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Abstract: Brain maturity and many clinical treatments such as therapeutic hypothermia (TH) can
significantly influence the morphology of neonatal EEG seizures after hypoxia–ischemia (HI), and
so there is a need for generalized automatic seizure identification. This study validates efficacy
of advanced deep-learning pattern classifiers based on a convolutional neural network (CNN) for
seizure detection after HI in fetal sheep and determines the effects of maturation and brain cooling
on their accuracy. The cohorts included HI–normothermia term (n = 7), HI–hypothermia term (n
= 14), sham–normothermia term (n = 5), and HI–normothermia preterm (n = 14) groups, with a
total of >17,300 h of recordings. Algorithms were trained and tested using leave-one-out cross-
validation and k-fold cross-validation approaches. The accuracy of the term-trained seizure detectors
was consistently excellent for HI–normothermia preterm data (accuracy = 99.5%, area under curve
(AUC) = 99.2%). Conversely, when the HI–normothermia preterm data were used in training, the
performance on HI–normothermia term and HI–hypothermia term data fell (accuracy = 98.6%, AUC
= 96.5% and accuracy = 96.9%, AUC = 89.6%, respectively). Findings suggest that HI–normothermia
preterm seizures do not contain all the spectral features seen at term. Nevertheless, an average
5-fold cross-validated accuracy of 99.7% (AUC = 99.4%) was achieved from all seizure detectors.
This significant advancement highlights the reliability of the proposed deep-learning algorithms
in identifying clinically translatable post-HI stereotypic seizures in 256Hz recordings, regardless of
maturity and with minimal impact from hypothermia.

Keywords: seizure detection; deep learning; neonatal hypoxic–ischemic encephalopathy; hypother-
mia; full-term and preterm fetal sheep; EEG; pattern recognition

1. Introduction

Perinatal hypoxic–ischemic encephalopathy (HIE) is a life-threatening complication,
arising after lack of oxygen and blood flow to the brain [1]. In both experimental and clinical
studies in term and preterm neonates, moderate to severe hypoxia–ischemia (HI) is typically
followed by electroencephalographic (EEG) seizures, which are associated with white and
grey matter injury [2–5]. While studies indicate a strong association between neonatal
seizures and outcomes in term infants with HIE [6], there is evidence demonstrating that
EEG seizures may not necessarily have clinical correlates in all neonates [7]. The great
majority of EEG seizures at all ages are not associated with clinical signs. Real-time manual
identification and interpretation of EEG seizures in newborns are, however, challenging
and require expert clinical knowledge [8,9]. We need to significantly improve our ability to
reliably detect seizures in order to more effectively target treatment to infants who might
benefit [8,10].

Preclinical experiments can help to improve our understanding of the diagnostic and
prognostic values of EEG as the timing and severity of the insult can be controlled and
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continuous measurements made from immediately after HI [11–13]. Neonatal models
of clinically relevant HI insults in large animals at term are challenging and are largely
carried out under anesthesia [14,15] and not readily feasible at preterm equivalent ages. A
useful alterative is the fetal sheep, which permits continuous, comprehensive physiological
measurements at all ages including continuous EEG recordings before, during, and after
HI without the confounding effects of anesthesia or other medications. Fetal studies have
shown that the phases of HI injury are similar to those seen in newborns, with reperfusion,
latent, secondary, and tertiary phases of evolving injury.

We have previously demonstrated that EEG waveforms, specifically micro-scale sharp
waves and gamma spike transients, are observed in the latent phase of recovery in preterm
fetal sheep and are correlated with HI-related brain injury [16,17]. We have recently
developed and validated successful data-driven deep-learning-based pattern classifiers
that can accurately identify and quantify these transients [16] as well as delta-band rolling
waveforms in the form of stereotypic evolving micro-scale seizures (SEMSs) in the EEG of
preterm fetal sheep. The techniques utilized included 1D convolutional neural networks
(1D-CNNs) [16,18], wavelet Fourier CNNs (WF-CNNs) [16], and a highly accurate state-of-
the-art wavelet scalogram CNN (WS-CNN) approach that infuses spectrally rich feature
maps of EEG sections into a deep CNN classifier for pattern recognition [16].

After initial recovery of oxidative metabolism in a “latent” phase after HI, moderate to
severe injury is associated with secondary deterioration, with of loss of cerebral oxidative
metabolism and high-amplitude stereotypic evolving seizures (HASs) in most fetuses and
a fully stochastic EEG background regardless of age (Figure 1A–C) [11,19]. Experimentally,
seizures typically start around 7–8 h post-HI and peak by approximately 24–48 h. In the
preterm brain, these seizures are most often discrete events [11] but can develop into status
epilepticus in term fetuses [19]. HASs are defined by their repetitive, stereotypic nature,
lasting for at least 10 s with an amplitude of >20 µV in at least one EEG channel [20,21],
matching the clinical definition [22–24]. Examples of HASs from HI–normothermia preterm,
HI–normothermia term, and HI–hypothermia term groups are shown in Figure 1D–L. We
have previously shown that the 1D-CNN and WS-CNN classifiers can be used to identify
HASs after HI in preterm fetuses [18,25]. Others have shown that data-driven deep-
learning-based classifiers can help to identify seizures in term and preterm infants [26,27]
and adults [28,29].

While there is growing evidence that automated classifiers for EEG background as-
sessment and grading are feasible [30–33], there is limited evidence for how automated
deep-learning-based seizure detection algorithms perform across different stages of mat-
uration [26]. Other studies also show the application of deep-learning-based algorithms
for neonatal EEG seizure identification [34–39]. Recent studies emphasize that automated
neonatal seizure detection algorithms can be beneficial; however, the algorithm’s predic-
tions will still necessitate review by a human expert [5]. This is important to determine, as
EEG characteristics change with age, consistent with maturation of neural connectivity and
changing neurotransmitter function, and there are data to show that seizure morphology
may also differ with age [11,26,40–42]. Further, there are few studies on the impact of
clinical treatments, particularly therapeutic hypothermia (TH), which is the only currently
approved neuroprotection treatment for term and near-term newborns with moderate to
severe HIE [1]. Preclinical studies demonstrated that TH is most effective when started as
early as possible within the first 6 h after HI (i.e., during the latent phase) and continued
for 3 days. These data informed clinical trials and current practice [1]. Animal and clinical
studies show that TH can partially suppress HASs [2,5,43–46].
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Figure 1. Examples of EEG power activity before, during, and up to 60 h after an HI insult induced by acute umbilical cord occlusion in an HI−normothermia preterm
fetus (A), global cerebral ischemia induced by bilateral carotid artery occlusion in HI−normothermia term fetuses with no treatment (B), and HI−hypothermia
term fetal sheep with 3 days of therapeutic hypothermia (C). The presence of high-amplitude stereotypic evolving seizures (HASs) during the secondary phase of
recovery is demonstrated in (A–C). Examples of individual HASs from each fetal sheep in the above groups are shown in (D–L), respectively. HAS patterns above
demonstrate examples of EEG epochs used in the training and testing of the proposed seizure detectors.
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In the present study, we sought to validate the accuracy of the WS-CNN, the WF-CNN,
and 1D-CNN advanced deep-learning algorithms for seizure detection in a cohort of 40
near-term and preterm fetal sheep after severe HI, using continuous EEG recordings. In
the near-term fetuses, we also examined whether TH affected their accuracy. We report
that the proposed deep net algorithms can accurately detect seizures regardless of mor-
phological variation due to age or hypothermia with a consistent decaying performance
order when tested on data from HI–normothermia preterms, HI–normothermia terms, and
HI–hypothermia terms, respectively. We will further demonstrate that training of the deep
nets by adding data from sham–normothermia terms into the training sets can help to
improve accuracy. The proposed spectral-based seizure detectors may also help to interpret
spectral-component coherency of seizures. The non-denoised 256Hz recordings used in this
study provided a framework to address the performance of the proposed deep-CNN-based
seizure detectors in preclinical situations, where seizures could be reliably identified from
non-HAS events (e.g., due to movement artifacts, etc.), thus making the validation of the
techniques clinically trustworthy. These results are a significant step forward towards
robust identification of post-HI seizures regardless of the brain maturity and treatment that
should be further assessed in clinical studies. Finally, we show how these results illustrate
a robust approach to developing a generalized seizure detector that can robustly identify
seizures across all groups regardless of maturation or use of TH.

2. Methods

The known maturational differences between term and preterm EEG activity [47,48]
imply that automatic identification of seizures across these groups can be challenging
when the algorithm is trained only using data from one group (e.g., trained on terms
and then tested on preterms). These developmental impacts have been emphasized by
studies showing that adults epileptic seizure detectors are not suitable for EEG seizure
detection in term infants [49,50]. Clinically, preterm seizure morphology and characteristics
are more complex, with slightly different frequency components than those seen in term
seizures [40,41]. In the current study, we investigate solutions to the challenges above by
addressing the following questions:

(a) Can our previous micro-scale EEG pattern classifiers be re-designed for accurate
seizure identification in data from fetal sheep models with different gestational ages
and/or under the influence of treatment with therapeutic hypothermia?

To answer this question, we refined previously developed EEG pattern classifiers,
the WS-CNN, the WF-CNN, and the 1D-CNN, for seizure detection in preclinical data
from a large cohort of fetal sheep. Figure 2 is a schematic showing where each algorithm
is situated at a system level. We have described the basic algorithms previously [16,25].
Details of the re-designed structures including brief tables that demonstrate the new CNN
architectures are described in Sections 2.1–2.3.

(b) Can the seizure detection algorithms trained/validated on datasets from certain group
sets identify seizures in the EEG sets of other individual groups?

The paper explores how the choice of data partition (train/validation/test) influenced
the results for each algorithm:

1. Study #1: A leave-one-out cross-validation (LOOCV) approach where data from the term
sham–normothermia group were included in three different training/test schemes.

2. Study #2: A leave-one-out cross-validation (LOOCV) approach where data from the
sham–normothermia group were excluded in three different training/test schemes.
This was used to study the possible impacts of removing data from the sham–
normothermia group.

3. Study #3: A k-fold cross-validation (k = 5) approach where data from all groups were
randomly combined and included in five different training/test schemes.
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Figure 2. The architectures of the proposed seizure detectors. WS−CNN (solid line), WF−CNN
(dashed line), 1D−CNN (dotted line).

We explored how the performance of each seizure detector changed across and within
each category above. The three proposed seizure detectors were trained/validated/tested over
1727 h of recordings in each separate study above (overall more than 17,300 h of recordings).

(c) Can specific training strategies help to improve the generalization and robustness
of pattern classifiers to perform equally well across all groups and identify seizures
regardless of what hemisphere the EEG has been recorded from?

Study #3 above showed that combining datasets recorded from both hemispheres of
all four fetal sheep cohorts (n = 40) provided the most accurate generalized seizure detector.
We then demonstrated that our state-of-the-art WS-CNN seizure classifier outperformed the
other proposed algorithms for real-time identification of HASs and was able to distinguish
them from high-amplitude EEG noise and/or other background activity in the conventional
256 Hz post-HI recordings, across all studies.

2.1. WS-CNN Seizure Detector

Deep-learning pattern recognition classifiers generally achieve optimally higher accu-
racies when fed with proper extracted features that provide higher-resolution information
for decision making. We have previously shown that WS images, generated using a wavelet
basis function with similar morphology/characteristics to the pattern of interest over a
broad scale range, contain high-resolution spectral information and desirably provide
superior feature maps for CNN classifiers [16]. In this study, we used the Morlet wavelet
(see Figure 2 of [25]) as its morphological profile ideally matches the natural repetitive
rhythms of high-amplitude stereotypic seizures.

The 2D scalogram images were generated by continuous wavelet transforming (CWT)
the zero-meaned raw 256 Hz EEG time-series using the morl function over a large scale
range between 1 and 500 (step size = 5). This scale range corresponds to a large pseudo-
frequency range between 0.42 and 208 Hz (as EEGs were sampled at 256 Hz), ensuring
that almost all of the spectral details of the EEG segments have been captured. Images
were created at 500 × 333 pixels and stored as “.png” format with resolution (dots per
inch) set at 300. Figure 3A–D and Figure 3E–H demonstrate examples of the HASs in the
post-HI insult recordings and their corresponding WSs, respectively. Examples of non-HAS
EEG segments and their corresponding WSs are shown in Figure 3I–L and Figure 3M–P,
respectively. Figure 3E–H demonstrate how the spectral features of morl WSs of HAS
segments, over a scale of 1:5:500, were visually distinguishable from the WSs of non-HAS
EEG events shown in Figure 3M–P.
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Figure 3. (A–D): Examples of post-HI high-amplitude stereotypic seizures (HASs) in all fetal sheep
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mother wavelet of scales 1 to 500.

WS feature map images were then infused into a deep CNN classifier (WS-CNN) for
pattern recognition [16]. Despite its larger architecture design and computationally inten-
sive nature, this algorithm consistently outperforms our other CNN-based classifiers [16].
Table 1 details the architecture of the proposed 17-layer deep WS-CNN classifier, including
convolutional layers (with batch normalization and ReLU units), max-pool, fully connected
layers, and a softmax and a classification layer at the end (see full details in [16]). The
root mean square propagation (RMSProp) optimizer was used to update the weights and
bias parameters of the classifier. Due to the satisfactory overall performance from RM-
SProp, we did not investigate substituting this optimizer with Adam or SGDM optimizers.
Training/validation was performed over 60 epochs using the default parameter values of
1.00 × 10−3 and 0.9 for the learning rate and SquaredGradientDecayFactor, respectively.

2.2. WF-CNN Seizure Detector

This approach is a simplified version of the WSs where only the spectrally dominant
features of the raw EEG segment, in the form of wavelet and Fourier spectrums (WF), were
extracted and used as opposed to the full-range spectral features (scalogram images) [16,25].
We combined three time-series to form 3D input matrix sets of 51,302 × 3 × 1 in size:

- The CWT coefficients of each EEG segment using morl at an arbitrary scale of 80
(equal to pseudo-frequency of 2.56 Hz). This scale number was chosen to target the
embedded spectrums near the mean frequency of the delta-band (0.5–4 Hz).

- The inverse Fourier transform time-series of the EEG segment (IFFT: Spectral com-
ponents within 0.2–4.5 Hz were preserved). This was chosen to cover delta-band
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spectrums as studies have shown neonatal seizures are more likely to contain rhyth-
mic delta sharp-waves/discharges [41,51].

- The original raw EEG segment.

Table 1. The architecture of the proposed 17-layer deep WS-CNN seizure classifier.

Layers Type No. of Neurons (Output Layer) Kernel Size Stride Padding No. of Filters

0–1 Conv. 333 × 500 3 1 1 32
1–2 Max_pool 166 × 250 [3 2] 2 0
2–3 Conv. 166 × 250 3 1 1 48
3–4 Max_pool 83 × 125 2 2 0
4–5 Conv. 83 × 125 3 1 1 64
5–6 Max_pool 41 × 62 3 2 0
6–7 Conv. 41 × 62 3 1 1 96
7–8 Max_pool 20 × 31 [3 2] 2 0
8–9 Conv. 20 × 31 3 1 1 128

9–10 Max_pool 10 × 15 [2 3] 2 0
10–11 Conv. 10 × 15 3 1 1 192
11–12 Max_pool 4 × 6 [4 5] 2 0
12–13 Conv. 4 × 6 3 1 1 256
13–14 Max_pool 2 × 3 2 2 0
14–17 Fully_connected 1536

Fully_connected 24
Fully_connected 2

Output Softmax and
Classification

The 3D input matrix sets of the spectrally dominant features from the previous section
were fed into a deep 2D-CNN classifier (WF-CNN). We designed a 14-layer deep CNN to
perform classification on the 3D input matrices of features. This approach is computation-
ally more efficient due to the much simpler input features [16,25]. Table A1 of Appendix A
details the architecture of the proposed 14-layer deep 2D-CNN used in the WF-CNN seizure
detector. The inner convolutional layers of the network were designed to avoid massive
size reductions within the inner layers. An RMSProp updating optimizer was used to train
the WF-CNN over 60 epochs with default parameter settings.

2.3. 1D-CNN Seizure Detector

We recently demonstrated that a 1D-CNN classifier is capable of identifying HASs in
a limited dataset of preterm fetal sheep [18]. This approach is computationally the simplest
seizure classifier compared to the WF-CNN and WS-CNN approaches, where the feature
extraction blocks in the two previous approaches were skipped and a CNN produces
internal feature maps of its input 1D EEG time-series. In the current study, EEG segments
of 51,302 × 1 in length were directly infused into a 14-layer deep 1D-CNN classifier. The
designed architecture was trained using an RMSProp optimizer over 60 epochs with default
parameter settings (Table A2 in Appendix A).

2.4. Performance Metrics

The performances of the proposed seizure detectors were evaluated by measuring sen-
sitivity, selectivity, precision, accuracy, and area under the curve (AUC). These metrics were
calculated by determining full results of the confusion matrix including the total number
of true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) hits for
each scheme in each study category, separately (see Table 2). Precision is the percentage of
TPs among TP + FN. Accuracy is defined as the percentage of true hits (TP + TN) among all
possible outcomes (TP + FN + TN + FP). Training-to-testing ratios/regimes in each scheme
of study #1 and #2 were over-ruled by the number of EEG patterns in each animal group
(Table 2). A fixed training-to-testing ratio of 4.0 was considered for all five cross-validation
folds in study #3 (80% data for training/validation and 20% for test). Partitioning data across
all folds of study #3 was performed using the “rng(‘default’)” Matlab function [52] to ensure
data reproducibility for performance assessment across all seizure detectors.
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2.5. Computing Infrastructure

The algorithms were developed, trained, and tested in Matlab®® using New Zealand
eScience Infrastructure (NeSI) (Auckland, New Zealand) high-performance computing facilities’
Cray CS400 cluster [53]. The training process was executed using enhanced NVIDIA Tesla
A100 PCIe GPUs with 40 GB HBM2 stacked memory bandwidth at 1555 GB/s [54]. Intel Xeon
Broadwell CPUs (E5-2695v4, 2.1 GHz) were used on the cluster for handling the GPU jobs.

2.6. Experiments, Data Acquisition, and Preparation
Ethics

All procedures were approved by the Animal Ethics Committee of the University
of Auckland (R1942) under the New Zealand Animal Welfare Act and carried out in
accordance with the Code of Animal Ethical Conduct established by the Ministry of Primary
Industries of the New Zealand Government.

2.7. Surgical and Experimental Procedures
2.7.1. Fetal Surgery

In brief, 26 near-term and 14 preterm time-mated Romney/Suffolk fetal sheep at 124
and 98 ± 1 days of gestation, respectively (term is 145 days of gestation), were used in this
study. Fetuses were surgically instrumented with catheters and electrodes under general
anesthesia using aseptic techniques, as previously described [11]. Prior to the surgical
procedure, food was withheld from the animals for 18 h; however, access to water was main-
tained. Long-acting oxytetracycline (20 mg/kg, Phoenix Pharm, Auckland, New Zealand)
was administered intramuscularly to the ewes 30 min before the commencement of surgery.
Anesthesia was initiated through intravenous injection of propofol (5 mg/kg, AstraZeneca
Limited, Auckland, New Zealand) and was sustained using 2–3% isoflurane in an oxygen
environment. Throughout the procedure, the depth of anesthesia, maternal heart rate, and
respiration were continuously monitored by experienced anesthetic personnel. The ewes
received a continuous infusion of isotonic saline (at an approximate rate of 250 mL/h) to
uphold fluid balance. Following a maternal midline abdominal incision, the fetus was
exposed. For near-term fetuses, the vertebral–occipital anastomoses were ligated and
inflatable carotid occluder cuffs were placed around both carotid arteries [55]. For preterm
fetuses, an inflatable silicone occluder (OC16HD, 16 mm, In Vivo Metric, Healdsburg, CA,
USA) was loosely positioned around the umbilical cord to enable postsurgical occlusion
of the umbilical cord for inducing fetal HI [11]. Using a 7-stranded stainless steel wire
(AS633–7SSF; Cooner Wire Co., Chatsworth, CA, USA), two pairs of EEG electrodes were
constructed and placed on the dura mater over the parasagittal parietal cortex (10 mm
and 20 mm anterior to bregma and 10 mm lateral for near-term fetuses and 5 mm and 15
mm anterior to bregma and 5 mm lateral for preterms) and secured with cyanoacrylate
glue. A reference electrode was sewn over the occiput. For near-term fetuses, a thermistor
(Replacement Parts Industries, Inc., Chatsworth, CA, USA) was placed over the parasagittal
dura, 30 mm anterior to bregma, to measure extradural temperature and a second ther-
mistor was inserted into the esophagus to measure core temperature. In the case of all
fetuses, a cooling cap made from silicone tubing (3 × 6 mm, Degania Silicone, Degania Bet,
Israel) was affixed to the head. For all fetuses, the uterus was then closed and antibiotics
(80 mg Gentamicin, Pharmacia and Upjohn, Rydalmere, New South Wales, Australia) were
administered into the amniotic sac. The maternal laparotomy skin incision was sutured and
anesthetized with an injection of 10 mL of 0.5% bupivacaine plus adrenaline (AstraZeneca
Ltd., Auckland, New Zealand). All fetal catheters and leads were externalized through
an incision in the maternal flank. The maternal long saphenous vein was catheterized to
provide access for postoperative maternal care and euthanasia.

Postoperative care: Following surgery, sheep were housed in individual metabolic
cages with unrestricted access to food and water. The room was maintained at a temperature
of 16 ± 1 ◦C with 50 ± 10% humidity and a 12 h light/dark cycle (lights on at 06:00 h). The
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ewe received daily intravenous antibiotics for four days (600 mg benzylpenicillin sodium,
Novartis Ltd., Auckland, New Zealand, and 80 mg gentamicin).

The patency of fetal catheters was sustained by continuous infusion of heparinized
saline (20 U/mL at 0.2 mL/h), and the maternal catheter was maintained by daily flushing.

2.7.2. Experimental Protocols

Near-term fetuses were randomized to HI–normothermia term (HI, no hypothermia)
(n = 7), HI–hypothermia term (HI, hypothermia) (n = 14), and sham–normothermia term (no
HI, no hypothermia) (n = 5). Separately, an HI–normothermia preterm group was prepared
(HI, no hypothermia, n = 14). For near-term fetuses, at 128 ± 1 d gestation, cerebral ischemia
was induced through the temporary inflation of the carotid occluder cuffs with sterile saline
for a duration of 30 min. The successful occlusion was then confirmed by the rapid onset
of an isoelectric EEG signal, typically within 30 s after inflation. In the sham–normothermia
experiments, the carotid occluder cuffs were not inflated. HI–normothermia preterm fetuses
at 103 ± 1 d gestation received complete umbilical cord occlusion induced by inflation of the
umbilical cord occluder with sterile saline. This occlusion was maintained for 25 min or until
blood pressure dropped below 8 mmHg or asystole occurred.

In the HI–hypothermia term group, hypothermia was started 3 h after the end of
the HI insult and continued for 72 h. Hypothermia was performed by attaching the
exteriorized ends of the silicone scalp coil to a pump (TX150 heating circulator, Grant
Instruments Ltd., Cambridge, UK) in a cooled water bath and circulating cold water
through the cooling coil. In line with previous studies conducted on near-term fetal
sheep, the initial target extradural temperature was regulated to a range of 31–33 ◦C in
the HI–hypothermia terms [55]. The water was not circulated, and the cooling coil was
maintained in thermal equilibrium with the fetal temperature. As described previously,
once the cooling period concluded, the water pump was deactivated, and the fetuses
were allowed to naturally re-warm over a period of approximately 60 min. Subsequently,
euthanasia was administered to both ewes and fetuses at the conclusion of the study,
which occurred 7 days after ischemia for near-terms or 21 days after ischemia for preterms.
The euthanasia process involved an intravenous overdose of sodium pentobarbitone (9 g
administered to the ewe; Pentobarb 300; Chemstock, Christchurch, New Zealand) for
subsequent immunohistochemistry analysis. In all groups, 7 days of EEG recordings after
HI were considered for seizure analysis. For the HI–hypothermia term group, this included
seizures during the entire cooling phase and those that occurred after the end of cooling.

2.8. Data Acquisition

After the end of surgery, fetal EEG and other physiological parameters including mean
arterial blood pressure, heart rate, and EEG were recorded continuously from 24 h before
the insult and evaluated up to 168 h after the end of HI or sham HI.

Data were continuously acquired and stored on disk for subsequent offline analysis uti-
lizing custom data acquisition software (LabView 2020 for Windows, National Instruments,
Austin, TX, USA). The raw EEG recordings underwent initial processing, commencing with
a 6th-order anti-aliasing Butterworth low-pass filter featuring a 500 Hz cut-off frequency.
Following this step, the signal was subjected to a gain amplification of ×10,000 and sub-
sequently high-pass filtered via a first-order filter, where the cut-off frequency was set at
1.6 Hz. The recordings were then digitized at a rate of 4096 Hz, and a 10th-order low-pass
inverse Chebyshev filter at 128 Hz (implemented in software) was applied, subsequently
reducing the sample rate to 256 Hz before the data were saved. The data from this final
stage were subsequently transferred to Matlab for analysis.

EEG intensity (power) was also derived using the sum of the power spectrum between
1 and 20 Hz over 1 min recording bins of the raw EEG signal and log transformed (deci-
bels (dB), 20× log (intensity)) as this transformation gives a better approximation of the
normal distribution.
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A total of ~10,080 min of EEG recordings were collected from each fetal sheep (in total
more than 8600 h per EEG channel from 40 subjects). We manually identified the location
of all HAS events on both left and right EEG channels by plotting the EEG power (log
µv2), separately for each, and the locations of the seizures were marked accordingly. The
exact seizure section was then identified in the raw EEG recording and the seizure was
centered in a 51,302 × 1 long segment (equal to ~3.34 min long segments). The procedure of
centralizing the seizure has been explained in the preprocessing section below. Choosing the
3 min long segments ensured that the full lengths of the longer seizures were included in the
dataset. A total of 31,015 EEG segments including 3955 HASs and 27,060 non-HASs were
manually annotated to create the database (Table 3). The larger number of non-HAS events
was intentionally chosen to account for the significantly higher proportion of normal EEG
activity and to encompass the natural emergence of seizures against the EEG background.
This reinforces the algorithm’s robustness in facing non-HAS events. Table 3 provides full
details for the number of EEG segments in each animal group. Table 2 further demonstrates
how data were partitioned into different training schemes for each study category.

Preprocessing

The EEG power signal mainly helps to monitor the long-term trend of an experiment
and is calculated as the sum of the power spectrum of the raw EEG signal between 1 and
20 Hz over a 1 min recording. Therefore, manually identified/labeled seizure points in
the EEG power signal represent only 1 min data where the center/minimum/maximum
datapoints are not necessarily the center of the seizure. Therefore, we developed a strategy
to find and locate seizures in the center of the 3 min long EEG segment as follows:

We initially selected 1 min long recordings either side of the marked seizure location
in the EEG power signal (sig_1). The max/min values of sig_1 are not necessarily a good
choice for the center of a seizure, thus we chose to consider the center of the weight of sig_1
(the signal’s datapoint with the highest weight) as the center of the seizure epoch. To find
the center of the weight, sig_1 was initially zero meaned and amplified to the arbitrary
power of 10 to intensify signal components with higher energy levels. The output signal
(sig_2) was then passed through a moving median absolute deviation (movmad) function
with an arbitrary sliding window size of a length of 8000 points and scaled up to sig_1
(sig_3). This strategy allowed determination of sections of sig_3 that held the highest signal
weight within the arbitrarily assigned moving average datapoints above (i.e., 8000). The
maximum value of sig_3 was then considered as the center of weight for the identified
seizure and 100 s of data from either side of this datapoint (equal to a total of 3.34 min)
were automatically selected to form the seizure segment (HAS). This step was initially
performed by developing automatic algorithms to generate plots, similar to what is shown
in Figure 4, for all manually identified seizure locations.
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Figure 4. (A): sig_1: An example of un−-centered seizure (HAS) from preterm fetal sheep (10 h
post−HI insult). sig_3: evaluated moving median absolute deviation (movmad) of sig_1 with
an arbitrary sliding window size of length of 8000 points, scaled up to sig_1 for visualization.
(B): Example of the final centered seizure (HAS) in a 3.34 min long EEG segment used in the training
and testing of the deep net classifiers.
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Table 2. Study design including three main categories. Evaluations performed separately for the WS-CNN, WF-CNN, and 1D-CNN seizure detectors.

Trained/Validated on
No. of EEG Patterns in

the Training Set (To-
tal/Seizures/Non_Seizures)

Total Length of
Training Set (in

Hours/Days)
Test on

No. of EEG Patterns in the
Testing Set (Total/

Seizures/Non_Seizures)

Total Length of Testing
Set (in Hours/Days)

Training-to-Testing
Ratio

Study #1
3 schemes

G1 + G2 + G3 20,491/2311/18,180 1024.6/42.7 G4 10,524/1644/8880 526.2/21.9 1.95
G1 + G4 + G3 20,852/2652/18,200 1042.6/43.4 G2 10,163/1303/8860 508.2/21.2 2.05
G2 + G4 + G3 25,582/2947/22,635 1279.1/53.3 G1 5433 /1008/4425 271.7/11.3 4.71

Study #2
3 schemes

G1 + G2 15,596/2311/13,285 779.8/32.5 G4 10,524/1644/8880 526.2/21.9 1.48
G1 + G4 15,957/2652/13305 797.9/33.2 G2 10,163/1303/8860 508.2/21.2 1.57
G2 + G4 20,687/2947/17,740 1034.4/43.1 G1 5433/1008/4425 271.7/11.3 3.81

Study #3
5 folds

G1 + G2 + G3 + G4
(Fold #1) 24,812/3164/21,648 1040.6/43.4 Fold #1 test-set 6203/791/5412 310.2/12.9 4.00

G1 + G2 + G3 + G4
(Fold #2) 24,812/3164/21,648 1040.6/43.4 Fold #2 test-set 6203/791/5412 310.2/12.9 4.00

G1 + G2 + G3 + G4
(Fold #3) 24,812/3164/21,648 1040.6/43.4 Fold #3 test-set 6203/791/5412 310.2/12.9 4.00

G1 + G2 + G3 + G4
(Fold #4) 24,812/3164/21,648 1040.6/43.4 Fold #4 test-set 6203/791/5412 310.2/12.9 4.00

G1 + G2 + G3 + G4
(Fold #5) 24,812/3164/21,648 1040.6/43.4 Fold #5 test-set 6203/791/5412 310.2/12.9 4.00

G1: HI–normothermia terms (n = 7); G2: HI–hypothermia terms (n = 14); G3: Sham–normothermia term control (n = 5); G4: HI–normothermia preterms (n = 14).

Table 3. Number of fetal sheep in each group as well as the total number of manually identified seizures and non-seizure patterns from the left/right EEG channels.

No. of Animals
in the Cohort

No. of Seizures
in the Left EEG Channel

No. of Seizures in the Right
EEG Channel

No. of Non-Seizures
in the Left EEG Channel

No. of Non-Seizures
in the Right EEG Channel

HI–normothermia terms 7 470 538 2213 2212
HI–hypothermia terms 14 594 709 4423 4437

Sham–normothermia terms 5 0 0 2438 2457
HI–normothermia preterms 14 844 800 4443 4437

Sum
40

1908 2047 13,517 13,543

Total 3955 27,060



Bioengineering 2024, 11, 217 12 of 23

The plotted graphics were then visually checked by two experts to ensure that the
final EEG segment represented a seizure that is centered in the 3 min long EEG segment.
This preprocessing step can significantly improve the results of the proposed seizure
classifiers as this centralizing strategy helps to use the data in a much better format for a
classification task.

The non-HAS EEG segments were randomly chosen outside the HAS intervals (or over-
lapping tails of seizures in their segments). Therefore, the non-HAS events could include
any electrophysiological activity including normal increasing EEG activity, background
EEG, movement artifact, electronic noise, etc.

To improve generalization and strengthen the performance validity of the proposed
pattern classifier, we did not de-noise the original EEG segments. This helps facilitate
assessment of the proposed seizure detector on data that are similar to those obtained
clinically. No data augmentation (such as horizontal/vertical flipping of the EEG segments)
was performed on the data so that the performance assessments were purely evaluated on
the natural electroencephalographic morphology of the patterns.

3. Results
3.1. Results of the WS-CNN Seizure Detector

Results of the WS-CNN approach for the three different study categories are shown in
Table 4. The deep WS-CNN classifier was able to identify seizures in an unseen fetal sheep
group regardless of age or treatment with an average high accuracy of 98.52% whether
EEG data from the sham–normothermia group were used in the training set or not. The
overall accuracy of the WS-CNN classifier for study #1 was equal to 98.5 ± 1.0% (range
97.2–99.7%), for study #2 98.6 ± 0.9% (range 97.4–99.7%), and for study #3 99.8 ± 0.04%
(range 99.3–99.6%).

The results confirmed the reliability of the 17-layer deep WS-CNN pattern classifier for
detection of post-HI HASs in the 256 Hz sampled EEG. Average area under curve (AUC)
values of 0.95, 0.95, and 0.99 were obtained for studies #1 to #3, respectively. Figure 5A–C
show the ROC curves and the corresponding AUC values of the WS-CNN seizure detector
for the three study categories.

3.2. Results of the WF-CNN Seizure Detector

The confusion matrix results of the WF-CNN approach for the three different study
categories are tabulated in Table 5. The overall accuracy of the WF-CNN approach for
study #1 was equal to 98.5 ± 1.3% (range 96.8–99.8%), for study #2 98.1 ± 1.4% (range
96.4–99.7%), and for study #3 99.7 ± 0.08% (range 98.8–99.6%).

The results showed that the 14-layer WF-CNN pattern classifier can also accurately
identify the post-HI HASs. Average AUC values of 0.95, 0.95, and 0.99 were obtained for
studies #1 to #3, respectively. Figure 5D–F show the ROC curves and the corresponding
AUC values of the WF-CNN seizure detector for the three study categories.

3.3. Results of the 1D-CNN Seizure Detector

Confusion matrix results of the 1D-CNN classifier for each of the study categories
are given in Table 6. The 14-layer deep 1D-CNN seizure detector was able to identify
HAS/non-HAS patterns with an overall accuracy of 98.0 ± 1.0% (range 96.7–99.0%) for
study #1, 97.6 ± 0.9% (range 97.0–98.9%) for study #2, and 99.7 ± 0.1% (range 99.5–99.9%)
for study #3.

The results indicated that despite the negligible fall in accuracy with the 1D-CNN
approach, it could also reliably accurately identify HASs. Average AUC values of 0.95,
0.94, and 0.99 were obtained by the 1D-CNN approach for studies #1 to #3, respectively.
Figure 5G–I show the ROC curves and the corresponding AUC values of the 1D-CNN
seizure detector for the three study categories.
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Figure 5. ROC curves and the corresponding AUC values from testing WS−CNN (A–C), WF−CNN (D–F), and 1D−CNN (G–I) seizure detectors in study #1, #2,
and #3, respectively. The data for each proposed classifier are presented as mean ± SD, demonstrating improved accuracy and much lower variability when data
from all fetal sheep groups have been used in the cross-validation results of study #3.
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Table 4. Results of the WS-CNN pattern classifier for the identification of post-HI seizures (HASs) across all study categories (#1–#3).

TP Hits FP Hits FN Hits TN Hits Sensitivity [%] Selectivity [%] Precision [%] Accuracy [%] AUC Average Accuracy [%] Average AUC

Study #1
3 schemes

1636 8 29 8851 98.26 99.91 99.51 99.65 0.9959
98.48
±1.01

0.9532
±0.0403

1044 259 27 8833 97.48 97.15 80.12 97.19 0.8991
938 70 5 4420 99.47 98.44 93.06 98.62 0.9647

Study #2
3 schemes

1623 21 15 8865 99.08 99.76 98.72 99.66 0.9928
98.56
±0.92

0.9530
±0.0382

1048 255 9 8851 99.15 97.20 80.43 97.40 0.9015
938 70 5 4420 99.47 98.44 93.06 98.62 0.9647

Study #3
5 folds

780 11 2 5410 99.74 99.80 98.61 99.79 0.9929

99.78
±0.04

0.9950
±0.0013

783 8 10 5402 98.74 99.85 98.99 99.71 0.9940
786 5 7 5405 99.12 99.91 99.37 99.81 0.9962
786 5 7 5405 99.12 99.91 99.37 99.81 0.9962
785 6 7 5405 99.12 99.89 99.24 99.79 0.9956

Table 5. Results of the WF-CNN pattern classifier for the identification of post-HI seizures (HASs) across all study categories (#1–#3).

TP Hits FP Hits FN Hits TN Hits Sensitivity [%] Selectivity [%] Precision [%] Accuracy [%] AUC Average Accuracy [%] Average AUC

Study #1
3 schemes

1628 16 7 8873 99.57 99.82 99.03 99.78 0.9947
98.50
±1.28

0.9507
±0.0444

1030 273 57 8803 94.76 96.99 79.05 96.75 0.892
958 50 6 4419 99.38 98.88 95.04 98.97 0.9745

Study #2
3 schemes

1615 29 5 8875 99.69 99.67 98.24 99.68 0.9909
98.10
±1.36

0.9460
±0.0402

1041 262 109 8751 90.52 97.09 79.89 96.35 0.8933
915 93 1 4424 99.89 97.94 90.77 98.27 0.9538

Study #3
5 folds

773 18 6 5406 99.23 99.67 97.72 99.61 0.9881

99.73
±0.08

0.9920
±0.0026

781 10 6 5406 99.24 99.82 98.74 99.74 0.9931
780 11 7 5405 99.11 99.80 98.61 99.71 0.9924
785 6 3 5409 99.62 99.89 99.24 99.85 0.9959
776 15 1 5411 99.87 99.72 98.10 99.74 0.9904
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Table 6. Results of the 1D-CNN pattern classifier for the identification of post-HI seizures (HASs) across all study categories (#1–#3).

TP hits FP hits FN hits TN hits Sensitivity [%] Selectivity [%] Precision [%] Accuracy [%] AUC Average Accuracy [%] Average AUC

Study #1
3 schemes

1610 34 70 8810 95.83 99.62 97.93 99.01 0.9857
98.00
±0.96

0.9459
±0.0364

1048 255 79 8781 92.99 97.18 80.43 96.71 0.8977
916 92 1 4424 99.89 97.96 90.87 98.29 0.9543

Study #2
3 schemes

1554 90 221 8659 87.55 98.97 94.53 97.04 0.9602
97.62
±0.88

0.9426
±0.0315

1046 257 53 8807 95.18 97.16 80.28 96.95 0.8984
946 62 0 4425 100.00 98.62 93.85 98.86 0.9692

Study #3
5 folds

782 9 9 5403 98.86 99.83 98.86 99.71 0.9935

99.70
±0.14

0.9939
±0.0029

776 15 14 5398 98.23 99.72 98.10 99.53 0.9892
783 8 19 5393 97.63 99.85 98.99 99.56 0.9932
785 6 7 5405 99.12 99.89 99.24 99.79 0.9956
788 3 3 5409 99.62 99.94 99.62 99.90 0.9978
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4. Discussion

The present study demonstrates that deep-learning pattern classifiers that we origi-
nally developed to identify EEG transients can accurately identify post-HI seizures with
more than 99.7% accuracy across preterm and near-term gestations and during TH in
near-term animals. In these studies, we examined whether data from different gestational
ages could be used to train deep net classifiers to identify seizures from non-HAS EEG
segments in unseen data from other groups. We explored three main study categories to
test and compare algorithms using leave-one-out cross-validation approaches with training
sets that (1) included and (2) excluded data from the sham–normothermia group; and
(3) a k-fold cross-validation (k = 5) approach where data from all groups were randomly
combined and included in the training set. We found some variations in classification
accuracy across groups that likely reflect embedded morphological differences in seizures
between groups.

Study #1 (sham–normothermia group included in the training sets):
The seizure detectors tested in this study consistently achieved their best performance

when tested on data from HI–normothermia preterms (Figure 5A,D,G and Table 7) with an
average accuracy of 99.5 ± 0.3%. This suggests that the embedded spectral morphological
features of seizures in the HI–normothermia term and the HI–hypothermia term groups
are also present in the preterm group.

Interestingly, when we included the preterm datasets in the training sets this reduced
the average overall performances to 98.7 ± 0.2% and 96.9 ± 0.3% when the seizure detec-
tors were tested on data from the HI–normothermia terms and HI–hypothermia terms,
respectively. This indicates that the term datasets include more complex spectral features
than the preterm data, and thus, while term-trained algorithms accurately identify HI–
normothermia preterm seizures, there is less accuracy the other way around. This could
be due to slower delta activity in the preterm fetuses (equivalent to a subset of delta-band
full spectral range) compared to the evolving EEG components in a more term brain that
covers a broader spectral delta range including those that already exist in preterms. This is
evident from the increasing number of wrongly detected seizures (false positives) in study
#1 in Tables 4–6 for the HI–sham–term–tested and HI–hypothermia–term–tested classifiers
compared to the HI–normothermia–preterm–tested classifiers.

Our data are consistent with the well-known relative maturation and connectivity of
the preterm brain compared with term. Our HI–normothermia preterm fetal group is at a
brain age equivalent of 28–30 weeks of gestation in humans [11]. This age is characterized
by rapid production of white matter, but at a time when the cortical neurons are not yet
myelinated [56–59]. The EEG is discontinuous in nature, and the frequency content of
preterm EEG generally contains slower delta activity [60,61], which develops into covering
faster spectral components towards term age with the shift to continuous EEG activity and
sleep state cycling [60,62–65].

Study #2 (sham–normothermia term group excluded from the training sets):
This study showed a similar profile to that of study #1, with data demonstrating

decreasing performance from HI–normothermia preterms to HI–normothermia terms and
HI–hypothermia terms. The lack of EEG data from the sham–normothermia term group in
the training sets appeared to have contributed to lowering the overall performances of the
proposed seizure detectors in this study category. The performance of the 1D-CNN classifier
was impacted more than that of the WF-CNN and the WS-CNN classifiers, confirming the
robustness of the latter two strategies.
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Table 7. A comparison of the evaluated average overall performance of the proposed seizure detectors in each scheme of each study category.

Study #1 Study #2 Study #3
Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 2 Scheme 3 Fold_1 Fold_2 Fold_3 Fold_4 Fold_5

Average overall
performance from all

classifiers (%)

99.48
±0.34

96.88
±0.21

98.63
±0.28

98.79
±1.24

96.90
±0.43

98.58
±0.24

99.70
±0.07

99.66
±0.09

99.69
±0.10

99.82
±0.03

99.81
±0.07
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Compared to study #1, adding data from the sham group in the training sets could
also assist classifiers to achieve better performances by lowering the number of FN hits,
on average.

Study #3: The cross-validation results in Tables 4–6 and the ROC curves in Figure 5C,F,I
indicate that the three proposed seizure detectors were able to properly generalize when
trained on combined datasets from all groups and accurately identify seizures from non-
seizures and background EEG activity. Results indicate how the seizure detectors perform
equally well across all validation folds with average overall performances of 99.78 ± 0.04%,
99.73 ± 0.08%, and 99.70 ± 0.14% for the WS-CNN, WF-CNN, and the 1D-CNN classifiers,
respectively. These high-performance measures have been cross-validated over 31,015 EEG
patterns and confirm that the proposed classifiers are able to learn the morphological
variations of seizures (and their possible spectral feature differences) across all fetal sheep
groups to properly identify a novel HAS event in an unseen dataset.

These promising results indicate an effective approach to train generalized seizure de-
tectors to robustly identify seizures regardless of the gestational age and/or the influence of
treatment/drug on the EEG quality. The results also suggest that the simpler architectures
of the 1D-CNN and the WF-CNN classifiers can be used to achieve much faster analysis, in
real-time, instead of the computationally heavy structure of the WS-CNN. Nevertheless,
the larger standard deviations of 0.14 and 0.08 from the 1D-CNN and WF-CNN, respec-
tively, compared to 0.04 with the WS-CNN classifier illustrate a potential limitation of the
faster classifiers.

Algorithm comparisons: Overall, comparing performances of the classifiers in Tables 4–6
demonstrates that feeding the deep 2D-CNN classifiers with the spectrally rich feature
maps of the EEG segments can provide much better seizure detection accuracies compared
to when the raw EEG segments were directly fed into a 1D-CNN pattern classifier. In fact,
the wavelet scalograms in WS-CNNs and the matrices of spectrally dominant features in
the WF-CNNs provided robust spectrally detailed inputs for the deep 2D-CNN pattern
classifiers to desirably classify post-HI HAS from non-HAS events. This unique ability
to almost perfectly identify HASs from non-HASs is important as the non-HAS events
in this study are any non-HAS electrophysiological activity that could include normal
increasing EEG activity, movement artifacts, electronic noise, etc. Our data show that the
proposed CNN-based seizure detectors can competitively identify the HASs across all
study schemes with negligible performance drop for the WF-CNN and 1D-CNN compared
to the WS-CNN approach. Data further suggest that the raw EEG time-series fed into the
1D-CNN as well as the spectrally dominant features in the input matrices of the WF-CNN
approach can provide sufficient information for the designed CNN classifiers to identify
HAS from non-HAS events. This is particularly important as the structure of the 1D-CNN
and WF-CNN seizure detectors are computationally more efficient, allowing the algorithms
to run faster with less required memory compared to the WS-CNN. The choice of faster
computations and technology requirements is at the expense of negligible accuracy drop,
compared to the WS-CNN strategy. The data suggest that the WS generated using a morl
mother wavelet of a scale of 1–500 covered a broader range of spectral features that helped
the WS-CNN to outperform the WF-CNN and 1D-CNN approaches. The application of the
NVIDIA A100 GPUs in this study has contributed to remarkably fast analysis despite the
computationally intensive nature of the processing.

Limitations: In interpreting this study, the reader should consider that, regarding
the clarity in identifying HASs in dural surface-recorded EEGs from fetal sheep models,
they have lower background noise than typical neonatal scalp recordings [66–68]. While
the HASs observed in dural surface-recorded EEG from fetal sheep models are directly
comparable to typical neonatal seizures in clinical scalp measurements, the dural record-
ings inherently provide a superior signal-to-noise ratio than conventional clinical scalp
measurements. The enhanced clarity is beneficial for accurate seizure detection in this
experimental setting but might not fully capture the challenges associated with clinical
EEG recordings from the scalp, where noise levels are typically higher due to factors
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such as infant movement. Further, it is possible that movement may differ between the
term and preterm brain. Thus, validation using clinical recordings will be an important
future direction.

Nevertheless, these results support that the proposed algorithms can reliably identify
post-HI seizures in conventional 256Hz recordings across groups with different gestational
ages and/or under the influence of therapeutic hypothermia.

5. Conclusions

This study demonstrated the effectiveness of a deep CNN pattern classifier for gen-
eralized seizure detection in over 17,300 h of EEG recordings following acute HI in a
cohort of 40 fetal sheep. The cohort included a range of settings, including normothermia
vs. hypothermia, and term and preterm gestations, as well as sham controls. The CNN
seizure classifier exhibited exceptional accuracy, with an average 5-fold cross-validated
performance exceeding 99.7%, affirming the reliability of the proposed deep-learning al-
gorithm. Minimal influences of gestational age and hypothermic treatment on seizure
detector performance were observed, confirming its generalizability to identify seizures
across gestational ages when trained on a robust dataset with samples from all groups. The
three study categories, incorporating variations in training datasets, provided valuable
insights into the robustness and generalization capabilities of the proposed algorithms.
The classifiers consistently performed well across different validation folds, confirming
their ability to identify seizures regardless of gestational age or therapeutic intervention.
Notably, when trained on term data, the algorithms demonstrated superior accuracy in
identifying seizures in preterm subjects compared to the reverse scenario, emphasizing the
importance of considering the developmental stage of the fetal brain in training seizure de-
tection algorithms. Variations in classification accuracy across study categories underscored
morphological differences in seizures between groups, reflecting the relative maturation
and connectivity of preterm versus term brains.

The study introduced the potential for real-time analysis using simpler architectures
like the 1D-CNN and WF-CNN classifiers, offering faster processing while maintaining
competitive accuracy, emphasizing the feasibility of deploying these algorithms in near-
clinical scenarios. The comparative analysis of different CNN architectures highlighted
the advantage of utilizing spectrally rich feature maps in 2D-CNN classifiers for improved
seizure detection accuracy. The use of non-denoised 256Hz recordings added clinical rele-
vance, showcasing the algorithms’ robustness in reliably identifying post-HI seizures under
real-world conditions. Critical future directions will involve validating the algorithms
with clinical data to establish their applicability in real-world healthcare settings. Overall,
this research signified a significant advancement in automated seizure detection after HI
events, offering a promising avenue for enhancing clinical practices and patient outcomes
in neonatal care.

Author Contributions: The conceptualization, study design, algorithm development, data analysis,
and manuscript writing/preparation were undertaken by H.A. The EEG recordings were provided
by L.B., A.J.G. and J.O.D. Animal experiments were performed by J.O.D., S.K.D., K.Q.Z. and G.W.,
supervised by L.B. and A.J.G. Manuscript was reviewed and revised by L.B., J.O.D. and A.J.G.
Funding acquisition: L.B. and A.J.G. The final submitted article has been revised and approved by all
authors. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by grants from the Health Research Council of New Zealand
(HRC-17/601 and HRC-18/225).

Institutional Review Board Statement: All procedures were approved by the Animal Ethics Commit-
tee of the University of Auckland (R1942) under the New Zealand Animal Welfare Act, and carried
out in accordance with the Code of Animal ethical conduct established by the Ministry of Primary
Industries of New Zealand Government. (R1942).

Informed Consent Statement: Not applicable.



Bioengineering 2024, 11, 217 20 of 23

Data Availability Statement: The data that support the findings of this study could be available from
the corresponding author, H.A. or L.B., upon reasonable request.

Acknowledgments: The authors would also like to acknowledge the use of the New Zealand eScience
Infrastructure (NeSI) high-performance computing facilities for the results of this research. URL:
https://www.nesi.org.nz (accessed on 29 January 2024). The authors would also like to acknowledge
the technical support from Mark Gunning from the Lab of the Department of Physiology at the
University of Auckland for his assistance with acquiring the fetal sheep data. All procedures were
approved by the Animal Ethics Committee of the University of Auckland (R1942) under the New
Zealand Animal Welfare Act and carried out in accordance with the Code of Animal ethical conduct
established by the Ministry of Primary Industries of the New Zealand Government. The authors
declare no competing interests.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. The architecture of the proposed 14-layer deep WF-CNN classifier.

Layers Type No. of Neurons
(Output Layer) Kernel Size Stride Padding No. of Filters

0–1 Conv. 51,302 × 3 [3 3] 1 1 32
1–2 Max_pool 25,651 × 2 [2 1] 2 0
2–3 Conv. 25,651 × 2 [3 3] 1 1 64
3–4 Max_pool 12,825 × 1 [3 2] 2 0
4–5 Conv. 12,825 × 1 [3 3] 1 1 96
5–6 Max_pool 6412 × 1 [3 1] 2 0
6–7 Conv. 6412 × 1 [3 3] 1 1 128
7–8 Max_pool 3206 × 1 [2 1] 2 0
8–9 Conv. 3206 × 1 [3 3] 1 1 256
9–10 Max_pool 1603 × 1 [2 1] 2 0

10–11 Conv. 1603 × 1 [3 3] 1 1 512
11–12 Max_pool 801 × 1 [3 1] 2 0
12–14 Fully_connected 801

Fully_connected 20
Fully_connected 2

Output Softmax and
Classification

Table A2. The architecture of the proposed 14-layer deep 1D-CNN classifier.

Layers Type No. of Neurons
(Output Layer) Kernel Size Stride Padding No. of Filters

0–1 Conv. 51,302 × 1 [1024 1] 1 1 16
1–2 Max_pool 50,279 × 1 [3 1] 2 0
2–3 Conv. 25139 × 1 [512 1] 1 1 32
3–4 Max_pool 24,628 × 1 [4 1] 4 0
4–5 Conv. 6157 × 1 [256 1] 1 1 48
5–6 Max_pool 5902 × 1 [2 1] 4 0
6–7 Conv. 1476 × 1 [128 1] 1 1 96
7–8 Max_pool 1349 × 1 [5 1] 4 0
8–9 Conv. 337 × 1 [64 1] 1 1 128
9–10 Max_pool 274 × 1 [2 1] 4 0

10–11 Conv. 69 × 1 [32 1] 1 1 256
11–12 Max_pool 38 × 1 [2 1] 4 0
12–14 Fully_connected 2560

Fully_connected 24
Fully_connected 2

Output Softmax and
Classification

https://www.nesi.org.nz
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