–209]. For example, enzymes
can convert metabolites to other detectable substances or directly convert them to electrical
signals [210].

Table 1. Comparison and characteristics of biofluids or breath [111].

Sample Target
Biomarkers

Wearable
Format

Diagnostic
Examples Advantages Disadvantages

ISF

Metabolites, ions,
circulating RNAs,

proteins,
amino acids, fatty

acids,
peptides,

coenzymes,
neurotransmitters,

hormones
[111,116,200,211]

On-skin
patch

Metabolite
detection:
glucose,
lactate,

ketone bodies,
alcohol and uric acid

PH sensing [212]

Neurotransmitter
detection

Drug monitoring [213]

Rich source of
Biomarkers
[214–216]

Minimally invasive

Location (near the skin
surface)

Similar composition
with blood plasma,

serums

Stead and continuous
secretion rate

Skin offers a large
interface

Invasive

Discomfort from
sampling approaches.

The time lag between
interstitial and blood

analyte levels.

Low sample volume for
analysis

Skin thickness variation
between individuals and

sites

Sweat

Metabolites,
electrolytes,

irons,
proteins,
peptides,

neurotransmitters,
fatty acids,
hormones

[111,214–216]

On-skin
patch,

tattoos,
clothes

Metabolite
detection:
glucose,
lactate,

alcohol and
uric acid

Protein
biomarker

detection: TNF

Chronic disease
monitoring:

inflammatory bowel
disease,

cystic fibrosis [217]

pH sensing [218–220]

Hormone
detection: cortisol

Convenient

Non-invasive

Location (on the skin
surface)

Skin offers a large
interface

Sample continuously
secreted

Sweat glands are
widely distributed

Low volumes at normal
sweat rates

Contamination

Evaporative loss

Dilute analyte
concentrations

Compositional variation
depending on the area of

sampling

Variation in sweating
rates
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Table 1. Cont.

Sample Target
Biomarkers

Wearable
Format

Diagnostic
Examples Advantages Disadvantages

Breath

Metabolites
(volatilized or in

aerosols),
VOCs,
viruses

[111,221–223]

Face mask,
Electronic

nose

Metabolite detection:
H2O2,

SARS-CoV-2
testing

Non-invasive

Convenient

Sample continuously
generated

Limited biomarkers,
except for VOCs

Face masks might be
uncomfortable for users.

VOC detection would
require notable sensor

engineering

Unique sampling
requirements for aerosol

capture

Tears

Metabolites,
electrolytes, proteins,

hormones, lipids
[111,224–226]

Contact lens
Metabolite detection:

glucose and
lactate

Convenient

Non-invasive

Sample continuously
secreted

Lag between tear and
blood analyte levels.

Eye position requires
considerable device

engineering.

The correlation between
blood and tear analyte

might be weak

Saliva

Metabolites,
electrolytes, proteins,
hormones, bacteria,

and viruses
[111,227–229]

Mouth-
guard,

on-tooth
patch,

pacifier
[230,231]

Metabolite detection:
glucose,
lactate,

alcohol and uric acid

pH sensing [220]

Specific bacterial
monitoring Drug and

hormone testing

Convenient

Non-invasive

Sample continuously
secreted

High viscosity might
pose sampling problems.

Variation in analyte
correlation between

blood and saliva

Saliva production
changes due to talking,

eating, or drinking.

Eating or drinking
brings contamination.

Difficult for comfortable
long-term use

Urine

Metabolites,
electrolytes, metals,

peptides,
amino acids,
fatty acids,

toxins,
hormones,
proteins,

coenzymes,
neurotransmitters,

circulating RNA and
DNA [111,232,233]

Diaper [234]

Metabolite
detection:

glucose, nitrate

pH sensing [220]

Rich source of
biomarkers

Convenient

Non-invasive

Rely on urination events

ISF, interstitial fluid; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; VOC, volatile organic
compound.
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3.2.1. Interstitial Fluid

Interstitial fluid (ISF) can be seen as a cell-free part of blood plasma. Moreover, some
disease biomarkers might appear in ISF but are absent in blood. Therefore, ISF provides
a rich source of biomarkers [111]. Compared to blood, ISF does not coagulate [213]. In
addition, taking ISF is much less invasive and less painful than taking blood, which is
a great advantage, especially during long-term monitoring. In addition, suction blisters,
microdialysis, sonophoresis, and thermal ablation are also reported [236].

Currently, the main methods of ISF sampling are iontophoretic extraction and mi-
croneedles. Both have been developed over decades and are relatively mature. Ion-
tophoresis extraction uses a low-voltage electric current in a skin region, leading to the
electromotive migration of charged molecules. Microneedles were initially developed
for drug delivery and later became a common approach for minimally invasive biofluid
sampling in wearables. They aim to puncture through the stratum corneum and epidermis
to access the dermis. Microneedles usually contain a single or an array of microscopic
structures fabricated from hydrogels or biocompatible synthetic polymers [111]. Abbasiasl
et al. [237] developed fully integrated touch-activated hollow microneedles for ISF contin-
uous sampling and sensing. The platform’s strength is that it is fully integrated and the
operation is super simple (just one touch).

Continuous glucose monitoring (CGM) allows painless, continuous, minimally inva-
sive long-term glucose monitoring and has become the new standard of care for diabetic
patients. Commercial CGM mainly depends on ISF. CGM has been combined with an
insulin pump to complete a close-loop management for insulin and glucose. The Food and
Drug Administration (FDA) of the U.S. has granted some related commercial products.

3.2.2. Sweat

Perspiration helps people maintain thermal homeostasis and excrete chemicals and
metabolites. Sweat has a lot of electrolytes, metabolites, and other biomarkers that link
closely to health. In the past, researchers collected sweat with pads and analyzed it with
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benchtop devices. Wearable sweat sensors emerging in recent years have enlarged the
research value of sweat because they can continuously collect various body statuses and
parameters for real-time/long-period monitoring. Compared to ISF, taking sweat is less
painful, more accessible, and non-invasive.

Hydration status monitoring is an essential application of wearable sweat sensors.
Insufficient consumption of water causes dehydration, which can bring fatigue, headache,
dizziness, and even life-threatening disease events like stroke. The concentration of Na+

and K+, can be used for monitoring the whole body’s sweat rate [214,238,239], which would
be helpful for athletes and workers who work outdoors during summer.

Electric fiber is one of the most popular materials for wearable sensors. They are
usually added to clothing, which requires good flexibility, strength, wearability, and perme-
ability. Hekmat et al. [240] introduced binary nickel-cobalt to commercial cotton fabrics for
glucose sensing. It has a wide linear concentration range (0.04–8.3 mM), quick response
time (4.2 s), and small minimum detection concentration (0.116 µM). Mo et al. [241] de-
veloped a fabric sensor to measure K+. It has a 2.1 s response time over 100 min stability.
Zhang et al. [242] developed a fabric wearable sensor for detecting real-time Na+, pH,
and glucose. It is all made of fibers; therefore, it has excellent flexibility and comfortable
wearability. In addition, it realizes highly efficient sweat collection during the monitoring.

However, the correlation between blood sweat and many parameters remains con-
troversial. Some papers reported a good correlation, but others were contrary [210].
Bad correlation may result from the collection method, contamination, or inappropriate
biomarker chosen.

3.2.3. Saliva

Saliva contains ions, enzymes, proteins, metabolites, microorganisms, and hormones,
some of which have been used clinically [243]—for example, a mouthguard for salivary
uric acid biosensing (Figure 7f). Saliva has great potential to monitor glucose levels [231].
The study presented in [244] compared six saliva collection methods and found that
unstimulated parotid achieves the highest glucose level and best correlation with blood
glucose levels. It is non-invasive and easy to collect compared to finger prick tests and ISF.

For example, cortisol is a steroid hormone related to stress levels and some pathologies,
such as Cushing’s syndrome and Addison’s disease. A directly proportional correlation
is found between the circadian variations of cortisol concentration in saliva and blood,
leading to several biosensors for cortisol salivary levels [245].

3.2.4. Breath

Breath has been focused on in the first generation of wearable biosensors, but the
composition of breath is not involved. Each breath contains a distribution of aerosols of
different sizes. Activities such as coughing, sneezing, or talking can increase these breath
aerosols a lot. These aerosols have a lot of biomarkers for respiratory pathogens, especially
for diseases of the respiratory system. They can be collected with face mask integrated
sensors, proven by COVID-19 viral nucleic acid [246].

Human breath contains tiny amounts of volatile organic compounds (VOCs), includ-
ing nitrogen oxides, ammonia, hydrogen sulfide, acetone, methanol, pentane, isoprene,
methane, ethanol, and ethane. These VOCs can be outsourced or endogenic. Outsourcing
ingredients comes from environmental exposure, while endogenic ingredients are gener-
ated through various metabolic pathways. Therefore, abnormal VOC composition can
indicate our poor health status, respiratory disease, and exposure to a seriously polluted
environment [247–249].

Li et al. [250] developed an E-Nose to test COVID-19, reaching 79% correction. This
system uses 64 chemical sensing elements and machine learning for judgment. The cor-
rection of the whole system boosts enormously compared to a single sensing element
(repeatability is 0.02%, and reproducibility is 1.2%). In addition, E-Noses are applied to
detect early lung cancer [251–254].
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3.2.5. Tears

Tear fluid is an important part of the eyes, responsible for lubricating, cleansing,
and refractory purposes [255]. Tear fluid contains some biomarkers for eye disease [256].
For example, ascorbic acid levels in tears are closely related to ocular inflammation [257].
Contact lenses are a typical visual prosthetic device with over 150 million users worldwide.
Due to their non-irritant property and popularity, most tear sensors are integrated into
contact lenses to collect tears. Parviz et al. developed the first glucose sensors based on
contact lenses in 2011 [258].

However, the correlation between blood and tear analyte might be weak. Additionally,
contact with the eyes requires significant caution because eyeballs are sensitive. Due to the
reasons above, it seems hard to compete with ISF, except for eye diseases. The potential for
eye diseases cannot be ignored because monitoring for a long period is meaningful.

Li et al. [259] designed a power-free contact lens sensor for glucose sensing. Compared
to former studies, it does not need neither peripheral nor power to transfer data. Instead,
it uses the color change to Prussian blue to show the results. Its detection concentration
ranges from 0.05 mM to 0.9 mM, with a correlation coefficient r = 0.99543 to the controlled
group. Shi et al. [257] developed a contact lens sensor to monitor ocular inflammation.
Its operational and storage lifetime reaches 20 h and 10 days, respectively. The BSA-Au
nanocluster probe measures the biomarker ascorbic acid.

3.2.6. Urine

Urine contains a lot of analytes, such as DAN, RNA, metabolites, and proteins. Due
to the biomarkers in urine, urine tests are widely used in hospitals for urinary lithiasis,
urinary tract infections, kidney disease, urinary tract infections, diabetes, liver problems,
and genitourinary cancers [260–266]. Urinalysis can be divided into urine sediment analysis,
urine culture, and urine chemical analysis. Due to the simple and non-invasive sampling
process, many kinds of urine test strips were invented and widely applied for screening.
Urine test strips are cheap and convenient with an acceptable accuracy decline, and can
be used at home; therefore, they are widely used for commercial rapid pregnancy testing,
urinary tract infections screening [262,267], diabetes management [261], and liver/kidney
function monitoring [261,267,268]. In a word, urine is a promising biofluid for healthcare.

As the development of wireless technology and flexible electronics developed, urine
wearable sensors appeared. The urine sensor depends on urination events [82], so it does
not need to be wearable in most scenarios. Urine test strips especially are convenient
enough. However, wearable urine sensors are significant for people who cannot express
themselves or have urinary incontinence, such as babies and patients in a vegetative state.

Urine wearable sensors are usually integrated into diapers. Early urine sensors were
based on temperature/humidity/conductivity to detect urination events and alert care-
givers to change diapers. These sensors improve the life quality of the care recipient and its
caregivers. Exposure to a soiled diaper for a long time can cause skin allergies and damage.
Checking diapers frequently is time-consuming and may bring mental pressure to adult
care recipients [269–271].

Seo et al. developed a self-powered sensor for urinary tract infection monitoring [272]
in 2017. Shitanda et al. developed a diaper sensor for urine glucose [234]. Recently,
multiplex sensing aroused people’s interest. Li et al. [273] and Yanni et al. [114] developed
sensors to simultaneously measure multiple urinary metabolites and electrolytes based
on a sensor array. The sensor reported in the study presented in [114] is the first universal
fully integrated wearable sensor arrays (FIWSAs). It simultaneously supports multiple
electrolyte and metabolite monitoring in saliva, sweat, and urine.

4. Future Perspectives and Conclusions

In this review, we mainly focused on the material and application of wearable health-
care devices. We introduced and discussed the substrate material with flexible, stretchable,
biodegradable, self-healing properties used in healthcare devices. Wearable healthcare
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devices have become increasingly important in medical diagnosis and treatment. By us-
ing this non-invasive method, we can monitor interstitial respiration, temperature, blood
pressure, heart rate, pulse fluid, sweat, saliva, breath, tears, and urine to obtain medical
data directly or indirectly. The development of wearable healthcare devices has lasted for
several decades.

At present, materials for wearable healthcare devices are the hotspot of research. The
main purpose is to improve device sensitivity, cycle stability, usage life, environmental
safety, broaden detection ranges, and advance applications. Most of these studies focus
on a variety of new materials and optimizations based on existing materials including
MXene [274], MOF [131,275], and graphene [276], etc. For example, in the case of graphene
and ultra-thin electrodes, although they have excellent electrical properties, they are easy
to damage, and the combination of additional flexible protective materials will increase the
weight of the wearable instrument, and the thickness which can affect the user’s experience.
Designing the microstructure of the material is also a method to improve the performance
of the sensor, but the stability of the microstructure under the long-term wear of the human
body, the influence of body fluids, and intense exercise also need to be taken into account.
In addition, due to cost and other issues, research of novel characteristics, such as self-
healing and biodegradation, has mostly stayed in the laboratory stage. The development of
processes with high-volume production and low costs also needs to be the focus of future
research.

In addition, there are still several challenges not limited to materials the future needs
to solve.

4.1. Data Reliability

Ensuring the monitored data accuracy and reliability is the primary challenge. Devices
may perform differently on a person with different behaviors or under different environ-
ments. How to adapt to a measurement environment affected by multiple factors is critical
to the acceptance of wearable devices.

4.2. Data Privacy

The collection of health data by wearable devices, given its sensitivity, significantly
raises concerns regarding privacy and security. Much data obtained by the device can
be uploaded to the cloud. It is vital to safeguard this data against unauthorized access
and breaches. The key challenge lies in deploying strong encryption techniques and data
protection measures that do not detract from the device’s efficiency or the user’s experience.

4.3. User-Friendly

User-friendly devices are easier for patients to accept. Compared to hospitalization,
personal wearability lacks the supervision of the doctor. Wearable technology of the future
will seamlessly merge with everyday items like clothing, accessories, and implants. This
integration will enhance user adherence and pave the way for new possibilities in constant
health tracking without requiring active participation from users.

4.4. Battery Harvesting and Storage

The battery provides power to wearable devices, which guarantees the basic perfor-
mance of devices. At present, the battery capacity of wearable devices is low, easy to
damage, and sensitive to environmental changes [277]. The development of batteries with
self-powered, flexible, biocompatible, breathable, moisture resistant, and other charac-
teristics can greatly extend the life and application range of wearable healthcare devices.
In addition, progress in energy harvesting methods [278], which transform body heat or
motion into electrical power, may overcome the constraints of battery life. Such develop-
ments would allow devices to function for extended periods or potentially without end,
negating the need for recharging and boosting their effectiveness for ongoing monitoring
and reducing resource waste.



Bioengineering 2024, 11, 358 20 of 31

4.5. Healthcare System Integration between Devices and Medical Professionals

Merging data from wearable devices with the current healthcare system while making
sure data are useful for medical professionals presents a complicated hurdle. To achieve a
smooth exchange and understanding of data across various platforms and systems, it is
essential to establish and implement standards and protocols for interoperability.

The development of new sensor technologies is expected to improve the accuracy and
scope of health indicators monitored by wearable devices. Innovations in nanotechnology,
flexible electronics, and biocompatible materials will enable more health monitoring ca-
pabilities, including real-time disease detection and monitoring. With the rise and rapid
development of artificial intelligence, it is expected to accelerate the analysis and person-
alized evaluation of devices. While wearable medical devices face significant challenges,
the future holds great promise in transforming healthcare delivery and management. Ad-
vances in technology and a focus on user-centered design are critical to overcoming these
barriers and realizing the full potential of wearable medical technology. This new detection
technology can significantly help doctors achieve early diagnosis, prevent diseases, and
greatly reduce medical costs.
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