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Abstract: Critical care physicians are commonly faced with patients exhibiting atrial fibrillation (AF),
a cardiac arrhythmia with multifaceted origins. Recent investigations shed light on the heterogeneity
among AF patients by uncovering unique AF phenotypes, characterized by differing treatment
strategies and clinical outcomes. In this retrospective study encompassing 9401 AF patients in an
intensive care cohort, we sought to identify differences in average treatment effects (ATEs) across
different patient groups. We extract data from the MIMIC-III database, use hierarchical agglomerative
clustering to identify patients’ phenotypes, and assign them to treatment groups based on their initial
drug administration during AF episodes. The treatment options examined included beta blockers
(BBs), potassium channel blockers (PCBs), calcium channel blockers (CCBs), and magnesium sulfate
(MgS). Utilizing multiple imputation and inverse probability of treatment weighting, we estimate
ATEs related to rhythm control, rate control, and mortality, approximated as hourly and daily rates
(%/h, %/d). Our analysis unveiled four distinctive AF phenotypes: (1) postoperative hypertensive,
(2) non-cardiovascular mutlimorbid, (3) cardiovascular multimorbid, and (4) valvulopathy atrial
dilation. PCBs showed the highest cardioversion rates across phenotypes, ranging from 11.6%/h
(9.35–13.3) to 7.69%/h (5.80–9.22). While CCBs demonstrated the highest effectiveness in controlling
ventricular rates within the overall patient cohort, PCBs and MgS outperformed them in specific
phenotypes. PCBs exhibited the most favorable mortality outcomes overall, except for the non-
cardiovascular multimorbid cluster, where BBs displayed a lower mortality rate of 1.33%/d [1.04–1.93]
compared to PCBs’ 1.68%/d [1.10–2.24]. The results of this study underscore the significant diversity
in ATEs among individuals with AF and suggest that phenotype-based classification could be a
valuable tool for physicians, providing personalized insights to inform clinical decision making.

Keywords: precision medicine; intensive care; atrial fibrillation; treatment effects; clustering

1. Introduction

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, affecting more than
33 million patients worldwide [1]. It is commonly encountered in critically ill patients,
with incidences ranging from 4.5% to 15% in intensive care units (ICUs) [2], where it is
associated with higher healthcare costs, prolonged hospitalization duration, increased risk
of thromboembolism, and increased mortality [3,4].

AF is a heterogeneous disease with diverse causes and mechanisms. It may be driven
by cardiac and non-cardiac comorbidities, such as pulmonary, metabolic, and endocrine
disorders, genetic factors, or inflammatory states [5,6]. The abundance of pathophysio-
logical processes driving AF has led to the realization that AF is a complex arrhythmia
with significant inter-patient heterogeneity [7]. To address this heterogeneity, data-driven
methods such as cluster analysis have been applied to AF cohorts, identifying clinically
relevant AF phenotypes with different treatment patterns and outcomes.
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Hemodynamic compromise resulting from AF often makes an urgent conversion to
sinus rhythm necessary in critically ill patients. In hemodynamically stable patients, AF
is often observed until it terminates spontaneously, or the ventricular rate is controlled
to avoid potential adverse effects associated with cardioverting antiarrhythmic drugs.
Such adverse effects include thyroid disorders, hypotension, pulmonary fibrosis, and
proarrhythmic effects, with some antiarrhythmics being associated higher mortality than
others [8].

Within the ICU, the management of AF is mostly limited to pharmacological treat-
ments [5,9]. Beta blockers, magnesium sulphate, and calcium channel blockers are primarily
aimed at reducing the ventricular rate, by means of reducing atrioventricular node conduc-
tion. Potassium channel blockers are used to restore and maintain sinus rhythm by prolong-
ing atrial refractory periods, thereby preventing re-entrant activity. For a comprehensive
overview of the mechanisms of AF, and the molecular mechanisms of antiarrhythmic drugs,
we refer the reader to [10].

The wide spectrum of treatment options coupled with a heterogeneous patient popu-
lation makes treatment selection a complex endeavor. As a result, strong evidence for the
optimal treatment strategy is missing [9], and AF treatment in ICUs varies across clinical
institutions. Nonetheless, treatment strategies with antiarrhythmic drugs have been shown
to impact patient outcomes in the short as well as the long term [11,12]. A recent multi-
center survey on treatment preferences among physicians revealed a lack of consensus
on whether to choose a rate control or a rhythm control strategy, a lack of consensus in
the choice of antiarrhythmic agent, and a disregard for patients’ underlying pathophysio-
logical presentation in treatment selection in 75% of respondents [13]. Even though some
tendencies for treatment selection exist, they are often derived from outpatient guidelines,
and are not directly applicable to ICU populations due to different AF mechanisms, risks,
and effectiveness of treatments [14,15].

Previous studies have employed cluster analysis to identify and characterize differ-
ent AF phenotypes in community cohorts. The first such application was performed by
Inohara et al. [16], who identified four recognizable phenotypes based on 60 clinical vari-
ables. The authors observed significant differences in the use of pharmacological treatments,
and rates of major adverse cardiovascular or neurological events, new-onset heart failure,
hospitalization, major bleeding, and mortality. Further studies [17–21] incorporated dif-
ferent clinical variables and identified varying numbers of clusters, reporting inter-cluster
differences in clinical outcomes. A recurring conclusion of previous works was that cluster
analysis was able to identify clinically meaningful phenotypes, which may potentially
guide treatment decisions and improve patient outcomes.

We further explore the applicability of cluster analysis and phenotype classification in
AF management by assessing its ability to identify clusters with varying average treatment
effects (ATEs). Hierarchical agglomerative clustering is employed to identify distinct AF
phenotypes in an intensive care cohort. Phenotypes’ properties are described, and the
efficacy of pharmacological interventions is evaluated, demonstrating differences in ATEs
on rhythm control, rate control, as well as in-hospital mortality.

2. Materials and Methods
2.1. Data

This study performs a retrospective analysis of a large single-center intensive care
database, the Medical Information Mart for Intensive Care (MIMIC-III) [22]. The MIMIC-
III database contains electronic health records from 55,423 distinct ICU admissions of
46,520 patients in the critical care units of the Beth Israel Deaconess Medical Center in the
years from 2001 to 2012. The data include vital signs, medications, laboratory measure-
ments, periodically charted observations, medical procedures, diagnoses, and free-text
clinical notes.
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2.2. Cohort Definition

We include patients at least 18 years of age with a diagnostic code indicating AF
(ICD-9-CM: 427.31). For patients who exhibited more than one ICU admission, only the
first admission with an AF diagnosis is considered. Patients with an ICU stay shorter than
24 h or age below 18 years are excluded from the analysis.

2.3. Variables

Patients are described using 34 clinical variables which include comorbidities, labora-
tory measurements, observations, and medical history. The clinical variables were gathered
based on a systematic literature review, in which clinical variables predictive of patient
outcomes were identified. The employed database was screened for the presence of the
variables identified in the systematic review, resulting in the 34 clinical variables presented
in Table A1. Within the scope of this study, we use the earliest available record for each
variable, if more than one value is available. Continuous variables are transformed into
z-scores for analysis.

2.4. Outcomes

The primary outcomes are (i) conversion to sinus rhythm, and (ii) achievement of rate
control, defined as a heart rate < 100 beats per minute [23]. In MIMIC-III patients, heart
rates and heart rhythms were recorded by nurses at regular intervals, and have previously
been shown to be accurate and precise to within 1 h [24]. It is assumed that a registered
rhythm is maintained until a different rhythm is recorded. The secondary outcome is in-
hospital mortality. The primary outcomes are censored at 24 h, and the secondary outcome
is censored at 30 days [11]. For all outcomes, we consider the time from the first treatment
administration until the corresponding outcome is observed.

2.5. Treatment Groups

The MIMIC-III database is transformed into the Observational Medical Outcomes
Partnership (OMOP) Common Data Model (CDM) [25] using the code provided by [26]
to identify patient exposures to different pharmaceutical agents. Treatments are captured
based on the ingredients in administered drugs, which are accompanied by the timestamp
indicating when the treatment was initiated. Within the scope of this study, four treatment
groups are defined based on classes 2–4 of the Vaughan Williams classification [27]—beta
blockers (BBs), potassium channel blockers (PCBs), and calcium channel blockers (CCBs),
as well as magnesium sulphate (MgS). The treatment groups with the corresponding drug
ingredients are shown in Table 1. For the outcomes conversion to sinus rhythm and in-
hospital mortality, treatment group assignment is determined based on the first observed
drug exposure during an AF episode, while for the rate control, it is determined based on
the first observed drug exposure during an AF episode with a rapid ventricular response
(>100 beats per minute).

Table 1. Treatment groups and their corresponding drug ingredients.

Treatment Group Active Principles Mechanism of Action

Beta Blockers

Acebutolol Decrease sympathetic activity
by blocking ß-adrenergic
receptors, reducing AV
node conduction and

calcium influx.

Esmolol
Labetalol

Metoprolol
Propranolol
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Table 1. Cont.

Treatment Group Active Principles Mechanism of Action

Potassium Channel Blockers

Amiodarone Prolong the duration
of action potentials and

refractory periods,
preventing re-entrant activity.

Dofetilide
Dronedarone

Ibutilide
Sotalol

Calcium Channel Blockers Dilatiazem
Verapamil

Decrease conduction through
the AV node, and shorten
phase two of the cardiac

action potential, decreasing
myocardial contraction.

Magnesium Sulphate Magnesium Sulphate

Stabilizes the membrane
potential, prolongs refractory

periods, and decreases
AV node conduction and

sinus node recovery times.

2.6. Multiple Imputation

We handled missing data through multiple imputation [28]. To achieve this, linear
regression models were utilized to generate imputed datasets. This process involved re-
sampling the original dataset with replacement, leading to the creation of 60 bootstrapped
datasets. To fit linear regression models to these bootstrapped datasets, we employed
chained equations [29], a technique that effectively accounts for the interrelationships
among descriptive variables. Subsequently, the original dataset underwent repeated im-
putation using these models, resulting in a total of 60 imputed datasets. With a fraction
of missing information amounting to 7.42%, the number of imputed datasets adheres to
Bodner’s rule [30].

2.7. Inverse Probability of Treatment Weighting

Given the nature of our retrospective cohort analysis, it is important to consider that
patients may have received treatments in a non-randomized manner, based on their specific
pathophysiological presentations. Failing to account for this selection bias during the
evaluation of treatment effects could lead to biased treatment effects [31].

To address the influence of confounding variables, we utilize a statistical method
called inverse probability of treatment weighting (IPTW), implemented through the Twang
toolkit [32]. Within each imputed dataset, we compute the likelihood of patients being allo-
cated to their specific treatment categories based on their descriptive attributes, employing
gradient boosted logistic regression models. This methodology allows us to quantify the
likelihood of patients receiving a specific treatment based on their individual characteris-
tics. The inverse of this likelihood score for each patient serves as a weighting factor in
subsequent analyses to mitigate the impact of confounding variables.

We evaluate the balance of covariates across treatment groups by computing the
maximum absolute pairwise standardized mean differences. This measure allowed us
to assess the degree of covariate imbalance between the treatment groups, with smaller
differences indicating improved balance.

The hyperparameters employed for the IPTW method were determined empirically,
taking into consideration the total computation time and obtained covariate balance.

2.8. Cluster Analysis

Patient phenotypes are identified using hierarchical agglomerative clustering. We
use a complete linkage criterion for agglomeration, and Gower’s distance metric [33] to
account for the combination of continuous and categorical covariates. Pairwise distances
are computed for each imputed dataset, and averaged to a single distance matrix, which
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is used in the clustering algorithm. The number of clusters is defined in a compromise
between resolution and clinical explainability. The number of clusters is manually chosen
such that recognizable patient groups are apparent, blinded to treatments and outcomes.
Patient characteristics are compared among the different clusters, and statistical differences
are assessed using the Kruskal–Wallis test. Patient covariates are described in terms of
their medians and interquartile ranges (IQRs) for continuous covariates, while categorical
covariates are reported as counts and percentages. Each cluster is described in terms of its
most prominent properties to provide an intuitive characterization.

2.9. Statistical Analysis

The key component of the statistical analysis is the estimation of ATEs. Different
approaches may be taken to analyze and present such data, such as univariate and multi-
variate Cox analyses and multiparametric and exponential survival models [34]. To provide
the highest degree of interpretability, we approximate ATEs using weighted exponential
survival models with weights obtained from IPTW.

The survival models are fitted to each imputed dataset 100 times, utilizing Bayesian
bootstrapping as proposed by Rubin [35]. This process results in a total of 6000 event rate
estimates for each ATE. The estimates of constant event rates are subsequently presented as
probability distributions. We report both the mode and the 95% highest density intervals of
these distributions.

ATEs are computed for the complete cohort and for individual clusters. This allows us
to examine the effects of the treatment both overall and within specific clusters. We assess
differences in ATEs using Bayes factors (BFs) [36] to provide a quantifiable uncertainty
estimate in the effects of different treatments.

Our results are reported as hourly rates (%/h) for the primary outcomes, and as daily
rates (%/d) for the secondary outcome. This allows for a clear and direct comparison of the
effects of different treatments over time.
All statistical analyses were performed using Python 3.7 and R Core v4.1.2. A secondary anal-
ysis using the KMeans algorithm can be found in Section S1 of the Supplementary Material.

3. Results

Of the 46,520 patients in the database, 10,277 have a diagnostic code indicating AF.
After excluding patients with age below 18 years and a hospital stay shorter than 24 h,
a total of 9401 patients were included in the analysis. The cohort characteristics are shown in
Table 2. The percentages of missing values for each characteristic are shown in Table A1 in
Appendix A. Patients were followed for an average of 11.3 days (IQR, 5.29–13.9), and were
either discharged after 5.28 days (IQR, 10.2–12.0), or expired after 5.35 days (IQR, 12.4–15.9).
The share of in-hospital mortality was 49.7%.

Table 2. Cohort characteristics.

Category Characteristic Median (IQR)/n (%)

Medical History Anemia 1127 (11.99)
Arrhythmia History 1959 (20.8)

COPD 1256 (13.4)
Collagen disease 115 (1.22)
Cor pulmonale 754 (8.02)

Coronary artery atherosclerosis 3461 (36.8)
Diabetes 2147 (22.8)

Thyroid disorder 1051 (11.2)
Heart failure 4128 (43.9)
Hypertension 4562 (48.5)

Myocardial infarction 933 (9.92)
OSA 403 (4.29)
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Table 2. Cont.

Category Characteristic Median (IQR)/n (%)

Medical History Post-operative condition 3250 (34.6)
Renal insufficiency 3261 (34.7)
Respiratory failure 1450 (15.4)

Rheumatism 403 (4.29)
Sepsis 1144 (12.2)

Valvulopathy 2865 (30.5)

Laboratory
Measurements

Erythrocyte distribution width [ratio] 14.4 (13.5–15.7)

Erythrocyte count [#/µm] 3.88 (3.38–4.37)
Serum calcium [mg/dL] 8.60 (8.10–9.10)

Serum creatinine [mg/dL] 1.10 (0.80–1.50)
Serum magnesium [mg/dL] 2.00 (1.80–2.20)
Serum potassium [mmol/L] 4.20 (3.90–4.70)

Serum sodium [mmol/L] 139 (136–141)
Hemoglobin [g/dL] 12.1 (10.6–13.4)

Leukocyte count [#/nL] 10.0 (7.30–13.7)
Platelet count [#/nL] 215 (163–279)
Prothrombin time [s] 14.5 (13.1–18.1)

Observation Heart Rate [BPM] 85.5 (75.0–98.0)
Left Atrial Dilation 4183 (44.5)

Right Atrial Dilation 2813 (29.9)

Demographics Age [years] 76.5 (67.3–83.6)
Male sex 5364 (57.1)

3.1. Patient Clusters

A total of four clusters were identified based on the hierarchical clustering dendro-
gram presented in Figure 1. The clinical variables of the identified phenotypes are shown
in Table A2 in Appendix A. The dominant characteristics of the identified patient clusters
are as follows.

Cluster 1: Postoperative Hypertensive (n = 2963)
Patients in this cluster have the highest rate of postoperative conditions (74.2%) and hy-
pertension (64.3%). This cluster has the highest share of male patients (72.1%), and the
highest rate of coronary artery atherosclerosis (65.5%). Notably, patients in this cluster are
the youngest (median age, 73.3; IQR, 65.1–80.5), have the lowest heart rates (median, 83.5;
IQR, 75.0–90.1), and the lowest rate of arrhythmia history (12.8%).

Cluster 2: Non-Cardiovascular Multimorbid (n = 3546)
This cluster is characterized by the highest rate of chronic obstructive pulmonary disease
(COPD) (16.6%) and diabetes (25.8%), while also having a high rate of renal insufficiency
(43.9%). Patients in this cluster have the lowest rate of left and right atrial dilation (17.9%,
6.49%), coronary artery atherosclerosis (18.3%), and valvulopathies (12.6%) while having
the highest rate of arrhythmia history (26.3%).

Cluster 3: Cardiovascular Multimorbid (n = 557)
Patients in this cluster are the oldest (median age, 78.1; IQR, 69.2–85.4) and have the highest
rate of heart failure (85.5%). They have the highest rate of left and right atrial dilation
(94.3%, 78.8%), thyroid disorders (16.0%), myocardial infarction (19.0%), renal insufficiency
(54.6%), respiratory failure (40.2%), sepsis (30.9%), and obstructive sleep apnea (7.36%).
Even though patients in this cluster have a high rate of comorbidities, they have the lowest
rate of hypertension (27.1%).
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Cluster 4: Valvulopathy Atrial Dilation (n = 2335)
This cluster is characterized by the highest rate of valvulopathies (45.2%) and a high rate of
left and right atrial dilation (91.0%, 76.0%). Patients in this cluster further have the highest
rates of cor pulmonale (14.3%) and a high rate of COPD (16.0%).

Figure 1. Hierarchical clustering dendrogram showing the four identified clusters. Green: Postoper-
ative Hypertensive, red: Non-Cardiovascular Multimorbid, purple: Cardiovascular Multimorbid,
yellow: Valvulopathy Atrial Dilation. The dashed horizontal line represents the stopping criterion
used for the final cluster definition.

3.2. Treatment Effects

IPTW resulted in well-matched covariates between treatment groups within all out-
comes. Variable means and maximum absolute pairwise standardized mean differences
for treatment groups are shown in Supplementary Tables S2 and S3. The complete list of
treatment effects is available in Supplementary Tables S4–S6.

3.2.1. Rhythm Control

A total of 4116 patients received a treatment during an AF episode. BBs, PCBs, CCBs,
and MgS were administered to 1277, 1388, 830, and 502 patients, respectively. Figure 2
portrays the adjusted hourly rhythm control rates for the cohort analysis and the individual
clusters. Rhythm control was best achieved using PCBs (9.78%/h [8.74–11.0]), followed by
CCBs (4.73%/h [4.04–5.74]). Inferior rhythm control was observed in patients receiving
BBs (2.28%/h [1.81–2.61]) and MgS (1.90%/h [1.44–2.54]).

Within the identified clusters, PCBs maintained superiority, but its efficacy varied
considerably with higher conversion rate in patients in the hypertensive postoperative
cluster than in patients in the valvulopathy atrial dilation cluster (11.6%/h [9.35–13.3] vs.
7.69%/h [5.80–9.22], BF > 100).
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Figure 2. Probability distributions of adjusted hourly rhythm control rates. Black dots represent
the distribution modes. Black lines represent the 95% highest density intervals. BBs—beta blockers;
PCBs—potassium channel blockers; CCBs—calcium channel blockers; MgS—magnesium sulphate.

3.2.2. Rate Control

A total of 2333 patients received a treatment during an AF episode with rapid ven-
tricular response. BBs, PCBs, CCBs, and MgS were administered to 566, 966, 644, and
157 patients, respectively. Rate control was best achieved using CCBs (18.8%/h [16.4–22.8])
followed by MgS (15.6%/h [11.4–19.2). Inferior rate control was observed for patients
receiving PCBs and BBs (15.2%/h [13.2–17.5], 15.6%/h [11.4–19.2]). Figure 3 portrays the
adjusted hourly rates for HR reduction below 100 bpm.

The superiority of CCBs observed in the cohort analysis was not maintained among
all clusters. Even though CCBs showed a higher efficacy at controlling ventricular rate
than MgS in the entire cohort (BF = 14.8), the opposite was observed in the cardiovascular
multimorbid cluster (18.3%/h [11.2–32.6] vs. 19.9%/h [7.92–57.5], BF = 0.40). Similarly,
while CCBs outperformed PCBs in the cohort analysis (BF = 68.6), PCBs appeared to have a
higher efficacy than CCBs in the valvulopathy atrial dilation cluster (18.2%/h [14.9–23.6]
vs. 16.7%/h [12.6–20.9], BF = 3.26). While MgS showed superiority to BBs in the entire
cohort analysis (BF = 5.83), the opposite was observed in the valvulopathy atrial dilation
cluster (BF = 0.42).
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Figure 3. Probability distributions of adjusted hourly rate control rates. Black dots represent the
distribution modes. Black lines represent the 95% highest density intervals. BBs—beta blockers;
PCBs—potassium channel blockers; CCBs—calcium channel blockers; MgS—magnesium sulphate.

3.2.3. Mortality

In-hospital mortality differed across treatment groups, with the highest mortality
being observed in patients receiving MgS (1.45%/d [1.07–1.99]), followed by CCBs and BBs
(1.40%/d [1.04–1.88], 1.28%/d [1.00–1.51]). The lowest mortality was observed for PCBs
(0.95%/d [0.78–1.18]). Figure 4 presents the adjusted daily mortality rates for the cohort
analysis, and the individual clusters.

The mortality rates varied across the identified clusters. While PCBs were associated
with the lowest mortality rates in the cohort analysis, this did not hold true within the
hypertensive post-operative cluster, where mortality rates with PCBs were comparable to
CCBs (0.52%/d [0.28–0.76] vs. 0.44%/d [0.05–1.15], BF = 1.02). In the non-cardiovascular
multimorbid cluster, PCBs were associated with a higher mortality rate than BBs (1.68%/d
[1.10–2.24] vs. 1.33%/d [1.04–1.93], BF = 2.23).
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Figure 4. Probability distributions of adjusted daily mortality rates. Black dots represent the
distribution modes. Black lines represent the 95% highest density intervals. BBs—beta blockers;
PCBs—potassium channel blockers; CCBs—calcium channel blockers; MgS—magnesium sulphate.

The results of the secondary analysis can be found in the supplementary material, and
include: The cluster characteristics of the secondary analysis (Table S1), and probability
distributions of adjusted treatment effects for the obtained clusters (Figures S1–S3).

4. Discussion

This study investigated clustering-derived AF phenotypes and their treatment effects
in an ICU cohort. The main findings of the study are as follows. (i) The heterogeneity in
the AF population, previously reported in community cohorts, can also be observed in the
analyzed ICU population. (ii) ATEs differ between phenotypes and are often different from
those observed when the treatment effect is averaged across the entire population.

In accordance with previous cluster analyses of AF populations, the analysis of the
ICU cohort revealed recognizable patient groups, for example, the postoperative hyper-
tensive cluster, which was characterized by young age and predominantly male patients.
With postoperative conditions being known for triggering AF by means of causing inflam-
matory states, patients in this cluster had the lowest rates of arrhythmia history, and, thus,
the highest proportion of new-onset AF.

Previous studies have utilized cluster analysis to explore the differences in treatment
patterns and clinical outcomes in AF cohorts. Our work expands on this research by
demonstrating that AF phenotypes derived from cluster analysis also exhibit heterogeneity
in terms of ATEs. This finding is consistent with previous studies that have criticized the
reporting of overall mean effects in clinical research, as such an approach may overlook
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important treatment effects that are specific to certain patient subgroups [37]. The observed
heterogeneity in ATEs in this study carries major significance for clinical research. ATEs are
commonly derived from the analysis of entire cohorts and heterogeneous treatment effects
go unnoticed. For example, a previous study reported benefits in mortality of BBs versus
CCBs [38], which we can confirm when analyzing the ATE for the complete cohort, but we
find evidence of the opposite effect within two of the identified clusters. Similarly, we can
confirm previous results showing that CCBs outperform PCBs in controlling ventricular
rate [39] when considering the ATE on the entire cohort. Evaluating individual phenotypes,
however, reveals evidence for the opposite effect for patients with valvulopathies and
dilated atria. The identification of AF phenotypes may provide insight for further study
design, and provide a method to evaluate heterogeneous cohorts such that heterogeneous
treatment effects are not overlooked.

While heterogeneities in ATEs were observed among the identified phenotypes, sev-
eral relationships did not appear as would be expected. Several contraindications of the
investigated treatments are known, such as CCBs being contraindicated in patients with
systolic heart failure, and amiodarone (PCB) in patients with thyroid disorders. Ideally,
one would expect clusters characterized by such contraindications to emerge, and the
expected ATEs to be reflected in the results. To what extent such clusters may emerge when
a more fine-grained clustering is performed must be evaluated. Given our analysis does
not reveal these existing treatment effects, it must be understood that we do not propose a
formal classification.

Nonetheless, the presented results may have major clinical implications. A recent
survey has shown that 75% of clinical decision-makers treating AF in the ICU would
not change their intervention strategy depending on an underlying pathophysiological
condition [13]. Our results underline the necessity of considering the pathophysiological
presentation of patients during treatment selection, to maximize treatment utility and to
minimize risk. Overlooking the heterogeneity in AF patients may result in inadequate
treatment and lead to suboptimal patient outcomes.

Numerous studies [16,18–21] have suggested that a phenotype-driven approach for the
management of AF may improve patient outcomes by either providing insights that drive
further research, or by guiding treatment directly. However, some studies have reported
conflicting results, such as phenotypes with high rates of anticoagulation being associated
with increased incidence of ischemic events [16,18]. We have therefore provided ATEs in
this work to further expand the idea of a phenotype classification for AF management.
Such an approach can help quantify treatment effects for specific patient phenotypes, which
can aid in selecting appropriate treatments to maximize desired effects while minimizing
the probability of adverse outcomes. However, in order to implement such a quantification
approach, additional studies are needed to validate our findings in prospective multi-center
cohorts and determine the extent to which the results can be generalized beyond the specific
cohort used in our study.

Limitations

The results of this study should be interpreted within the context of several limitations.
First, the database used does not provide adequate temporal resolution for procedural
and diagnostic codes, which are generated when a patient is discharged. It must therefore
be understood that the obtained results inevitably suffer from look-ahead bias. Second,
the selection of descriptive variables has profound impact on the results of cluster analysis.
While care was taken to select relevant variables, candidate variables had to be removed due
to data sparsity or were completely unavailable in the database. The inclusion of further
variables may impact the results and reduce residual confounding. Third, the present study
defined treatment groups according to the first treatment received during an AF episode.
In practice, treatments may be administered in combinations, or incrementally escalated
until the desired effect is achieved. Further, we have only considered a limited number of
treatments due to relatively infrequent use of alternative antiarrhythmic drugs. A more
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extensive dataset may provide insights into the treatment effects of further antiarrhythmic
agents. Fourth, while the employed unsupervised clustering algorithm has previously
been shown to identify clinically relevant patient phenotypes, our approach of deciding
the number of clusters was primarily based on investigator discretion. A common practice
in unsupervised clustering would be the identification of the optimal number of clusters
using a clustering metric, such as the silhouette score or the Calinski–Harabasz index. Such
approaches have, however, not shown any usable results in our dataset, indicating a lack
of structure in the covariate space. Other studies [40,41] have proposed semi-supervised
cluster analysis to determine the appropriate number of clusters. Such methods form
clusters that correlate with outcomes, identifying patient phenotypes with increased clinical
significance. Finally, while the obtained results show significant differences in treatment
effects, the obtained distributions were often too wide to give conclusive results. The use of
a larger dataset may allow for more discriminatory results.

5. Conclusions

Cluster analysis of the employed ICU cohort identified four recognizable AF pheno-
types defined by unique characteristics. Phenotypes showed different treatment effects,
highlighting the heterogeneity of AF patients in critical care settings. Our results support
the idea of a phenotype classification approach to support clinical decision making by
quantifying treatment effects of individual patients and provide a basis for the design of
further studies. Future works should consider the application of semi-supervised cluster-
ing methods to emphasize cohesive treatment effects in the formation of clusters, thereby
maximizing their clinical significance.
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Abbreviations
The following abbreviations are used in this manuscript:

AF Atrial fibrillation
ATE Average treatment effect
BB Beta blocker
BF Bayes factor
CCB Calcium channel blocker
COPD Chronic obstructive pulmonary disease
HDI Highest density interval
ICU Intensive care unit
IQR Interquartile range
MgS Magnesium sulphate
NOAF New onset atrial fibrillation
OSA Obstructive sleep apnoe
PCB Potassium channel blocker

Appendix A

Table A1. Percentage of data missing and source for each patient characteristic. Source codes are
SNOMED unless stated otherwise.

Category Characteristic Missing (%) Standard Name Source Code

Medical
History

Anemia 0.00 Anemia 271737000

Arrhythmia
history

0.00 Arrhythmia
history

MIMIC
ITEMID: 225811

Collagen
disease

0.00 Systemic lupus erythematosus 55464009

Polymyalgia rheumatica 65323003

Sjögren’s syndrome 83901003

81573002 81573002

COPD 0.00 Chronic obstructive lung disease 13645005

Cor pulmonale 0.00 Acute cor pulmonale 49584005

Chronic pulmonary heart disease 87837008
Pulmonary arterial hypertension 11399002

Coronary artery
atherosclerosis

0.00 Coronary arteriosclerosis 53741008

Diabetes 0.00 Type 1 diabetes mellitus 46635009

Type 2 diabetes mellitus 44054006

Diabetes insipidus 15771004

Diabetes mellitus 73211009

Type 2 diabetes mellitus without complication 313436004

Nephrogenic diabetes insipidus 111395007

Diabetic ketoacidosis 420422005
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Table A1. Cont.

Category Characteristic Missing (%) Standard Name Source Code

Medical
History

Heart failure 0.00 Congestive rheumatic heart failure 82523003
Acute systolic heart failure 443254009

Diastolic heart failure 418304008
Congestive heart failure 42343007

Chronic diastolic heart failure 441530006
Acute diastolic heart failure 443343001

Heart failure 84114007
Systolic heart failure 417996009

Acute on chronic systolic heart failure 443253003
Acute on chronic diastolic heart failure 443344007

Chronic systolic heart failure 441481004
Acute combined systolic and diastolic heart failure 153931000119109

Acute on chronic combined systolic and diastolic heart failure 153951000119103
Chronic combined systolic and diastolic heart failure 153941000119100

Hypertension 0.00 59621000

Myocardial infarction 0.00 Acute subendocardial infarction 70422006

Myocardial infarction 22298006

OSA 0.00 Obstructive sleep apnea syndrome 78275009

Post-operative
condition 0.00

Percutaneous transluminal coronary angioplasty [PTCA] OMOP:2000064

Insertion of non-drug-eluting coronary artery stent(s) OMOP:2001505

Angioplasty of other non-coronary vessel(s) OMOP:2002222

Multiple vessel percutaneous transluminal coronary angioplasty
[PTCA] or coronary atherectomy performed during the same

operation, with or without mention of thrombolytic agent
OMOP:2001504

Open and other replacement of aortic valve OMOP:2001450

(Aorto)coronary bypass of four or more coronary arteries OMOP:2001513

Open heart valvuloplasty of mitral valve without replacement OMOP:2001444

(Aorto)coronary bypass of two coronary arteries OMOP:2001511

Open and other replacement of mitral valve with tissue graft OMOP:2001451

Open and other replacement of mitral valve OMOP:2001452

Insertion of drug-eluting coronary artery stent(s) OMOP:2001506

Extracorporeal circulation auxiliary to open heart surgery OMOP:2002243

Open and other replacement of aortic valve with tissue graft OMOP:2001449

Pericardiotomy OMOP:2001533

(Aorto)coronary bypass of three coronary arteries OMOP:2001512

(Aorto)coronary bypass of one coronary artery OMOP:2001510
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Table A1. Cont.

Category Characteristic Missing (%) Standard Name Source Code

Medical
History

Renal
insufficiency 0.00

Renal failure syndrome 42399005

Chronic kidney disease 709044004

Acute renal failure syndrome 14669001

Chronic kidney disease stage 1 431855005

Chronic kidney disease stage 2 431856006

Chronic kidney disease stage 3 433144002

Chronic kidney disease stage 4 431857002

Chronic kidney disease stage 5 433146000

Benign hypertensive renal disease with renal failure 698591006

End-stage renal disease 46177005

Chronic kidney disease stage 5 due to hypertension 129161000119100

Respiratory
failure

0.0 0 Acute respiratory failure 65710008

Rheumatism 0.00 Rheumatic aortic stenosis 72011007

Rheumatic mitral regurgitation 31085000

Rheumatic aortic stenosis with insufficiency 17759006

Congestive rheumatic heart failure 82523003

Rheumatic disease of aortic valve 12023003

Rheumatoid arthritis 69896004

Rheumatic heart disease 23685000

Rheumatic disease of pulmonary valve 18687009

Rheumatic aortic regurgitation 78031003

Sepsis 0.00 Sepsis 91302008

Septic shock 76571007

Severe sepsis 1036671000000106

Thyroid
disorder

0.00 Primary malignant neoplasm of thyroid gland 94098005

Congenital hypothyroidism 190268003

Thyrotoxic crisis 29028009

Benign neoplasm of thyroid gland 92439006

Acquired hypothyroidism 111566002

Disorder of thyroid gland 14304000
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Table A1. Cont.

Category Characteristic Missing (%) Standard Name Source Code

Medical
History

Valvulopathy 0.00 Mitral valve regurgitation 48724000

Mitral and aortic incompetence 194736003

Ebstein’s anomaly 204357006

Subaortic stenosis 204368006

Mitral valve stenosis 79619009

Trauma and postoperative pulmonary insufficiency 266370006

Rheumatic aortic stenosis 72011007

Mitral stenosis and aortic insufficiency 194734000

Mitral and aortic stenosis 194733006

Rheumatic mitral regurgitation 31085000

Rheumatic aortic stenosis with regurgitation 17759006

Aortic valve disorder 8722008

Aortic valve regurgitation 60234000

Tricuspid valve disorder 20721001

Mitral insufficiency and aortic stenosis 194735004

Mitral valve disorder 11851006

Aortic valve stenosis 60573004

Rheumatic disease of aortic valve 12023003

Rheumatic aortic regurgitation 78031003

Mitral stenosis with insufficiency 194726006

Laboratory
Measurement

Erythrocyte
count [#/µm] 0.97 Erythrocytes [#/volume] in Blood by Automated count LOINC:789-8

Erythrocyte
distribution
width [ratio]

0.98 Erythrocyte distribution width [Ratio] by Automated count LOINC:788-0

Hemoglobin
[g/dL] 0.88 Hemoglobin [Mass/volume] in Blood LOINC:718-7

Leukocyte
count 0.96 Leukocytes [#/volume] in Blood by Manual count LOINC:804-5

Platelet count 0.93 Platelets [#/volume] in Blood by Manual count LOINC:778-1
Platelets [#/volume] in Blood by Automated count LOINC:777-3

Prothrombin
time 1.80 Prothrombin time (PT) LOINC:5902-2

Serum calcium
[mg/dL] 5.07 Calcium [Mass/volume] in Serum or Plasma LOINC:17861-6

Serum
creatinine
[mg/dL]

0.87 Creatinine [Mass/volume] in Serum or Plasma LOINC:2160-0

Serum
magnesium

[mg/dL]
1.40 Magnesium [Moles/volume] in Serum or Plasma LOINC:2601-3

Serum
potassium
[mmol/L]

1.03 Potassium [Moles/volume] in Serum or Plasma LOINC:2823-3

Serum sodium
[mmol/L] 1.04 Sodium [Moles/volume] in Serum or Plasma LOINC:2951-2
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Table A1. Cont.

Category Characteristic Missing (%) Standard Name Source Code

Observation Heart Rate
[BPM] 2.34 Heart rate LOINC:8867-4

Left Atrial
Dilation 0.00 -

String matching
from

clinical notes

Right Atrial
Dilation 0.00 -

String matching
from

clinical notes

Demographic Age 0.00 - -

Male sex 0.00 “MALE”/”FEMALE” OMOP:8507
OMOP:8532

Table A2. Characteristics of the cohort, and the identified clusters.

Category Variable Entire Cohort
(n = 9401)

Cluster 1
(n = 2963)

Cluster 2
(n = 3546)

Cluster 3
(n = 557)

Cluster 4
(n = 2335)

p-Value
(among Clusters)

Medical History Anemia 1127 (11.99) 390 (13.16) 369 (10.41) 70 (12.57) 298 (12.76) <0.001
Arrhythmia

History 1959 (20.8) 380 (12.8) 932 (26.3) 113 (20.3) 534 (22.9) <0.001

Collagen disease 115 (1.22) 24 (0.81) 58 (1.64) 11 (1.97) 22 (0.94) <0.001
COPD 1256 (13.4) 226 (7.63) 588 (16.6) 68 (12.2) 374 (16.0) <0.001

Cor pulmonale 754 (8.02) 179 (6.04) 164 (4.62) 77 (13.8) 334 (14.3) <0.001
Coronary artery
atherosclerosis 3461 (36.8) 1941 (65.5) 650 (18.3) 223 (40.0) 647 (27.7) <0.001

Diabetes 2147 (22.8) 677 (22.9) 915 (25.8) 101 (18.1) 454 (19.4) <0.001
Heart failure 4128 (43.9) 851 (28.7) 1441 (40.6) 476 (85.5) 1360 (58.2) <0.001
Hypertension 4562 (48.5) 1924 (64.9) 1401 (39.5) 151 (27.1) 1085 (46.5) <0.001

Myocardial
infarction 933 (9.92) 403 (13.6) 167 (4.71) 106 (19.0) 257 (11.0) <0.001

OSA 403 (4.29) 130 (4.39) 126 (3.55) 41 (7.36) 106 (4.54) <0.001
Post-operative

condition 3250 (34.6) 2198 (74.2) 215 (6.06) 92 (16.5) 745 (31.9) <0.001

Renal
insufficiency 3261 (34.7) 519 (17.5) 1555 (43.9) 304 (54.6) 883 (37.8) <0.001

Respiratory
failure 1450 (15.4) 118 (3.98) 819 (23.1) 224 (40.2) 289 (12.4) <0.001

Rheumatism 403 (4.29) 126 (4.25) 82 (2.31) 33 (5.92) 162 (6.94) <0.001
Sepsis 1144 (12.2) 56 (1.89) 651 (18.4) 172 (30.9) 265 (11.4) <0.001

Thyroid disorder 1051 (11.2) 246 (8.30) 398 (11.2) 89 (16.0) 318 (13.6) <0.001
Valvulopathy 2865 (30.5) 1230 (41.5) 446 (12.6) 133 (23.9) 1056 (45.2) <0.001

Laboratory
Measurement

Erythrocyte
count [#/µm] 3.88 (3.38–4.37) 3.88 (3.32–4.39) 3.86 (3.39–4.35) 3.82 (3.31–4.23) 3.91 (3.44–4.39) <0.001

Erythrocyte
distribution
width [ratio]

14.4 (13.5–15.7) 13.9 (13.2–14.7) 14.7 (13.7–16.2) 15.1 (13.9–16.8) 14.5 (13.7–15.9) <0.001

Hemoglobin
[g/dL] 12.1 (10.6–13.4) 12.6 (11.3–13.8) 11.7 (10.2–13.2) 11.5 (10.1–12.8) 12.0 (10.6–13.4) <0.001

Leukocyte count
[#/nL] 10.0 (7.30–13.7) 9.4 (7.10–12.6) 10.6 (7.50–14.6) 10.6 (7.60–14.7) 9.90 (7.10–13.4) <0.001

Platelet count
[#/nL] 215 (163–279) 197 (153–249) 230 (171–299) 212 (163–285) 222 (167–286) <0.001

Prothrombin
time [s] 14.5 (13.1–18.1) 14.1 (13.0–16.0) 14.7 (13.1–20.2) 15.2 (13.4–20.7) 14.6 (13.2–19.0) <0.001

Serum calcium
[mg/dL] 8.60 (8.10–9.10) 8.6 (8.20–9.00) 8.60 (8.10–9.00) 8.60 (8.10–9.10) 8.70 (8.20–9.10) <0.001

Serum creatinine
[mg/dL] 1.10 (0.80–1.50) 1.00 (0.80–1.20) 1.10 (0.80–1.70) 1.30 (0.90–1.90) 1.10 (0.90–1.50) <0.001

Serum
magnesium

[mg/dL]
2.00 (1.80–2.20) 2.00 (1.80–2.30) 1.90 (1.70–2.20) 2.00 (1.80–2.30) 2.00 (1.80–2.20) <0.001

Serum potassium
[mmol/L] 4.20 (3.90–4.70) 4.20 (3.90–4.60) 4.20 (3.80–4.70) 4.30 (3.80–4.80) 4.20 (3.90–4.70) <0.001

Serum sodium
[mmol/L] 139 (136–141) 139 (137–141) 139 (136–141) 139 (136–141) 139 (136–141) <0.001
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Table A2. Cont.

Category Variable Entire Cohort
(n = 9401)

Cluster 1
(n = 2963)

Cluster 2
(n = 3546)

Cluster 3
(n = 557)

Cluster 4
(n = 2335)

p-Value
(among Clusters)

Observation Heart Rate [BPM] 85.5 (75.0–98.0) 83.5 (75.0–91.0) 87.8 (74.0–103) 87.0 (74.0–104) 86.0 (74.0–99.0) <0.001
Left Atrial
Dilation 4183 (44.5) 898 (30.3) 636 (17.9) 525 (94.3) 2124 (91.0) <0.001

Right Atrial
Dilation 2813 (29.9) 371 (12.5) 230 (6.49) 439 (78.8) 1773 (75.9) <0.001

Demographic Age [years] 76.5 (67.3–83.6) 73.3 (65.1–80.5) 78.0 (68.7–85.1) 78.1 (69.2–85.4) 77.8 (68.9–84.3) <0.001
Male sex 5364 (57.1) 2136 (72.1) 1671 (47.1) 277 (49.7) 1280 (54.8) <0.001
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