
Citation: Pouget, E.; Dedieu, V.

Applying Self-Supervised Learning to

Image Quality Assessment in Chest

CT Imaging. Bioengineering 2024, 11,

335. https://doi.org/10.3390/

bioengineering11040335

Academic Editors: Zhiming Luo and

Sheng Lian

Received: 9 January 2024

Revised: 25 March 2024

Accepted: 27 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Applying Self-Supervised Learning to Image Quality
Assessment in Chest CT Imaging
Eléonore Pouget 1,2,* and Véronique Dedieu 1,2

1 Department of Medical Physics, Jean Perrin Comprehensive Cancer Center,
F-63000 Clermont-Ferrand, France; veronique.dedieu@clermont.unicancer.fr

2 UMR 1240 INSERM IMoST, University of Clermont-Ferrand, F-63000 Clermont-Ferrand, France
* Correspondence: eleonore.pouget@clermont.unicancer.fr

Abstract: Many new reconstruction techniques have been deployed to allow low-dose CT examina-
tions. Such reconstruction techniques exhibit nonlinear properties, which strengthen the need for
a task-based measure of image quality. The Hotelling observer (HO) is the optimal linear observer
and provides a lower bound of the Bayesian ideal observer detection performance. However, its
computational complexity impedes its widespread practical usage. To address this issue, we pro-
posed a self-supervised learning (SSL)-based model observer to provide accurate estimates of HO
performance in very low-dose chest CT images. Our approach involved a two-stage model combining
a convolutional denoising auto-encoder (CDAE) for feature extraction and dimensionality reduction
and a support vector machine for classification. To evaluate this approach, we conducted signal detec-
tion tasks employing chest CT images with different noise structures generated by computer-based
simulations. We compared this approach with two supervised learning-based methods: a single-layer
neural network (SLNN) and a convolutional neural network (CNN). The results showed that the
CDAE-based model was able to achieve similar detection performance to the HO. In addition, it
outperformed both SLNN and CNN when a reduced number of training images was considered. The
proposed approach holds promise for optimizing low-dose CT protocols across scanner platforms.

Keywords: self-supervised learning; feature representation learning; convolutional denoising autoen-
coder; task-based approach; model observer; chest CT image

1. Introduction

Many new computed tomography (CT) reconstruction techniques have been devel-
oped in recent years to address the concern of reducing radiation exposure levels [1]. These
methods typically exhibit nonlinear properties, which can result in an unfamiliar image
texture in very low-dose CT [2]. As traditional physical metrics may not be adequate to
assess image quality in nonlinear reconstructions, a task-based paradigm assessment has
been advocated [3,4]. For signal detection tasks, the Bayesian ideal observer is optimal but
its computation is often analytically intractable [5,6]. As an alternative, the Hotelling ob-
server (HO) is commonly employed. The HO is the ideal linear observer in the sense that it
maximizes the signal–noise ratio of the test statistic [6]. Its definition requires inverting the
covariance matrix, for which its computational cost makes the HO difficult to implement in
clinical practice [7,8].

Recent efforts have demonstrated the ability of supervised learning-based approaches
to produce accurate estimates of HO performance [3,6,9–11]. For example, in a preliminary
work, Zhou et al. [6] investigated the use of simple linear single-layer neural networks
(SLNNs) to approximate the HO test statistic for binary signal detection tasks. They
showed that this learning-based method was able to produce accurate estimates of the
HO performance. More recently, Kim et al. [3] have demonstrated the feasibility of using
convolutional neural networks (CNNs) to provide similar detection performance to the
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HO in breast CT images. The ability of CNNs to learn sophisticated image representations
directly from the image data makes CNNs powerful tools in medical image analysis [12,13].
The accuracy and robustness of such a supervised approach, however, are dependent on the
availability of large-scale annotated images [10,13,14]. Such labelled datasets are difficult
to obtain in the medical domain due to the complexity of manual annotation and inter- and
intra-observer variability [13,14].

In response to this challenge, various methods have been proposed. One approach
relies on the concept of transfer learning, whereby general features are extracted from
different domains in which large labeled datasets are available [12–14]. However, this
approach is often unable to extract discriminative features for medical image analysis
problems [12–14]. Another approach is based on self-supervised learning (SSL), which
plays a growing role in the field of machine learning due to its capability of learning
representations that are transferable to different downstream tasks [15,16]. This learning
paradigm reduces the reliance on labeled data by training a model to extract meaningful
representations of the input data with no manual labeling required [16]. Recent studies
have leveraged the potential of SSL for various tasks such as image segmentation and
classification [15–17]. The success of this approach strongly depends on how the pretext
tasks are chosen [15]. Among the pretext tasks proposed in the literature, the category
of pixel-to-pixel follows the paradigm of generating low-dimensional representations of
inputs for use in downstream tasks [15].

In this context, autoencoders (AEs) and extensions such as Sparse AE [18], Denoising AE
(DAE) [19,20], or Convolutional AE (CAE) have gained wide popularity because of their ability
to extract discriminative and robust features [12,15,21–24]. The use of deep learning techniques
in a preprocessing step allows shallow machine learning algorithms, such as support vector
machine (SVM), to be used to interpret encoded features for classification [21,22]. This
framework has been successfully applied in various domain applications [21,22,25,26]. In
particular, CAEs have performed well in medical image classification [12,13].

This study proposes an SSL-based model observer to predict HO performances in
very low-dose chest CT images. To the best of our knowledge, this is the first study to
apply the SSL framework for designing a mathematical model observer. We hypothesize
that integrating the SSL paradigm into model observer pipelines holds promise for imple-
menting the task-based optimization of CT systems. Our approach combined CAE for the
feature representation and SVM for the classification task. We compared this approach
to state-of-the-art supervised methods through different signal detection tasks of varying
difficulty. Computer-based simulations were conducted by addressing different noise
structures to investigate the generalization property of the proposed SSL-based model
observer. This property is a key factor in ensuring equivalent image quality across a fleet of
scanners with increasing differences between reconstruction techniques.

2. Materials and Methods
2.1. Data

The dataset used in this work comprised images generated from the Lungman multi-
purpose chest phantom that was reconstructed with various regularization terms proposed
for low-dose CT [27]. This dataset was constructed from computer-based simulations, as
described in a previous work [28]. The latter showed that the generalization performance
of an observer strongly depends on the ability of the feature extractor to filter the noise
out and reveal the structures of the original data. We proposed here an extension of this
work by investigating the benefit of using deep learning techniques as feature extractors in
various noise structures.

To evaluate the generalization properties of the proposed SSL-based model observer,
we conducted signal detection tasks over the whole dataset regardless of the regularization
strategy in order to be representative of the practical use of the numerical observers [29].

To get as close as possible to clinical tasks, all simulations addressed background-
known-statistically (BKS) signal detection tasks [5]. The image data were generated by
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extracting 64 × 64 lung anthropomorphic textures from the simulated images, as showed
in Figure 1. To generate the signal-present images, two signal objects were modeled as
detailed below.
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2.1.1. Signal Known Exactly (SKE)

The first signal detection task employed a nodule signal profile given by the follow-
ing [30,31]:

fs =

 As

[
1 −

(
|rm−rc |

R

)2
]z

, |rm − rc| ≤ R

0 , otherwise
(1)

where |rm − rc| is the distance between the location of the mth pixel and the signal center,
R is the signal radius, and As is the parameter that controls the signal amplitude. The
parameters were set as follows: R was fixed at 4 mm, z was fixed at 4, and signal amplitude
was set to −870 HU, mimicking the attenuation of low-attenuation ground-glass opacities
(GGO) [32]. In this task, the signal was invariant, referring to the signal-known-exactly
(SKE) paradigm.

2.1.2. Signal Known Statistically (SKS)

For the second signal detection task, we modeled an elliptical profile given by
the following:

fs = Asexp (−(RΦ(rm − rc))
T D−1(RΦ(rm − rc)) ), (2)

where D is a diagonal matrix that controls the width of the signal along each direction
σx and σy, and Rθ is the Euclidian rotation matrix that controls the angle of rotation for
the signal, Φ [5,33]. In this study, we fixed σx = 5 and σy = 1.5, and Φ was randomly
sampled from the set {0◦, 45◦, 90◦, 135◦} according to the detection task previously used by
Granstedt et al. [5].

2.2. Hotelling Observer

The test statistic of a linear model observer, t, is computed by the following [3,5,6]:

t( f ) = wT f , (3)

where f is a column vector of the image, and w is the linear observer template [3]. The HO
employs the population equivalent of the Fisher linear discriminant, which can be defined
as follows [5,6]:

wHO =

[
1
2
(K0 + K1)

]−1
∆ f , (4)

where Ki is the covariance matrix of the measured data under each hypothesis, and ∆ f is
the mean difference between signal-present and signal-absent images [5,31]. The dimension
of the covariance matrix is M2 where M is the number of image pixels [3]. An accurate
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estimate of K requires the collect of at least ten times M2 sample images which makes the
HO estimation difficult if not impossible in practical usage [7].

In Equation (4), the inverse covariance matrix serves to decorrelate the noise in the
image [31]. This point is particularly interesting to understand to what extent human
observers are able to adapt to the statistical properties of the images managed by the
reconstruction process, as previously stated by Abbey et al. [31].

2.3. Supervised Learning-Based Model Observer

Numerous works have successfully employed supervised learning-based technologies
for implementing model observers [3,6,29,34,35]. In this work, a CNN and an SLNN
were explored for binary signal detection tasks. The area under the receiver-operating-
characteristic curve (AUC) was used for assessing the detection performance. The results
obtained were compared to those produced by the proposed SSL-based model observer.

We optimized the structure of the CNN using brute-force searching in the parameter
space defined by the depth (from 2 to 10) and the number of filters (4, 8, and 16). The
filter size in each convolutional layer was set as 3 × 3 pixels in order to reduce the number
of model parameters, as evoked by Kim et al. [3]. No downscaling layer was included
to prevent the removal of any high-frequency component [3]. Each convolutional layer
was followed by a LeakyReLU activation function to add nonlinear property into the
network [3], while a sigmoid function was used after the fully connected layer. The output
of the model can thus be interpreted as the posterior probability that an observation
belongs to one of the two possible classes in a binary classification problem. In this work,
the SLNN was not employed as a linear model and included the sigmoid function as the
activation function.

The network training was performed in Tensorflow using a mini-batch stochastic
gradient descent algorithm, i.e., the Adam algorithm [5,6,36,37], with 50 epochs to minimize
the cross-entropy loss function. During the network training, the train–validation–test
scheme [6] was used. We generated 5000 images to prepare the training dataset. Both
the validation and testing datasets comprised 200 image pairs. The CNN resulting in the
minimum validation cross-entropy was defined as the optimal model in the explored search
space [6]. Once the network structure was optimized, the performance of the selected CNN
was evaluated as a function of the training dataset size. This point is of particular interest
as it represents the principal limitation of implementing CNNs in practical usage.

2.4. SSL-Based Model Observer
2.4.1. AE

An AE is a specialized type of artificial neural network that consists of two components:
the encoder and decoder. The first maps the input data vector X into a hidden representation
h, while the latter aims to reconstruct X from the embedding h. This process can be
formulated as follows (considering an AE with one hidden layer):

h = s1(W1X + b1),
X′ = s2(W2h + b2)

(5)

where s1 and s2 are activation functions. The AE is parametrized by the weight matrices
W1 and W2 and bias vectors b1 and b2. Training an AE involves finding parameters
θ = (W1, W2, b1, b2) since they minimize the reconstruction error on a given dataset [23,24].
The cross-entropy was used as the loss function as follows:

Lc(W1, W2, b1, b2; X) = −
N

∑
i=1

[
Xilog (X′

i) + (1 − Xi) log(1 − X′
i)
]

(6)

It is worthwhile noting that considering the mean-squared error as the loss function,
the optimal linear one-layer AE projects the data onto a subspace defined by its principal
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directions [5]. Therefore, the principal component analysis (PCA) method can be thought
of as a simplified form of AE. The PCA was performed in this work for comparison.

A weight-decay regularization term can be added to Equation (6) to limit the increase
in weights that can occur during the training process, leading to model overfitting [22,23].
Thus, the objective function can be formulated as follows:

L = Lc + λW2, (7)

where W2 guarantees the weight matrix having small elements. In this formulation, the
penalty term is a quadratic constraint referring to l2-norm regularization. The hyper-
parameter λ controls the strength of the regularization [23]. Classically, this parameter lies
in the range [0, 0.1]. We varied the parameter λ over this interval to study its impact on the
AE discriminative ability.

Another way to solve the overfitting issue is to consider DAE, which introduces noise
in the original data. The DAE is trained to reconstruct the corrupted input, minimizing the
loss function between the reconstructed X′ and the original data X [23]. The corrupting
operation was achieved by randomly setting some pixels in the input sample to zero,
leading to more robust features than the traditional AE [19,20]. Compared to the other
variants of the AE that ignore local connections between image content, convolutional AEs
combine the advantage of a CNN and an AE to preserve spatial information, potentially
limiting the redundancy in the parameters [13,22]. They have performed well in image
denoising and classification [13], justifying their use in this work.

The structure of a convolutional DAE (CDAE) is similar to that of a DAE, except that
it deals with convolutional layers rather than fully connected layers [38,39]. We optimized
the structure of the network by performing a Bayesian search [38] in the parameter space
defined by the depth (from 1 to 8), the number of filters (4, 8, or 16), and the number of
latent units (from 2 to 32). Each convolutional layer comprised filters of 3 × 3 pixels and
was followed by a LeakyReLU activation function to add nonlinear properties into the
network. A sigmoid function was used after the last convolutional layer of the decoder. The
output of the model was thus bounded on the interval [0, 1], which was of interest because
the images were expressed in attenuation coefficients (cm−1). Zero padding was applied in
order to maintain the size of the input. Compared to the traditional grid search method,
which treats hyper-parameter sets independently, Bayesian optimization is an informed
search method that learns from previous iterations [40–42]. As a result, this method can
determine optimal hyper-parameters with fewer trials. This is of particular interest for
optimizing network architecture where the complexity of grid search grows exponentially
with the addition of new parameters. The Bayesian search was performed 20 times on
5000 images extracted from the whole dataset. For each trial, the training and testing sets
were generated by a resampling procedure. During network training, the cross-entropy
loss function was used, as well as the Adam optimizer [36]. An early-stopping strategy
was employed, acting as the hyper-parameter for the number of epochs.

2.4.2. SVM

For all learned features, the SVM was used for the classification task. This learning
technique, based on a differentiable hinge loss, became popular due to its strong general-
ization capabilities. To achieve a non-linear separation between classes, a kernel function
was introduced in the SVM formulation, including linear, polynomial, sigmoid, and RBF
kernels [21]. The RBF function was employed in this study because of its ability to produce
complex decision boundaries [40]. In this formulation, two hyper-parameters C and σ have
to be adjusted. Parameter C controls the trade-off between correct classification on training
samples and the maximization of the decision function’s margin, while σ defines the kernel
width [43]. For example, the value of σ being too low makes the radius of influence of the
support vector only include the support vector itself, which can lead to overfitting [43]. On
the other hand, large values of σ can make the model too constrained [43].
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The SVM performance strongly depends on the proper selection of these hyper-
parameters. To do so, we used a grid search method by applying a five-fold cross-validation
(CV) procedure. This strategy was justified by the fact that the search space was limited to
only two parameters, C and σ. The AUC was used as the score metric for evaluating the
quality of the model predictions. Compared to other metrics, the AUC does not require
an optimizing threshold for each label. The selection of the optimal values of C and σ was
carried out on 1000 images extracted from the image database that did not overlap with the
images used for the CDAE network structure optimization. After the optimal model was
selected, the performance of the SSL-based model observer was assessed as a function of
the training dataset size.

3. Results
3.1. Optimal Structure of the CNN

The train–validation–test scheme was repeated twenty times to improve the statistical
reliability of the results. The validation cross-entropy, plotted in Figure 2, increased with
the depth of the CNN for both tasks investigated. This result was most likely due to the
overfitting issue that can occur when adding many hidden layers in the neural network.
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When the SKE/BKS detection task was considered, the detection performance (i.e.,
AUC) evaluated on the testing dataset was 0.96 and 0.89 for the CNN with two and ten
convolutional layers, respectively. These values were 0.98 and 0.82 for the SKS/BKS
detection task. Therefore, the CNN that possessed two convolutional layers (each having
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eight filters) was selected for each detection task considered. It can be noted that the
standard deviations associated with the results produced by the CNN increased with the
convolutional layer number.

3.2. Optimal Parameters for the SSL-Based Model Observer

For both detection tasks, the optimal encoder derived from the Bayesian search com-
prised one convolutional layer with 16 filters, followed by a LeakyReLu activation function
and finally a fully connected layer that processed the features maps into 25 latent units.

In SSL, the regularization hyper-parameter is one of the main parameters influencing
the classification accuracy [21]. Table 1 shows how the hyper-parameter λ, which controls
the relative importance of the weight-decay regularization applied during the CDAE
training process, impacts the choice of C and σ in the SVM formulation.

Table 1. Optimal values of C and σ, and the corresponding AUC for each detection task considered.

CDAE
PCA

λ = 0.00001 λ = 0.0001 λ = 0.001 λ = 0.01

C(SKE/BKS, SKS/BKS) 104, 103 103, 102 101, 102 107, 106 103, 102

σ(SKE/BKS, SKS/BKS) 100, 100 10, 10 1, 1 0.01, 0.1 0.1, 0.1

AUC (SKE/BKS, SKS/BKS) 0.76, 0.74 0.77, 0.70 0.88, 0.91 0.63, 0.65 0.78, 0.86

It was observed that, as the value of λ increased, the classifier’s decision function
favored low values of σ, translating interactions between similar observations. This can be
explained by the fact that, for high values of λ, the weights learned converge towards zero.
As a consequence, the encoder resembled a linear model, leading to underfitting situations.
Conversely, low values of λ resulted in unregularized models, leading to the overfitting
problem. Therefore, σ acts as a good structural regularizer for the SVM model.

From these results, we fixed the regularization parameter as λ = 0.001 for both the
detection tasks considered. In this case, the optimal models are positioned on the diagonal
of C and 1/σ. Taking intermediate values of σ and lowering the value of C seemed to
be a good trade-off between generalization and prediction accuracy. However, lower
C values generally relate to more support vectors, which can lead to a growing storage
requirement and computational complexity, while high C values may increase the fitting
time [21,43]. In this work, the model seemed to perform equally regardless of the value
of C for intermediate values of σ. This reflected the fact that no more training points were
located within the margin, and the parameter σ was acting alone as a good regularizer [43].

3.3. Detectability Comparison between Observers

In these experiments, the detection performance of the selected models was evaluated
on a reduced number of training images in order to be consistent with the realizations
achievable in clinical practice. Figure 3 shows the AUC and fitting times obtained by the
different observers investigated as a function of the training dataset size. We can note that
a straight line was plotted to represent the HO performance, as it was estimated from a
fixed training dataset.

In both tasks, the CDAE-based model observer provided nearly similar performance
to the HO when using at least 1000 images. For the SKE/BKS task, which was more
complex, this observer provided higher AUC values than the PCA-based model. This
result demonstrated that the CDAE was able to extract more discriminative features for
classification than the linear PCA. The CNN and SLNN provided higher detection per-
formance than the HO when a sufficient amount of data was considered (i.e., at least
2500 images). It is worth mentioning that the CDAE-based model outperformed the super-
vised learning-based model observers on a reduced number of training images (i.e., less
than 1000).
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and fitting times (right) of the selected models for the SKS/BKS detection task.

The storage requirement and computational complexity of the CNN were larger than
those of the other models investigated. We can attribute this result to the number of
variables estimated by the CNN, which was larger than that of the SLNN or SVM.

4. Discussion

The current state of SSL research has already achieved promising results in different
domains of medicine such as digital pathology or computer-aided diagnosis [15–17,26]. In
particular, the SSL paradigm can take advantage of the large volumes of unlabeled datasets
available in medical imaging [6,15]. Thus, this approach may address the challenges
impeding deep-learning models to become widespread in medical image analysis. Taking
inspiration from the literature, this work adopted a two-stage model, which combined
the CDAE network for feature extraction and SVM for the classification task, to produce
accurate estimates of HO performance in low-dose chest CT images.

The proposed SSL-based model provided similar detection performance to the HO
under various noise structures. This point is of interest because the ability of an observer
to generalize well over different reconstruction algorithms is crucial to optimizing and
standardizing a fleet of scanners [29,44]. We conjecture that the application of a regulariza-
tion constraint during the CDAE training process gave this model a better generalization
capability than that of the linear PCA. Although not presented in this paper, no direct corre-
lation was observed between the AE reconstruction loss and the classification performance.
This emphasizes the fact that the features learned by AE do not necessarily guarantee
strong discriminative ability [22]. To address this concern, an alternative was proposed by
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several authors, which tends to simultaneously minimize the reconstruction loss of AE and
the structural risk term of the classifier [22,25]. Such a framework imposes the encoder to
project input data into discriminative subspaces for classification and remains a topic of
future investigation [22].

The effectiveness of the model strongly depends on the SVM hyper-parameter selec-
tion. The results obtained demonstrated that the hyper-parameters have to be tuned with
regard to the features learned in the pre-training step. The radius of the RBF kernel σ acted
as a good regularizer regardless of the feature extraction technique experimented. Inter-
mediate values of σ seemed suitable in order to prevent overfitting issue on one hand and
avoid too “smooth” models on the other hand [43]. For these values of σ, the CDAE-based
model was found to be unsensitive to changes in the values of the C parameter. Therefore,
using small values of C allowed a decrease in the training and testing time, which is an
important factor to consider for straightforward implementation.

Moreover, the proposed SSL-based model observer provided a higher detection per-
formance than the state-of-the-art supervised learning-based methods when a reduced
number of training images was considered. This result is consistent with previous pub-
lished works, where the authors showed that a large amount of labeled data is required
for implementing the CNN [3,6]. In this work, the addition of convolutional layers in the
CNN architecture resulted in a decrease in the detection performance. An early-stopping
strategy could be employed during the network training to reduce this overfitting problem.
Alternatively, a multiple classifier that makes interim decisions instead of one at the end of
the network would be used [45].

This study has several limitations. First, our experiments have focused on classification
tasks in chest CT images. This work should be extended to other anatomical localizations
and diagnostic tasks in order to demonstrate the generalizability of this method as a
surrogate for the HO. Second, we intend to extend this work to handle the 3D regularization
along both axial and longitudinal directions used by current reconstruction algorithms in
CT images. Finally, we will evaluate the hierarchical feature extractor proposed by Ahn
et al. [12,13], which introduced a CAE placed atop a pre-trained CNN, to further improve
the feature representation of image data.

5. Conclusions

In summary, this study proposed an approach that combined deep and shallow learn-
ing techniques to match the performance of the HO for low-dose chest CT images. This
approach leveraged a large amount of unlabeled data, which can be accessed through
archives or shared databases, to learn meaningful representations for enhancing classifica-
tion and generalization performance. This approach thus reduced the reliance on labeled
data. Therefore, the proposed CDAE-based model observer may be easier to deploy than
the HO for use as a task-based measure of image quality. We anticipate that the SSL-based
approach can contribute to more accurate image quality analysis and can be a useful tool
for objective comparison between different CT scanners or reconstruction algorithms.
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