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Abstract: The investigation examines the transference of stiffness from intervertebral discs (IVDs) to
the lumbar body of the L1 vertebra and the interactions among adjacent tissues. A computational
model of the vertebra was developed, considering parameters such as cortical bone thickness,
trabecular bone elasticity, and the nonlinear response of the nucleus pulposus to external loading. A
nonlinear dynamic analysis was performed, revealing certain trends: a heightened stiffness of the
annulus fibrosus correlates with a significant reduction in the vertebral body’s ability to withstand
external loading. At a supplied displacement of 6 mm, the vertebra with a degenerative disc
reached its yielding point, whereas the vertebrae with a healthy annulus fibrosus exhibited a strength
capacity exceeding 20%. The obtained findings and proposed methodology are potentially useful for
biomedical engineers and clinical specialists in evaluating the condition of the annulus fibrosus and
predicting its influence on the bone components of the spinal system.

Keywords: annulus fibrosus; finite element method; hyperelasticity; nucleus pulposus; intervertebral
disc; stiffness; vertebra

1. Introduction

Numerical studies can serve as an effective complement to the study of biomechanical
processes occurring in the spinal system. The ability to parameterize models allows for the
evaluation of the interactions between different objects with varying properties, while sav-
ing time and financial resources. This supplies the possibility of solving various problems,
such as the transmission of stiffness from the intervertebral disc (IvD) to the vertebra. This
task is particularly relevant in cases where the stiffness of the intervertebral disc changes,
for example, in the case of soft tissue deterioration caused by degenerative diseases.

The IvD is an essential spinal unit that provides flexibility and supports compres-
sion, torsional and flexion loads [1]. IvD is consistently subjected to external forces and
experiences different magnitudes and types of loading according to activity [2].

The IvD is composed of three main structures: the nucleus pulposus (NP), annulus fi-
brosus (AF), and two hyaline cartilaginous endplates, which connect the IvD with vertebral
bodies [2]. NP is a gelatinous proteoglycan-rich structure surrounded by fibrocartilage AF.
AF prevents the radial disc bulging of the NP by generating large hoop stress. NP tissue
has a simpler and more homogeneous structure, whereas AF tissue is highly heterogeneous
and differs from the inner to the outer region [3].

IvD is an avascular organ, and its mechanical behavior is crucial for cell nutrient
transfer via diffusive mechanisms. Changes in the biomechanical properties of the IvD
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have a negative impact on flexibility, anatomy, and motion, and can result in the loss of
normal IvD function and lead to the progression of IvD degeneration [1].

The subchondral bone of the vertebrae is also a significant contributor to various inter-
vertebral disc diseases. Anatomically, the vertebra serves as the nearest communication
part of the disc. In particular, the bone marrow of the vertebrae, which is highly cellularized
and comprises a multitude of different immune and stromal cell types, presents numerous
possibilities for responding to the factors released by the disc. The bone marrow serves as a
vascularized gateway that facilitates communication between the IVD and the circulatory
system [4]. When the disc undergoes degeneration, it impacts the mechanical load trans-
mission to the vertebral body. Previous research discovered that the decompression of the
lumbar IVD through enzyme injection or surgery can lead to the formation of lesions in the
adjacent vertebrae within 24 weeks [5].

To conduct a thorough investigation, important aspects related to the properties of
bone and soft tissue, as well as the geometry of the developed numerical models, must be
taken into account. Recent studies offer various approaches to modeling the properties of
bone and adjacent soft tissues. In recent studies, bone is most often represented as a linear
elastic isotropic body [6–8]. Some authors take into account transverse isotropy [9], and
studies can also be found in which bone tissue is modeled as a poroelastic body [10] or an
elastoplastic continuum [11].

There is a much wider variety of proposed types of materials for the components of
intervertebral discs. Some authors consider the annulus fibrosus to be a linear elastic mate-
rial [12], while others consider it to be a hyperelastic matrix [13], viscoelastic matrix [14],
or as having assigned poroelastic properties [15] in finite element models. The nucleus
pulposus is generally modeled as a nonlinear material, and recent research offers various
approaches using the following materials: an incompressible fluid-like material [16], hyper-
elastic neo-Hookean solid [13], hyperelastic Mooney–Rivlin solid [17], poroelastic solid [18],
viscoelastic [14], and osmoviscoelastic solid [19].

The major drawback of those studies is the lack of specificity, namely, the absence of a
comparison of elastic constants with the clinical condition of the patient. However, some
investigators found a decrease in segmental stiffness with low-grade degeneration [20,21],
while other studies observed a rise in stiffness with an increasing degeneration grade [22,23].
Comprehensive experimental studies of annulus fibrosus samples could shed light on
changes in the mechanical characteristics of the annulus fibrosus in degenerative states. In
our numerical investigation, we aim to emphasize the existence of this problem in this field,
and using the results obtained from the numerical model, we strive to demonstrate the
necessity of conducting physical experiments for a more detailed and thorough study of the
contribution of annulus fibrosus to the shock absorbance and resistance to the mechanical
overload in the spine.

Another important issue is the creation of a geometric model. The authors of [24]
presented a finite element study of the lumbar vertebra; however, the influence of the
intervertebral disc was not taken into account. Another study [25] proposed modeling
the vertebral system by taking into account the interaction between the vertebral surface
and the intervertebral discs, but the lumbar body was represented as a homogeneous
continuum, and the influence of cortical and cancellous tissue was not considered. The
authors of [26] studied mechanical characteristics using numerical models, but their studies
did not evaluate the hyperelastic behavior of the intervertebral disc. The methods of mod-
eling lumbar vertebrae with components such as cortical bone, cancellous bone, posterior
elements, cartilage endplates, annulus fibrosus, and nucleus pulposus were presented
in [27,28], but these studies aimed to study bone degeneration without considering the
influence of the various stiffnesses of the intervertebral discs.

In studies focused on modeling and analyzing the mechanical behavior of interverte-
bral discs, the primary emphasis is often placed on the nucleus pulposus, with the influence
of the annulus fibrosus, beyond its role in retaining the nucleus pulposus, frequently
marginalized or disregarded entirely. We propose the hypothesis that the stiffness of the
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annulus fibrosus itself governs the efficacy of the nucleus pulposus and, consequently,
exerts a pivotal influence on the interaction between discs and vertebrae, including the
efficient transmission of forces that mitigate bone tissue strain during external loading. In
other words, this pertains to the problem of stiffness transfer from the disc to the vertebra
in cases of annulus fibrosus degeneration.

In this study, we model the variation of an essential parameter of the annulus fibrosus,
namely, its stiffness. While degenerative diseases do affect the entire disc, in our research,
we aimed to focus on the annulus fibrosus. This approach allows us to elucidate its influence
on the stressed state of the vertebral system and contribute to a deeper understanding of
the specifical functioning of the annulus fibrosus. It also sheds light on its interactions
with surrounding tissues, expressing the transfer of stiffness between softer and stiffer
tissues. The proposed approach presented in this study, as well as the research results, may
be useful for biomedical engineers and clinicians studying the mechanical interaction of
tissues with different degrees of stiffness and stages of deterioration.

2. Materials and Methods
2.1. Geometry and Structure of the Model

A three-dimensional model of the lumbar vertebra L1 (Figure 1) was developed in
several steps. To obtain the anatomical curvature of the lumbar body, DICOM images
of a sixty-year-old woman suffering from third-degree arthritis were processed with 3D
Slicer software (version 4.11) [29]. Based on the same images, the posterior elements were
also exported as the STL format file, and then the whole model of lumbar vertebra was
processed using MeshLab software (version 2021.05) [30]: the geometry was simplified
(the initial number of mesh elements was reduced from 59,681 to 39,000) and smoothened
(Laplacian smooth applied). The simplification result is shown in Figure 1a. Then, the file
was exported to SolidWorks software (version 2023) [31], the final refinements were made
using the ScanTo3D module, and the STL mesh was converted into a solid continuum body.
In order to distinguish cortical and cancellous bone, a shell with a thickness of 0.5 mm
was extruded in SolidWorks software. In addition, two horizontal surfaces mimicking
endplates were created. They were given a slightly smaller thickness of 0.2 mm. These
values correspond to the average values typical of lumbar bones [8]. The cancellous bone
remained as a solid continuous body, and in order to account for its porous structure, a
lower elastic modulus was assigned to it than to the cortical bone. The values of elastic
constants are provided in Section 2.3.

Intervertebral discs (T12-L1 and L1-L2) were attached to the upper and lower surfaces
of the endplates. Their height was set to 10 mm (Figure 1b). In our study, they consist of two
parts: the outer annulus fibrosus and the inner nucleus pulposus. All components of the
developed model can be seen in cross-section (Figure 1c). The most important geometrical
parameters of the model are listed in Table 1.

Table 1. Principal geometrical parameters of the model (undeformed).

Parameter Value

Height of the vertebra, mm 30
Height of the IvD, mm 10

Area of the endplate, mm2 935
Volume of the annulus fibrosus, mm3 6076
Volume of the nucleus pulposus, mm3 2497

Total volume of the IvD, mm3 8573



Bioengineering 2024, 11, 305 4 of 13

Bioengineering 2024, 11, x FOR PEER REVIEW 4 of 13 
 

Certainly, the presented model has several simplifications. Primarily, these include 
the absence of ligaments and the hyaluronan endplate. Additionally, trabecular tissue is 
modeled as a homogeneous continuum. Significant geometric simplifications also include 
perfectly flat horizontal surfaces of the vertebrae and the isotropy of the annulus fibrosus 
and nucleus pulposus. The absence of ligaments imposes some limitations on conducting 
numerical experiments—notably, it makes it inconsistent to study the model’s behavior 
under loading types such as bending or torsion. The absence of the hyaluronan endplate 
may also distort stress distribution on horizontal spinal surfaces; however, we assume 
that the compression test conducted on the model allowed us to identify the primary tis-
sue interaction trends arising from the increased stiffness of the annulus fibrosus. 

 
Figure 1. (a)—The simplification and smoothening of the model with MeshLab. (b)—Final rendered 
numerical model of the vertebra L1 with IvDs. (c)—Section view of the model: 1—cortical bone; 2—
cancellous bone; 3—posterior elements, 4—annulus fibrosus; 5—nucleus pulposus. 

2.2. Problem Formulation 
To assess the interaction of tissues with different mechanical behaviors, nonlinear 

elasticity theory was applied. Its selection is justified by the fact that bone tissue behaves 
predominantly linearly under load, while disc tissues (annulus fibrosus and nucleus pul-
posus) exhibit hyperelastic properties. The interaction between hard and soft tissues in-
volves the mutual transfer of stiffness due to the transmission of external loads, and any 
change in the properties of any component of the spinal system can lead to changes in 
stress magnitude and redistribution.  

In dynamic analysis, the equilibrium equations of the system at time step t + ∆t are 
expressed as follows [31]: [𝑀] {𝑈 } ∆  ( ) + [𝐶] {𝑈’} ∆ ( ) + [𝐾] ∆ ( ) {∆𝑈} ∆ ( ) = {𝑅}  ∆ − {𝐹} ∆ ( ), (1)

where [M] is the mass matrix, [C] is the damping matrix, t + ∆t[K](i) represents the stiffness 
matrix of the system, t + ∆t{R} represents the vector of externally applied nodal loads, t + 
∆t{F}(i − 1) represents the vector of nodal forces at iteration (i − 1), t + ∆t[∆U](i) represents 
the vector of incremental nodal displacements at iteration (i), t + ∆t{U’}(i) represents the 

Figure 1. (a)—The simplification and smoothening of the model with MeshLab. (b)—Final rendered
numerical model of the vertebra L1 with IvDs. (c)—Section view of the model: 1—cortical bone;
2—cancellous bone; 3—posterior elements, 4—annulus fibrosus; 5—nucleus pulposus.

Certainly, the presented model has several simplifications. Primarily, these include
the absence of ligaments and the hyaluronan endplate. Additionally, trabecular tissue is
modeled as a homogeneous continuum. Significant geometric simplifications also include
perfectly flat horizontal surfaces of the vertebrae and the isotropy of the annulus fibrosus
and nucleus pulposus. The absence of ligaments imposes some limitations on conducting
numerical experiments—notably, it makes it inconsistent to study the model’s behavior
under loading types such as bending or torsion. The absence of the hyaluronan endplate
may also distort stress distribution on horizontal spinal surfaces; however, we assume that
the compression test conducted on the model allowed us to identify the primary tissue
interaction trends arising from the increased stiffness of the annulus fibrosus.

2.2. Problem Formulation

To assess the interaction of tissues with different mechanical behaviors, nonlinear
elasticity theory was applied. Its selection is justified by the fact that bone tissue behaves
predominantly linearly under load, while disc tissues (annulus fibrosus and nucleus pulpo-
sus) exhibit hyperelastic properties. The interaction between hard and soft tissues involves
the mutual transfer of stiffness due to the transmission of external loads, and any change
in the properties of any component of the spinal system can lead to changes in stress
magnitude and redistribution.

In dynamic analysis, the equilibrium equations of the system at time step t + ∆t are
expressed as follows [31]:

[M]t+∆t{U′′ }(i) + [C]t+∆t{U′}(i) + t+∆t[K]
(i)t+∆t{∆U}(i) = t+∆t{R} − t+∆t{F}(i−1)

, (1)

where [M] is the mass matrix, [C] is the damping matrix, t + ∆t[K](i) represents the stiffness
matrix of the system, t + ∆t{R} represents the vector of externally applied nodal loads,
t + ∆t{F}(i − 1) represents the vector of nodal forces at iteration (i − 1), t + ∆t[∆U](i)
represents the vector of incremental nodal displacements at iteration (i), t + ∆t{U′}(i)
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represents the vector of total velocities at iteration (i), and [M]t + ∆t{U′′}(i) denotes the
vector of total accelerations at iteration (i), where the damping matrix [C] was neglected,
[C] = 0.

Using the implicit time integration Newmark–Beta scheme and applying Newton’s
iterative method, the above equations are expressed in the following form:

t+∆t[K]
(i) {∆U}(i) = t+∆t{R}(i), (2)

where t + ∆t{R}(i) represents the effective load vector, and t + ∆t[K](i) denotes the effective
stiffness matrix. The three-dimensional nonlinear problem was solved using SolidWorks
software (Simulation module).

It should be noted that the applied theory imposes certain limitations. First and
foremost, we consider only cases of instantaneous loading, meaning that this study does
not address the consequences of loads that could manifest in the long term.

A specific difficulty lies in the verification of results. Primarily, this is due to the
individual diversity of tissues and their properties, and the inability to compare the obtained
results with a standard. However, we assume that it will be possible to capture the general
trend of stiffness transfer changes in case of tissue degeneration.

Furthermore, it should be noted that nonlinear elasticity theory does not account
for biological processes occurring in tissues. On the other hand, the components of the
spinal system presented in the study are also objects of mechanics. Therefore, we consider
this theory suitable for identifying the main patterns of changes in the stressed state
of the model.

To reach this goal, the von Mises criterion was applied. It is defined in Equation (3):

σy =

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2
, (3)

where σ1, σ2, and σ3 are the maximum, intermediate, and minimum principal stresses,
respectively, and σy is a yield stress.

2.3. Mechanical Properties of Model Components

The bone tissue was represented as an elastic–plastic isotropic continuum. The cor-
tical tissue was assigned an elastic modulus of 8 GPa [7,8], while the elastic modulus of
cancellous bone was set to 100 MPa [26,27]. Both components were assigned the same
Poisson’s ratio of 0.3 [7,8]. To evaluate the strength of the vertebral body, the bone tissue
was assigned a yield strength of 64 MPa [7,8].

To account for the nonlinear behavior of the intervertebral disc in case of compression,
the nucleus pulposus was represented using the Mooney–Rivlin material model, with
constants C1 and C2 set as 0.12 MPa and 0.03 MPa, respectively [17]. The Poisson’s ratio
was assigned as 0.4995.

The annulus fibrosus is modeled as a linearly elastic continuum. In a review article [32],
it is noted that the reported elastic constants typically fall within the range of 2–8 MPa
(Young’s modulus), while the Poisson’s ratio is commonly around 0.45. In our study, we
considered two cases. For the first case, we assumed a Young’s modulus of 2 MPa, and for
the second case, it was 8 MPa. Additionally, we made the assumption that in the first case,
we are examining a healthy annulus fibrosus, and in the second case, we are examining
one affected by degenerative diseases. It should be noted that these assumptions are not
absolute truths; however, they are based on known trends, such as the increase in tissue
stiffness in degenerative diseases. Through numerical calculations and the interpretation of
the results obtained, we attempted to verify the correctness of our assumptions.
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2.4. Computational Model, Boundary Conditions, and Mesh

The loading scheme is presented in Figure 2a. Notably, the load is not directly applied
to the investigated vertebra L1; instead, the model of the L1 vertebra along with two
intervertebral discs (T12-L1 and L1-L2) was placed between two auxiliary vertebrae models
(L2 and T12). It should be noted that the geometry of T12 and L2 models was developed on
the basis of L1 surface curvature, so we should treat them as nominal models and cannot
declare that their geometry is patient-specific.
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Figure 2. (a): Schematization of load; (b): finite element model.

An additional intervertebral disc (L2-L3) was attached to the nominal L2 model, and a
rigid constraint was applied to its lower surface. The nominal T12 vertebra model transfers
the vertical displacement, which is applied to the upper surface of the T11-T12 disc.

This loading scheme with the implementation of nominal models allowed for a more
accurate transmission of stiffness from intervertebral disc T12-L1 to the lumbar body L1,
and the calculated stresses on the L1 vertebra model were not distorted by either boundary
conditions (rigid constraint causes stress concentrators) or the nearby location of the load
application (Saint-Venant’s principle).

The whole computational model was loaded until yield stresses (64 MPa) appeared
on the L1 vertebra. Two tests were conducted with different properties of the previously
obtained annulus fibrosus, described in the previous section. The maximum applied
displacement value was 7.6 mm.

To solve the equilibrium equations, the Intel Direct Sparse solver was used. To effectively
adapt the finite element mesh to the complex curvature of the model, meshes were applied
with volumetric (tetrahedral) finite elements (Figure 2b). Number of finite elements—647,055;
number of nodes—118,902. The model is characterized by 352,964 degrees of freedom.

3. Results and Discussion

The von Mises stress plot of the whole computational model is presented in Figure 3.
As we can see, the maximum values of stress are concentrated on the cortical bone of
the upper vertebra, closer to its connection with the intervertebral disc. It should be
noted that this result is primarily due to the proximity of the applied load location (Saint-
Venant’s principle), and considering the stresses obtained on the upper vertebra is not
appropriate. The effect of Saint-Venant’s principle is clearly observed on the T11-T12 IvD
of the computational model. As we can see, its upper surface is much more distorted than
the others. Otherwise, the obtained plot of stresses looks plausible: high stress values are
found on the bone components, and much lower values are found on the IvD. This effect
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can be explained by the different stiffnesses of the tissues. Additionally, as we can see
from the presented figure, the stiffness of the annulus fibrosus does indeed affect the stress
values on bone tissue. Figure 3a shows a model with a healthy annulus fibrosus, and yield
was achieved at a displacement value of 6 mm, while for the same stress value, a model
with degenerated annulus fibrosus required a significantly smaller displacement of 4.4 mm
(Figure 3b).

Bioengineering 2024, 11, x FOR PEER REVIEW 7 of 13 
 

on bone tissue. Figure 3a shows a model with a healthy annulus fibrosus, and yield was 
achieved at a displacement value of 6 mm, while for the same stress value, a model with 
degenerated annulus fibrosus required a significantly smaller displacement of 4.4 mm 
(Figure 3b). 

 
Figure 3. The trimetric von Mises stress plot of the whole computational model: (a)—with healthy 
annulus fibrosus; (b)—with degenerated annulus fibrosus. 

Next, we will only consider the results obtained for the L1 vertebra and the adjacent 
intervertebral discs (T12-L1 and L1-L2). Figure 4 shows von Mises plots obtained at dif-
ferent displacement values for a model with an intervertebral disc with healthy annulus 
fibrosus. In Figure 4a, we observe a more uniform distribution of stresses over the entire 
surface of the cortical bone. It is colored green, and the mean value is around 17 MPa. At 
the points of maximum curvature, stress values slightly increase, reaching values of 33 
MPa in some nodes, although they do not have significant characteristics. In this case, the 
safety factor is slightly less than fifty percent. 

The von Mises stress plots for the model with a healthy annulus fibrosus and an ap-
plied displacement of 6 mm are shown in Figure 4b. As we can see, the stress distribution 
on the cortical tissue is no longer uniform: nodes with increased values are located in the 
narrowest section of curvature and reach up to 50 MPa. The yield limit was still not 
reached, but the safety factor significantly decreased, in this case to just over 20 percent. 

Figure 4c shows the model with a healthy annulus fibrosus and a displacement of 7.6 
mm. As we can see, the yield limit has been reached and nodes with critical stress values 
are formed on the front surface of the cortical tissue. However, this plot does not indicate 
that the intervertebral disc is no longer performing its function, but rather that the defor-
mations caused by the external load exceeds the permissible limit for bone tissue. 

Figure 4d–f represent a model with a degenerated annulus fibrosus. As we can see, 
even in the case of a displacement of 4.4 mm (Figure 4d), the stress distribution cannot be 
called uniform. The maximum stress value approaches 50 MPa, indicating that the inter-
vertebral disc is no longer able to perform its function. Notably, under a similar load and 
with a healthy IvD, stress values were one and a half times lower. Moreover, a similar 
value of strength capacity was obtained at a greater displacement for a healthier disc (Fig-
ure 4b). 
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Next, we will only consider the results obtained for the L1 vertebra and the adjacent
intervertebral discs (T12-L1 and L1-L2). Figure 4 shows von Mises plots obtained at
different displacement values for a model with an intervertebral disc with healthy annulus
fibrosus. In Figure 4a, we observe a more uniform distribution of stresses over the entire
surface of the cortical bone. It is colored green, and the mean value is around 17 MPa.
At the points of maximum curvature, stress values slightly increase, reaching values of
33 MPa in some nodes, although they do not have significant characteristics. In this case,
the safety factor is slightly less than fifty percent.

The von Mises stress plots for the model with a healthy annulus fibrosus and an
applied displacement of 6 mm are shown in Figure 4b. As we can see, the stress distribution
on the cortical tissue is no longer uniform: nodes with increased values are located in the
narrowest section of curvature and reach up to 50 MPa. The yield limit was still not reached,
but the safety factor significantly decreased, in this case to just over 20 percent.

Figure 4c shows the model with a healthy annulus fibrosus and a displacement of
7.6 mm. As we can see, the yield limit has been reached and nodes with critical stress
values are formed on the front surface of the cortical tissue. However, this plot does not
indicate that the intervertebral disc is no longer performing its function, but rather that the
deformations caused by the external load exceeds the permissible limit for bone tissue.

Figure 4d–f represent a model with a degenerated annulus fibrosus. As we can see,
even in the case of a displacement of 4.4 mm (Figure 4d), the stress distribution cannot
be called uniform. The maximum stress value approaches 50 MPa, indicating that the
intervertebral disc is no longer able to perform its function. Notably, under a similar
load and with a healthy IvD, stress values were one and a half times lower. Moreover, a
similar value of strength capacity was obtained at a greater displacement for a healthier
disc (Figure 4b).
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Figure 4e,f demonstrate exceeding critical stresses, and if in the case shown in Figure 4f,
the main factor in reaching the yield stress is a large displacement (7.6 mm), then in the
plot shown in Figure 4e, the negative effect of higher stiffness is vividly demonstrated:
transferring stiffness from the disc to the vertebral body causes stresses that exceed the
yield stress, and in such a model, failure is expected.

The von Mises stress plots for the model in cross-section are presented in Figure 5.
Figure 5a,c reflect the stress distribution on the cancellous bone. As can be seen from
the presented plots, the stresses on the cancellous bone are distributed relatively evenly,
and their values are much lower than on the cortical shell. This observation is in good
agreement with the regularities identified by [33], where during the overloading of lumbar
vertebrae, the cortical shell initially takes the main load, and then, with further loading of
the vertebra, internal forces are transferred to the cancellous bone. The mean stress value
on the cancellous bone with healthy annulus fibrosus was 11 MPa (Figure 5a), whereas at
the same displacement, the stress on the cancellous bone at degenerated annulus fibrosus
was slightly higher—16 MPa (5c). In addition, with more deteriorated annulus fibrosus,
higher stress values are based closer to the endplates.

The stress distribution on the vertebral body obtained in our study is similar to the
results presented in [34]. In both cases, the most stressed area is the anterior wall of the
cortical bone. In our study, the thickness of the cortical tissue is not a variable parameter;
however, comparing the results of both studies provides grounds to assume that the
stiffness of the annulus fibrosus will have an even greater impact on the strength of the
vertebral body in conditions such as osteoporosis, and the consequent thinning of bone
caused by it will significantly reduce the load-bearing capacity of the vertebral body.

Figure 5b,d show stress distributions for the inner side of the cortical shell. As in the
case of cancellous tissue, the distributions look more uniform in the case of less deteriorated
annulus fibrosus. Stress values on the inner side of the cortical shell do not exceed 40 MPa
(Figure 5b), whereas in the case of degeneration, stress values reach up to 50 MPa (5d).
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Figure 5. Von Mises stress L1 section view in case of 7.6 mm displacement: (a,b)—healthy annulus
fibrosus; (c,d)— degenerated annulus fibrosus.

Von Mises stress plots for intervertebral discs are shown in Figure 6. As can be seen
from the plots, the highest stresses occur on the horizontal surfaces of the intervertebral
discs. However, it should be noted that the stressed layer is very thin and only covers one
finite element deep into the disc, although it occupies the entire surface area. The obtained
result can be explained by direct contact with the endplates. Therefore, it is advisable to
consider stress distributions and their values throughout the volume of the intervertebral
disc. For the intervertebral disc with healthy annulus fibrosus, the average stress value
throughout the volume was 8 MPa (Figure 6a), whereas for degenerated annulus fibrosus,
the average stress value increased by one-third: it is equal to 12 MPa (6b). Interestingly,
on the stress plots presented in the cross-section, differences in stress distribution on the
nucleus pulposus are not noticeable. For a more detailed study of their stress state, the
nucleus pulposus is presented on separate plots (Figure 7).
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Figure 7. Von Mises stress plots on nucleus pulposus (T12-L1) in case of 7.6 mm displacement:
(a)— healthy annulus fibrosus; (b)—degenerated annulus fibrosus.

As can be seen from Figure 7, differences in stress distribution, as well as their values,
are noticeable. The maximum stress for the nucleus pulposus in case of a healthy annulus
fibrosus was 2 MPa (Figure 7a), whereas in the case of degenerated one it was 3 MPa
(Figure 7b). However, it should be noted that this effect is due to direct contact, which is
caused by the encirclement of the deteriorated annulus fibrosus. If we take the average
stress values throughout the volume of the body, they are both equal to 1 MPa in both cases.

For a more visual understanding of the obtained results, the stress values at different
loads and degeneration stages are presented in a comparative diagram (Figure 8). As can be
seen from the columns of the diagram, the cortical shell is strongly affected by the stiffness
of the annulus fibrosus. In the case of healthy intervertebral disc, the strength capacity of
the bone can vary from almost 50% (displacement 4.4 mm) to 20% (displacement 6 mm).
From this, a recommendation can be formulated that with a diagnosed degeneration of the
intervertebral disc, not only the joint surface of the vertebra should be evaluated, but also
the overall condition of bone tissue.
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After performing calculations and analyzing results, we can summarize that consid-
ering the nonlinear properties of intervertebral discs is crucial to evaluating the strength
properties, as it could play a significant role in the observed relationship between disc
degeneration and the heightened risk of vertebral fractures. However, a major challenge
remains the insufficient data on the mechanical behavior of tissues in certain diseases.
Although general trends, such as tissue stiffness in degeneration, are known, specific values
of necessary constants or parameters are either unavailable or contradictory.
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While the benefits of numerical studies were highlighted, their full-scale implementa-
tion requires an experimental database. Regarding this study and its proposed methodology,
improvements can be made in several areas. Firstly, the numerical model geometry can
be enhanced by including crucial anatomical components, like ligaments for studying
lumbar body processes in more detail, especially during complex loading cases such as
flexion. Secondly, a more complex mathematical framework can be applied to incorporate
properties such as viscoelasticity and damping, enabling research on the impact loads
experienced by the vertebra during normal life cycles. To obtain more accurate results,
advanced material models accounting for anisotropy in mechanical properties should be
used, although this is difficult due to the unique nature of each bone and the lack of a
template for accurate modeling.

4. Conclusions

This study developed a numerical model to evaluate the stress state of hard and
soft tissues in the lumbar spine. The conducted FEM calculations helped to identify the
following significant trends:

1. In the case of a model with a healthy annulus fibrosus, yield was achieved at a displace-
ment value of 6 mm, whereas for the same stress level, a model with a degenerated
annulus fibrosus required a significantly smaller displacement of 4.4 mm.

2. The mean stress value on the cancellous bone with healthy annulus fibrosus was
11 MPa, whereas at the same displacement (6 mm), the stress on the cancellous
bone with a degenerated annulus fibrosus was higher (16 MPa). Additionally, with
a more deteriorated annulus fibrosus, higher stress values were observed closer
to the endplates.

3. Noticeable differences in stress distribution, as well as their values, were observed.
The maximum stress for the nucleus pulposus in the case of a healthy annulus fibrosus
was 2 MPa, whereas in the case of a degenerated one, it was 3 MPa.

4. In the case of a healthy intervertebral disc, the strength capacity of the bone can vary
from almost 50% (at a displacement of 4.4 mm) to 20% (at a displacement of 6 mm).
From this, a recommendation can be formulated: with the diagnosed degeneration of
the intervertebral disc, not only should the joint surface of the vertebra be evaluated,
but also the overall condition of the bone tissue. This can be particularly important in
cases of osteoporosis, where the thickness of the cortical shell can be reduced.

The proposed modelling approach can be useful for biomedical engineers and clini-
cians; however, for a more comprehensive implementation of the model and the proposed
method in medical practice, extensive experimental studies of biological samples are neces-
sary. For this reason, our further research in this area will focus on studying the mechanical
properties of intervertebral disc tissue samples. This will allow us to supplement the
numerical model, thus making calculations more reliable.
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