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Abstract: A screw-fixed superstructure is predominantly selected for implant prostheses because
of the concern regarding developing peri-implantitis, although its infection route remains unclear.
Focusing on microleakage from access holes, the present study clinically investigated the bacterial
flora in access holes with different sealing materials. We examined 38 sites in 19 patients with two
adjacent screw-fixed superstructures. Composite resin was used in the control group, and zinc-
containing glass ionomer cement was used in the test group. Bacteria were collected from the access
holes 28 days after superstructure placement and were subjected to DNA hybridization analysis.
The same patient comparisons of the bacterial counts showed a significant decrease in 14 bacterial
species for the red, yellow, and purple complexes in the test group (p < 0.05). In addition, the same
patient comparisons of the bacterial ratios showed a significant decrease in six bacterial species for
the orange, green, yellow, and purple complexes in the test group (p < 0.05). Furthermore, the same
patient comparisons of the implant positivity rates showed a significant decrease in the six bacterial
species for the orange, yellow, and purple complexes in the test group. The results of this study
indicate that zinc-containing glass ionomer cement is effective as a sealing material for access holes.

Keywords: peri-implantitis; microleakage; screw access hole; glass ionomer cement; bacterial flora

1. Introduction

Currently, dental implant treatment is selected for single, partial, and full jaw defect
prostheses and is a highly predictive treatment with a high long-term survival rate. How-
ever, this high survival rate is influenced by various factors, including operator-dependent
factors, patient-dependent factors, and implant-component factors [1–3]. With the recent
increase in the number of implant-treatment patients, there has also been an increase in the
incidence rate of peri-implant diseases, such as peri-implant mucositis and peri-implantitis,
during the maintenance period [4,5].

Healthy peri-implant tissues are essential for the long-term maintenance and stability
of implants. Peri-implant mucositis is the inflammation of the surrounding tissues without
peri-implant bone loss. Peri-implantitis is an inflammation of the surrounding tissues
accompanied by the loss of the peri-implant alveolar bone, which has been reported to
be caused by bacterial infection in the oral cavity. Thus, screw-retained prostheses are
currently selected for implant prostheses because they pose a lower risk of developing
peri-implantitis caused by residual cement and offer easier management and recovery in
cases of surrounding inflammation.

Regarding bacterial flora, some studies have reported differences between periodon-
titis and peri-implantitis, while others have reported otherwise; there have been a range
of reports on the differences in the bacterial layers [6–8]. In particular, differences in
periodontal-disease bacterial flora in the red and orange complexes have been indicated;
however, it is unclear where this bacterial invasion occurs [9]. Furthermore, periodontal-
disease bacterial flora in the red and purple complexes have been suggested to differ
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between healthy implants and peri-implantitis, although it remains unclear where individ-
ual bacteria invade.

Among the components of the dental implant system, the implant–abutment interface
(IAI) and screw access hole (SAH) have been reported as sites of bacterial microleakage.
However, previous studies have focused only on microleakage in the IAI [10,11], with few
reports of bacterial invasion through access holes. Kofron et al. reported that the main
disadvantage of the two-piece implant system lies in the presence of micro-gaps along the
IAI, even though the abutment is fixed to the implant body by an abutment screw, and that
a micro-gap, sized 10 and 135 µm, may cause biological and mechanical complications [4].
Considering the average size of bacteria (width: 0.2–1.5 µm, length: 1–10 µm) [12,13] and
the aforementioned size of a micro-gap, it is clear that the space between an abutment
and an implant function as a reservoir for bacteria. Consequently, bacteria are transported
into and out of the implant body through the IAI, owing to the micro-movement of the
abutment. As reported by Jervøe-Storm et al. on the contamination inside an implant
following the removal of the abutment of a cement-retained prosthesis [14], infection of the
peri-implant tissues can be attributed not only to bacterial invasion from the peri-implant
groove but also to bacterial microleakage from the junction owing to the micro-gap and
micro-movements of superstructures.

Regarding the bacterial flora with different SAH-sealing methods, do Nascimento
et al. applied different temporary sealing methods for single, screw-fixed superstruc-
tures [15] and reported that a combination of polytetrafluoroethylene (PTFE) tape and
light-polymerized resin resulted in the lowest mean bacterial count, whereas a combination
of cotton pellet and instant polymerization resin resulted in the highest mean bacterial
count. This indicates that the bacterial count inside an implant body varies greatly depend-
ing on the method used to seal the access hole. Furthermore, an in vitro study conducted
by Park et al. showed that microleakage occurred only from access holes and not from the
IAI [16], suggesting that microleakage from access holes is involved in the development of
peri-implantitis. Therefore, the present study focused on the bacterial flora in access holes
of screw-fixed superstructures and examined the differences in bacterial flora when two
types of sealing materials were used to connect crowns in the same patients.

2. Materials and Methods

This study was approved by the Institutional Review Board of the Showa University
Dental Hospital (approval no. DH2020-09; approval date, 28 July 2020). This study was
conducted in accordance with the principles of the Declaration of Helsinki. All participants
provided written informed consent to participate in this study. Informed consent was
obtained from all participants involved in the study.

2.1. Participant Selection

All patients underwent placement surgery of two adjacent implants at the Department
of Implant Dentistry at Showa University Dental Hospital, and those participating in the
study were randomly selected from patients aged between 20 and 80 years who wore
the final superstructures. A bone-level implant (Straumann) was used as the implant
system for all patients, and connected zirconia superstructures of two adjacent teeth with
screw-retained abutments were examined.

Exclusion criteria were as follows: Fully edentulous patients; patients with periodontal
disease or diabetes mellitus; patients receiving radiation therapy or orthodontic treatment;
patients who were pregnant or breastfeeding; patients who had undergone bone grafting
at the time of implant placement; patients with bruxism; patients requiring prophylactic
antibiotics or who were under steroid medication; patients who had marginal bone loss at the
time of superstructure placement; patients wearing a prosthetic device without an intervening
abutment (Table 1). These were modified with reference to the criteria of Zhang et al. [17].
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Table 1. Inclusion and exclusion criteria.

Inclusion Criteria

Implants placed and superstructures was inserted at this hospital

Age: between 20 and 80 years

Written consent to participate in the research was obtained from the individual.

Two implants are adjacent to each other.

Connected superstructure inserted.

Exclusion criteria

Fully edentulous patients

Bone grafting was performed at the time of implant placement

Periodontal disease or diabetes mellitus

Undergoing or previously undergoing radiation therapy to the head and neck

Bruxism

Pregnancy, possible pregnancy, breastfeeding, or considering pregnancy

Patients requiring prophylactic antibiotics or who were taking steroid medications

Marginal bone loss at the time of superstructure attachment

Prosthetic devices without intervening abutments were inserted

2.1.1. Superstructure

After the placement of the abutment, the titanium base and connecting crown (Zirconia,
GeoMedi Co., Ltd., Fukuoka, Japan) were bonded using resin cement (3M, Saint Paul, MN,
USA) on the verification model. In addition, they were immersed in an H2O2 solution
before being placed in the oral cavity.

2.1.2. Placement of the Final Superstructures and Sealing Materials (Figure 1)

The twisted PTFE was pressure-welded to the lower part of the access hole of the final
superstructure. For the upper part, (1) a dental composite resin (CR: SHOFU INC, Kyoto,
Japan) (control group) or (2) zinc-containing glass ionomer cement (GI: GC Corporation,
Tokyo, Japan; (test group) was placed in either the medial or distal access hole of the
connected superstructures of the two adjacent teeth in a randomized manner and sealed.
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2.1.3. Zinc-containing Glass Ionomer (GI) Cement

The GI cement released F, Zn, and Ca ions from the filling site. Zn ions suppress
bacterial acid production [18], decalcification [19], and degradation of MMP-derived colla-
gen [20]. F and Ca ions are known to suppress decalcification and promote recalcification;
when combined with Zn ions, they are expected to exert multiple effects. In addition, an
antibacterial test has shown that GI cement suppresses the growth of S. mutans, S. sobrinus,
and other bacteria [21], and a biofilm formation test on material surfaces demonstrated that
it exhibits effective anti-biofilm properties by reducing bacterial adhesion [22].

2.2. Sampling

The PTFE tape in the access holes was collected 28 days after placement of the super-
structures and subjected to DNA hybridization analysis.

2.3. DNA Hybridization

As the first step of quantitative detection, we measured the total amount of 16S rRNA
using the standard calibration curve plotted by Yazawa et al. [23]. Next, we determined
the number of each bacterial species using a species-specific probe SI corrected with the
hybridization affinity ratio.

Data from the Ribosomal RNA Database version 5.5 (Ann Arbor, MI, USA) were used
to determine the number of copies of 16SrRNA. Without appropriate information, the
median value for the genus was used. To calculate the total number of bacteria in the
samples, 16S rRNA copy numbers relative to genomic DNA were assumed to be 4.5, which
was calculated based on a weighted average reported in a study wherein the predominant
and prevalent bacterial species in the saliva of orally healthy participants were determined
using pyrosequencing [24]. The bacterial counts were calculated by multiplying Avogadro’s
constant with the molecular weight of the genome (i.e., the molecular weight of 16S rRNA
was divided by the number of 16S rRNA copies).

2.4. Items for Investigation

For the 28 bacterial species and 34 items shown in Figure 2, we examined the (i)
bacterial count, (ii) bacterial ratio, and (iii) implant positivity rate, which were compared
between sealing materials and between the same individuals.
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2.5. Date Analysis

Data were analyzed using statistical software (IBM SPSS Statics 29; IBM, Tokyo, Japan).
The Wilcoxon signed-rank test was used to evaluate and compare the sealing materials,
and the Mann–Whitney U test was used to evaluate and compare data between individuals.
Statistical significance was set at p < 0.05.

3. Results

We examined superstructures (access holes, at 38 sites in 19 patients (Table 2).

Table 2. Patient data.

Gender

Male 13

Female 6

Age (y)

40–49 2

50–59 3

60–69 7

70–79 7

Mean ± SD 65.7 ± 10.87

3.1. Differences between Sealing Materials
3.1.1. Bacterial Count (Table 3)

In the test group, a significant decrease in bacterial count was observed in total bacteria,
one species of the red complex (T. denticola (p = 0.019 < 0.05)), total red complex, two species
of the orange complex (F. nucleatum subsp. vincentii (p = 0.034, <0.05), and C. gracilis (p = 0.044,
<0.05)), total orange complex, one species of the green complex (C. concisus (p = 0.017, <0.05)),
total green complex, one species of the yellow complex (S. gordonii (p = 0.0059, <0.01)), total
yellow complex, one species of the purple complex (V. parvula (p = 0.029, <0.05)), and total
purple complex. In the test group, 12 of 34 items and 6 out of 28 bacterial species showed a
significant decrease in the bacterial count.

In particular, a marked decrease in the bacterial count was observed in the total
bacteria, S. gordonii, and the total purple complex.

Table 3. Differences in bacteria count between sealing materials.

Control Test

Total Bacteria 13.0 × 106 4.3 × 106 **

Porphyromonas gingivalis 57,920 107,953

Tannerella forsythia 134,959 61,406

Treponema denticola 193,136 46,575 *

Red Complex 386,014 215,934 *

Campylobacter rectus 151,445 36,014

Fusobacterium nucleatum subsp. polymorphum 76,099 43,432

Fusobacterium nucleatum subsp. animalis 434,247 157,379

Fusobacterium nucleatum subsp. nucleatum 112,125 88,747

Fusobacterium periodonticum 114,794 48,227

Fusobacterium nucleatum subsp. vincentii 42,976 18,606 *

Prevotella nigrescens 110,071 40,947
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Table 3. Cont.

Control Test

Prevotella intermedia 70,909 123,354

Streptococcus constellatus 25,113 37,062

Campylobacter showae 17,134 3481

Campylobacter gracilis 40,177 3371 *

Orange Complex 1,195,088 600,620 *

Aggregatibacter actinomycetemcomitans 462 66

Campylobacter concisus 28,056 3503 *

Capnocytophaga gingivalis 5081 1624
Capnocytophaga ochracea 28,994 1410

Capnocytophaga sputigena 54,692 6540

Eikenella corrodens 3004 4051

Green Complex 120,290 17,194 *

Streptococcus intermedius 6942 189

Streptococcus gordonii 104,047 17,282 **

Streptococcus mitis 22,251 23,349

Streptococcus mitis bv 2 19,752 20,367

Yellow Complex 152,992 61,186 *

Actinomyces odontolyticus 1707 1529

Veillonella parvula 110,860 46,849 *

Purple Complex 112,567 48,377 **

Actinomyces naeslundii II 77,696 44,997

Selenomonas noxia 22,013 2144
* p < 0.05, ** p < 0.01.

3.1.2. Bacterial Ratio (Table 4)

In the test group, a significant decrease in the bacterial ratio was observed in C. gracilis
(p = 0.05) of the orange complex, C. concisus (p = 0.00, <0.05) of the green complex, and the
total green complex. In the test group, 3 of 32 items and 2 of 28 bacterial species showed a
significant decrease in the bacterial ratio.

Table 4. Differences in bacterial ratio between sealing materials.

Control Test

Total Bacteria

Porphyromonas gingivalis 0.24 0.23

Tannerella forsythia 0.50 0.00

Treponema denticola 0.64 0.00

Red Complex 4.36 0.23

Campylobacter rectus 0.48 0.00

Fusobacterium nucleatum subsp. polymorphum 0.38 0.19

Fusobacterium nucleatum subsp. animalis 1.46 0.00

Fusobacterium nucleatum subsp. nucleatum 0.35 0.00

Fusobacterium periodonticum 0.49 0.27
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Table 4. Cont.

Control Test

Fusobacterium nucleatum subsp. vincentii 0.18 0.01

Prevotella nigrescens 0.40 0.02

Prevotella intermedia 0.18 0.00

Streptococcus constellatus 0.11 0.00

Campylobacter showae 0.08 0.00

Campylobacter gracilis 0.24 0.05 *

Orange Complex 4.36 0.54

Aggregatibacter actinomycetemcomitans 0.00 0.00

Campylobacter concisus 0.24 0.00 *

Capnocytophaga gingivalis 0.03 0.01

Capnocytophaga ochracea 0.18 0.00

Capnocytophaga sputigena 0.25 0.43

Eikenella corrodens 0.02 0.00

Green Complex 0.72 0.44 *

Streptococcus intermedius 0.05 1.51

Streptococcus gordonii 1.01 0.55

Streptococcus mitis 0.20 0.00

Streptococcus mitis bv 2 0.19 1.34 *

Yellow Complex 1.45 3.40

Actinomyces odontolyticus 0.02 2.91 *

Veillonella parvula 2.32 0.16

Purple Complex 2.34 3.07

Actinomyces naeslundii II 0.93 2.31

Selenomonas noxia 0.09 1.00
* p < 0.05.

3.1.3. Implant Positivity Rate (Table 5)

In the test group, a significant decrease in implant positivity rate was observed in four
species of the orange complex (F. nucleatum subsp. animalis, F. periodonticum, F. nucleatum
subsp. vincentii, and C. gracilis), total orange complex, one species of the green complex (C.
concisus), and total green complex.

In the test group, 7 of 34 items and 5 of 28 bacterial species showed a significant
decrease in the implant positivity rate. In particular, a marked decrease in the implant
positivity rate was observed for the total orange and green complexes.

Table 5. Differences in implant positivity rate between sealing materials.

Control Test

Total Bacteria

Porphyromonas gingivalis 26.3% 15.8%

Tannerella forsythia 78.9% 78.9%

Treponema denticola 84.2% 63.2%

Red Complex 63.2% 52.6%
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Table 5. Cont.

Control Test

Campylobacter rectus 26.3% 26.3%

Fusobacterium nucleatum subsp. polymorphum 42.1% 15.8%

Fusobacterium nucleatum subsp. animalis 47.4% 15.8% *

Fusobacterium nucleatum subsp. nucleatum 57.9% 31.6%

Fusobacterium periodonticum 47.4% 15.8% *

Fusobacterium nucleatum subsp. vincentii 52.6% 15.8% *

Prevotella nigrescens 31.6% 21.1%

Prevotella intermedia 26.3% 15.8%

Streptococcus constellatus 42.1% 36.8%

Campylobacter showae 31.6% 10.5%

Campylobacter gracilis 42.1% 10.5% *

Orange Complex 40.7% 19.6% **

Aggregatibacter actinomycetemcomitans 10.5% 5.3%

Campylobacter concisus 57.9% 21.1% *

Capnocytophaga gingivalis 36.8% 15.8%

Capnocytophaga ochracea 31.6% 10.5%

Capnocytophaga sputigena 36.8% 21.1%

Eikenella corrodens 21.1% 10.5%

Green Complex 32.5% 14.0% **

Streptococcus intermedius 42.1% 15.8%

Streptococcus gordonii 89.5% 78.9%

Streptococcus mitis 89.5% 84.2%

Streptococcus mitis bv 2 94.7% 89.5%

Yellow Complex 78.9% 67.1% *

Actinomyces odontolyticus 89.5% 89.5%

Veillonella parvula 73.7% 47.4% *

Purple Complex 81.6% 68.4%

Actinomyces naeslundii II 89.5% 89.5%

Selenomonas noxia 36.8% 15.8%
* p < 0.05, ** p < 0.01.

3.2. Differences between Patients
3.2.1. Bacterial Count (Table 6)

In the test group, a significant decrease in bacterial count was observed in total bacteria,
one species of the red complex (T. denticola), total red complex, eight species of the orange
complex (F. nucleatum subsp. polymorphum, F. nucleatum subsp. animals, F. nucleatum subsp.
nucleatum, F. periodonticum, F. nucleatum subsp. vincentii, P. nigrescens, C. showae, and C. gracilis),
total orange complex, two species of the green complex (C. concisus and Capnocytophaga
ochracea), total green complex, two species of the yellow complex (S. intermedius and S.
gordonii), total yellow complex, two species of the purple complex (A. odontolyticus and V.
parvula), total purple complex, and two species of the blue complex (A. naeslundii II and
Selenomonas noxia).

In the same patient comparisons, the test group showed a significant decrease in
bacterial counts in 23 out of 34 items and 17 out of 28 bacterial species.
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Table 6. Differences in the same individuals.

Bacterial Count Bacterial Ratio

Total Bacteria 0.000091 **

Porphyromonas gingivalis 0.68 0.344

Tannerella forsythia 0.068 0.159

Treponema denticola 0.003 ** 0.398

Red Complex 0.029 * 0.621

Campylobacter rectus 0.368 0.368

Fusobacterium nucleatum subsp. polymorphum 0.0058 ** 0.288

Fusobacterium nucleatum subsp. animalis 0.011 * 0.043 *

Fusobacterium nucleatum subsp. nucleatum 0.025 * 0.628

Fusobacterium periodonticum 0.0038 ** 0.26

Fusobacterium nucleatum subsp. vincentii 0.0026 ** 0.194

Prevotella nigrescens 0.046 * 0.252

Prevotella intermedia 0.681 0.344

Streptococcus constellatus 0.297 0.054

Campylobacter showae 0.014 * 0.014 *

Campylobacter gracilis 0.0058 ** 0.0086 **

Orange Complex 0.025 * 0.943

Aggregatibacter actinomycetemcomitans 0.328 0.328

Campylobacter concisus 0.017 * 0.123

Capnocytophaga gingivalis 0.104 0.338

Capnocytophaga ochracea 0.015 * 0.014 *

Capnocytophaga sputigena 0.034 0.2

Eikenella corrodens 0.68 0.344

Green Complex 0.018 * 0.127

Streptococcus intermedius 0.0086 ** 0.288

Streptococcus gordonii 0.0005 ** 0.128

Streptococcus mitis 0.293 0.0049 **

Streptococcus mitis bv 2 0.357 0.0033 **

Yellow Complex 0.0069 ** 0.188

Actinomyces odontolyticus 0.043 * 0.0078 **

Veillonella parvula 0.00061 ** 0.018 *

Purple Complex 0.000091 ** 0.063

Actinomyces naeslundii II 0.043 ** 0.099

Selenomonas noxia 0.0086 ** 0.018 *
* p < 0.05, ** p < 0.01.

3.2.2. Bacterial Ratio (Table 6)

In the test group, a significant decrease in bacterial ratio was observed in three species
of the orange complex (F. nucleatum subsp. animalis, C. showae, and C. gracilis), two species
of the yellow complex (Capnocytophaga ochracea and S. mitis), one species of the green
complex (Capnocytophaga ochracea), one species of the purple complex (Veillonella parvula),
and Selenomonas noxia.
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In the same patient comparisons, the test group showed a significant decrease in the
bacterial ratio in 8 of 28 bacterial species.

3.2.3. Implant Positivity Rate (Figure 3)

The implant positivity rate was 51.3% in the control group and 34.2% in the test group,
thereby showing a significant decrease in the test group (p = 0.0019, <0.005).

Bioengineering 2024, 11, x FOR PEER REVIEW 10 of 13 
 

3.2.2. Bacterial Ratio (Table 6) 
In the test group, a significant decrease in bacterial ratio was observed in three spe-

cies of the orange complex (F. nucleatum subsp. animalis, C. showae, and C. gracilis), two 
species of the yellow complex (Capnocytophaga ochracea and S. mitis), one species of the 
green complex (Capnocytophaga ochracea), one species of the purple complex (Veillonella 
parvula), and Selenomonas noxia. 

In the same patient comparisons, the test group showed a significant decrease in the 
bacterial ratio in 8 of 28 bacterial species. 

3.2.3. Implant Positivity Rate (Figure 3) 
The implant positivity rate was 51.3% in the control group and 34.2% in the test 

group, thereby showing a significant decrease in the test group (p = 0.0019, <0.005). 

 
Figure 3. Differences in implant positivity rate in the same individual patients. The red lines indi-
cate the respective averages. 

4. Discussion 
In bacteriological research on peri-implantitis, oral bacteria of the “red” and “or-

ange” complexes are believed to be closely associated with periodontal disease and peri-
implantitis. Furthermore, there have been many recent reports on the differences in bac-
terial flora between periodontitis and peri-implantitis and between healthy implants and 
peri-implantitis [6–8]. In addition, a review published in 2021 stated that the bacterial 
flora for peri-implantitis differs from that of periodontitis and that a comparison of peri-
implant health showed a similar trend in the involvement of many types of bacteria and 
differences in bacterial species [9]. For example, the bacterial flora common to periodon-
titis and peri-implantitis includes P. gingivalis in the red complex, Fusobacterium spp. in 
the orange complex, and Streptococcus spp. in the yellow complex, whereas bacterial flo-
ra unique to peri-implantitis include T. denticola in the red complex and P. nigrescens in 
the orange complex. In addition, the bacterial floras common to healthy implants and 
peri-implantitis include Fusobacterium spp., Campylobacter gracilis, and Streptococcus spp. 
of the orange complex, while the bacterial flora unique to peri-implantitis include T. 

Figure 3. Differences in implant positivity rate in the same individual patients. The red lines indicate
the respective averages.

4. Discussion

In bacteriological research on peri-implantitis, oral bacteria of the “red” and “or-
ange” complexes are believed to be closely associated with periodontal disease and peri-
implantitis. Furthermore, there have been many recent reports on the differences in bacterial
flora between periodontitis and peri-implantitis and between healthy implants and peri-
implantitis [6–8]. In addition, a review published in 2021 stated that the bacterial flora for
peri-implantitis differs from that of periodontitis and that a comparison of peri-implant
health showed a similar trend in the involvement of many types of bacteria and differ-
ences in bacterial species [9]. For example, the bacterial flora common to periodontitis and
peri-implantitis includes P. gingivalis in the red complex, Fusobacterium spp. in the orange
complex, and Streptococcus spp. in the yellow complex, whereas bacterial flora unique
to peri-implantitis include T. denticola in the red complex and P. nigrescens in the orange
complex. In addition, the bacterial floras common to healthy implants and peri-implantitis
include Fusobacterium spp., Campylobacter gracilis, and Streptococcus spp. of the orange
complex, while the bacterial flora unique to peri-implantitis include T. denticola, P. gingivalis,
and T. forsythia of the red complex and Actinomyces of the purple complex.

Regarding the bacterial positivity rate, Cortelli et al. reported that peri-implantitis
had a higher implant positivity rate for T. forsythia, T. denticola, and P. intermedia than
periodontitis [25]. In contrast, Zhuang et al. reported no obvious difference in the implant
positivity rates for T. denticola and P. intermedia [17]. Canullo et al. reported that compared
to healthy implants, the bacterial flora in the internal connection of the implant after
crown/abutment removal in peri-implantitis showed a greatly different implant positivity
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rate for T. denticola of the red complex, P. intermedia of the orange complex, and E. corrodens
and C. albicans of the green complex [26].

There have been various reports on the bacterial flora in peri-implantitis, with different
types of bacteria examined and bacterial analysis methods used (DNA probe analysis and
PCR method). A review by Pérez-Chaparro et al. showed evidence for the association
of peri-implantitis with P. gingivalis, T. forsythia, and T. denticola of the red complex, as
well as the association of peri-implantitis with P. intermedia of the orange complex [27].
Furthermore, a systematic review by Lafaurie et al. reported that the red complex bacteria
were detected at a slightly high frequency in the bacterial flora of peri-implantitis, that
the orange complex bacteria, such as P. intermedia and P. nigrescens, were more commonly
associated with peri-implantitis, that there was a low association of the red complex
bacteria, and that uncultivable anaerobic Gram-positive bacteria, Gram-negative bacteria,
and oral resident bacteria, such as Staphylococcus aureus, were also identified [28]. Since the
present prospective study was conducted only on healthy implants, we could not examine
the suppressive effect on the surrounding inflammation. However, sealing with glass
ionomer cement, used in this study, was suggested to be highly effective in preventing
peri-implantitis, as it suppressed subgingival bacterial flora, including the total red and
orange complexes.

Regarding bacterial invasion from access holes into the implant body, the bone-level
implant (two-piece implant system) used in this study had a superstructure and an abut-
ment mechanically connected at or below the bone margin, thereby containing multiple
routes for bacterial invasion, such as IAI and SAH. Moreover, sealing materials used in
the access hole of the screw-retain superstructure are prone to intraoral contamination. Al-
though various materials have been studied as sealing materials for SAH in screw-retained
superstructures [16,29–33], few studies have focused on the capacity of materials to prevent
or minimize microbial/bacterial leakage from SAH. Cavalcanti et al. compared gutta-
percha (GP) and PTFE as sealing materials for the lower part of access holes, reporting that
GP was significantly more effective than PTFE [32]. In contrast, Alshehri et al. reported that
PTFE was significantly more effective than GP [33]. Furthermore, the insertion and removal
of PTFE was clinically easy, although twisted PTFE had no sealing effect, even when com-
pressed, owing to the lack of chemical bonds. Although GP can be easily compressed and
chemically bonded, their insertion is difficult, and their removal is time-consuming. Thus,
there are advantages and disadvantages to sealing materials for the lower part of access
holes. The results of this study suggest that F, Zn, and Ca ions released from the site filled
with GI cement may have acted in an anti-bacterial manner. In addition, we believe that
GI cement achieved superior bacterial suppression compared to CR in this study because
it can even be applied to sites where moisture-proofing is difficult, it does not require a
bonding material, and it exhibits no polymerization shrinkage. Furthermore, our results
suggest that reducing the bacterial count and implant positivity rate would suppress the
development of peri-implantitis. In addition, future studies will examine differences in
bacterial flora according to age.

5. Limitations

This study made comparisons not only between sealing materials but also between
the same individuals, as each patient has different oral bacterial flora. However, because
this study was conducted on healthy implants, we did not evaluate the association with the
bacterial flora of peri-implantitis, the difference from the bacterial flora of the peri-implant
gingival groove, and the difference in bacterial flora in patients with cement-retained
prosthesis. In addition, because a superstructure is placed in the oral cavity for a long period
of time, it is necessary to conduct long-term observational studies, including examination
of attrition and abrasion, and further studies are needed in the future.
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6. Conclusions

We compared the sealing materials for the upper part of the access holes of screw-
retained superstructures. Our results showed that GI cement reduced the bacterial count
in access holes and suppressed the implant positivity rate when compared with other
materials and in the same patients. These results suggest that GI cement is a useful sealing
material for access holes.
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