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Abstract: This study introduces a hybrid analytical super-resolution (SR) pipeline aimed at enhanc-
ing the resolution of medical magnetic resonance imaging (MRI) scans. The primary objective is
to overcome the limitations of clinical MRI resolution without the need for additional expensive
hardware. The proposed pipeline involves three key steps: pre-processing to re-slice and register
the image stacks; SR reconstruction to combine information from three orthogonal image stacks to
generate a high-resolution image stack; and post-processing using an artefact reduction convolutional
neural network (ARCNN) to reduce the block artefacts introduced during SR reconstruction. The
workflow was validated on a dataset of six knee MRIs obtained at high resolution using various
sequences. Quantitative analysis of the method revealed promising results, showing an average
mean error of 1.40 ± 2.22% in voxel intensities between the SR denoised images and the original
high-resolution images. Qualitatively, the method improved out-of-plane resolution while preserv-
ing in-plane image quality. The hybrid SR pipeline also displayed robustness across different MRI
sequences, demonstrating potential for clinical application in orthopaedics and beyond. Although
computationally intensive, this method offers a viable alternative to costly hardware upgrades and
holds promise for improving diagnostic accuracy and generating more anatomically accurate models
of the human body.

Keywords: super-resolution; magnetic resonance images (MRI); image reconstruction; machine
learning; convolutional neural networks (CNN)

1. Introduction

Non-invasive medical images are the source of information from which we create
and test anatomically accurate models of the human body. Magnetic resonance images
(MRIs) are the favoured imaging technique to view soft tissues, but its ability to generate
3D anatomical images is constrained by scan time, patient motion and scanning parameters.
During the imaging process, the patient must remain still to prevent blurring and motion
artefacts appearing in the image, which is more likely to occur during a long scanning time.
Improved spatial resolution may be achieved at the expense of reduced signal-to-noise
ratio (SNR) and/or increased scan time. As a result, a trade-off is typically made between
these factors in clinical MRI acquisition, which results in MRI stacks that have a high
in-plane resolution (x, y-direction) and low out-of-plane resolution (z-direction) [1–3]. In
the clinic, three orthogonal MRIs are typically collected in order to maximise the resolution
and visible detail in each of the axial, coronal and sagittal planes. However, this is an issue
as each slice in the image, comprised of small 3D units called voxels, has an associated slice
thickness and/or a gap [1–3]. This causes partial volume effects that make it difficult to
obtain detailed morphological information, reducing the accuracy and confidence of the
models we derive from the images.

In recent years, there have been significant advancements in hardware and imaging
technologies that have enabled the acquisition of good high-resolution images. Tech-
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niques such as parallel imaging have resolved some of the shortcomings of old hard-
ware by providing faster acquisition time and higher resolution images. Newer high-
magnetic-strength 3.0 T MR scanners can obtain higher-SNR images with voxel sizes of
0.3 mm × 0.3 mm × 0.5 mm. However, these technologies are expensive; for example, new
MR scanners can cost up to ~USD 3M and are not prevalent [1,4], motivating the need for
techniques that can improve detail and resolution in existing hardware without excessive
additional costs. Post-acquisition image processing techniques, such as super-resolution
(SR), have been used to alleviate some of these issues. SR techniques have the advantage of
being able to increase the resolution of images without having to purchase new, improved
hardware, and some techniques do not require additional increase to the scanning time.

SR is a class of techniques used to enhance the resolution of images. This can be
achieved in the k-space/frequency domain or in the image domain [1]. However, image
domain methods are more flexible and tend to perform better than k-space methods as they
allow incorporation of complex models of motion, slice profile, slice geometry, and point
spread function [1]. Various SR methods have been developed and include inverse, image
fusion, machine learning, and interpolation approaches.

Inverse SR techniques involve exploiting the general form of the image acquisition
model. This SR approach is typically viewed as an ill-posed inverse problem where the
aim is to recover the high-resolution image given a set of low-resolution images. This is
achieved by performing optimisation to minimise the least squared cost function. This
minimisation often leads to an unstable solution as the problem is under-constrained.
Therefore, regularisation is employed to ensure uniqueness in the minimisation process [5].
A number of approaches are used to perform this regularisation such as the iterative
back projection method [5–9], the maximum a posteriori method [5,10] and the projection
onto convex sets (POCS) method [5,11,12]. These methods generate reasonable outputs,
though each technique is accompanied by its own particular set of limitations such as
computational cost, requiring prior information about the desired solution or requiring
prior knowledge on the noise. This means these techniques can vary in performance
depending on the situation [5].

Image fusion SR techniques increase the through-plane resolution by combining infor-
mation from several MRI stacks. These stacks can be obtained in parallel by shifting the
acquisition space in the slice-select direction by a known subpixel distance [5] or, alterna-
tively, in orthogonal planes [13–17]. The images are then combined using a reconstruction
algorithm to synthesise a single high-resolution 3D image dataset with isotropic voxel size.
These approaches can be very effective in generating high-quality images and have better
attenuation of partial volume effects. The downside is that multiple MR scans need to be
obtained, which can be time-consuming and clinically challenging. Some reconstruction
algorithms average the intensity values which can introduce blurring and decrease contrast.
Interpolation is also often used, which reduces the fidelity of the image and can introduce
interpolation artefacts.

Machine learning-based SR techniques have developed rapidly in recent years. These
methods aim to establish a correlation between high- and low-resolution images [5,18–22].
However, as these techniques synthesise new data based on previous training, they are
susceptible to errors from poor or inappropriate training and over-fitting. Additionally, we
still do not have complete confidence in whether output accurately reflects the true image.

Interpolative SR techniques involve using interpolation algorithms such as nearest
neighbour, bicubic and bilinear algorithms to reconstruct a high-resolution image by esti-
mating the voxel values between the slices [21,23,24]. These methods are computationally
efficient at producing HR images, but they can result in images with blurred edges, inter-
polation artefacts, and overly smooth images that do not capture the fine details.

Studies have demonstrated that deep learning is effective in reducing image arte-
facts [25–28]. Therefore, neural networks have the potential to be used post SR to correct
for any artefacts that are synthesised in the SR image.
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Considering the trade-offs present with existing methods, we propose a hybrid an-
alytical SR method that combines information from the three orthogonal planes that are
typically obtained clinically. This method has minimal reliance on interpolation, so it
reduces blurring and artefacts in the reconstructed image. Additionally, in contrast to meth-
ods that involve machine learning during reconstruction [18–20], this method limits deep
learning to only the post-reconstruction step to correct for any artefacts. This eliminates
prediction in the reconstruction step and, in turn, minimises prediction throughout the
overall algorithm. We detail the method below and present quantitative and qualitative
results on a set of six knee MRIs.

2. Methods

The super-resolution method developed in this study was an image-domain post-
processing algorithm that consisted of three main steps (Figure 1). The first step was
a pre-processing step to prepare the clinical images for the super-resolution algorithm.
This involved re-slicing and registering the image stacks. The second step was the super-
resolution step, where the three image stacks were combined to reconstruct a higher-
resolution image stack. The final step was a post-processing step that used a neural
network to reduce block artefacts introduced in the super-resolution step. We describe each
of the three steps in the following three sections and detail the in the fourth section the
validation study performed to evaluate the method.
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pre-processing, super-resolution, and post-processing.

2.1. Preprocessing

The image stacks of the knee were first prepared for the super-resolution algorithm.
Images were assumed to come from clinical magnetic resonance (MR) scanners that typically
have an in-plane resolution of around 0.5 mm and a low out-of-plane resolution of >3.0 mm
and consisted of images obtained in three orthogonal planes (axial, coronal, and sagittal).
Although an SR image can be reconstructed by only using two orthogonal planes, we found
that the additional image data provided by a third plane resulted an output image that is
more consistent and has greater quality when viewed in all directions. A comparison can
be found in Appendix A.1.

Prior to registration, histogram matching was performed using the SciPy Python
image library to normalise the intensity values of the axial and coronal image stacks to the
target (sagittal) image stack.

One of the image stacks was selected as the target for registration. The sagittal plane is
the orientation which provides the best view of knee structures such as the ACL, and so is
typically the plane used to analyse and segment these structures. Therefore, the sagittal im-
age stack was selected as the target to better preserve the detail of the knee structures. This
target was resliced to be isotropic such that the out-of-plane plane resolution matched the
in-plane resolution. This was performed to provide a high-resolution target for registration
and to determine the image stack dimensions for the super-resolution algorithm.

The axial and coronal plane stacks were individually registered to the sagittal images
in the 3D slicer using the general registration BRAINS module [29,30]. The cost metric was
changed to normalised correlation as all our images were of the same modality and MR
sequence. This registration method aimed to maximise the image intensity data across
the imaging planes and in turn help to reduce motion-related errors that may have been
introduced during imaging. Rigid and affine registration were selected as the registration
phases and were performed in that order, such that if the operation failed to converge
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with rigid registration, affine registration would be employed to involve higher degrees of
freedom (DOF). All other parameters were left as the default.

During registration, the axial and coronal images were resampled via linear inter-
polation to the same resolution and dimensions as the target sagittal image. Therefore,
we resliced the registered axial and coronal images to their original resolutions to reduce
the search space and minimise the computational cost of reconstruction in the super-
resolution algorithm.

A detailed list of the registration parameters can be accessed in Appendix A.2.

2.2. Super-Resolution

The super-resolution algorithm developed calculates each voxel intensity in the re-
constructed image based on a linear inverse weighted average of the sagittal, axial, and
coronal images.

The inputs to this algorithm include the registered and normalised image stacks (axial,
coronal, and sagittal stacks) and a template image containing the corresponding centroid
coordinates of each voxel that are reconstructed during SR. This template is initialised with
dimensions and voxel centroids equal to the target isotropic sagittal stack. For each voxel in
the template, the algorithm finds the closest voxel in each of the three stacks and calculates
the intensity by averaging the three intensity values based on the vector magnitude to the
template voxel being reconstructed. Therefore, the closer a voxel is to the template, the
higher the weighting and hence contribution to the intensity value (Equations (1)–(4)). A
worked example to calculate template intensity values can be found in Appendix A.3.

vtemplateijk
= ∑(wplane × vplane), (1)

wplane =
dTotalijk − dplane

2dTotalijk
, (2)

dplane = d(ctemplate, cplaneclosest
) = ∥ctemplate − cplaneclosest

∥ =√
(ctemplatex

− cplanex
)2 + (ctemplatey

− cplaney
)2 + (ctemplatez

− cplanez
)2,

(3)

dTotalijk = ∑ dplane, (4)

where v is voxel intensity. Voxel intensity for each voxel in the template is calculated as the
weighted sum of voxel intensity in each plane (Equation (1)). The weights for each voxel of
each plane are obtained using Equation (2), where d is the distance between the centroids of
the closest voxel in the specific image plane (Equation (3)) and the template voxel, dTotalijk
is the total distance (Equation (4)). Subscript ijk refers to the position of the voxel in the
MRI 3D image array, where i denotes the row in the MR image slice, j denotes the column
in the MR image slice and k denotes the number of the MR image slice itself.

2.3. Post-Processing—Artefact Reduction Convolutional Neural Network

To reduce block artefacts that were introduced in the super-resolution step, we devel-
oped an artefact reduction convolutional neural network (ARCNN) based on the work of
Yu et al. [25].

The ARCNN was developed to de-noise 2D MRI slices rather than the entire 3D volume
at once. To train the ARCNN, we used the noisy sagittal slices from the reconstructed SR
image and their corresponding slices in the original sagittal image as the input and target
images, respectively.

We performed a couple of pre-processing steps before training the ARCNN. First, all
the training images were down-sampled to a common size of 256 by 256 for the input and
target images. This had the added benefit of reducing the computational cost without
sacrificing too much detail in the image. Second, we normalised the intensity values of the
images between 0 and 1. This helped to speed up learning and led to a faster convergence.
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The convolutional neural network was developed with a 5-layer architecture, similar
to the Fast-ARCNN detailed by Yu et al. [25], using the tensorflow keras Python library,
which included layers for (i) feature extraction, (ii) shrinking, (iii) feature enhancement,
(iv) mapping, and (v) reconstruction (Table 1).

Table 1. Summary of ARCNN architecture parameters.

Layer Type Filters (i.e., Number
of Output Channels)

Kernel (i.e., Size of the
Convolution Filter) Stride Padding Activation

(i) Feature extraction Conv2D 64 9 × 9 1 Zero padding ReLU

(ii) Shrinking Conv2D 32 1 × 1 1 No padding ReLU

(iii) Feature
enhancement Conv2D 32 7 × 7 1 Zero padding ReLU

(iv) Mapping Conv2D 64 1 × 1 1 No padding ReLU

(v) Reconstruction Conv2D
Transpose 1 7 × 7 1 Zero padding None

The ARCNN developed by Yu et al. was demonstrated to be very effective in denoising
image artefacts so we did not greatly deviate from their design. However, we made some
slight modifications that we believed would help the network to perform better for our
application. The key distinctions were that we maintained a stride length of 1 for each layer
compared to the stride length of 2 used in their network in order to better preserve spatial
information. We also employed the ReLU activation function rather than PreLU due to its
greater simplicity and computational efficiency. Finally, our model used an Adam optimiser
rather than stochastic gradient descent due to the optimiser’s ability to adaptively adjust
its learning rate and thus achieve faster convergence.

The feature extraction layer (i) uses 9 by 9 filters to extract overlapping patches from
the input image and represents each patch as a feature map. At this layer, the input image
was separated into 64 feature maps. To accelerate learning, the shrinking layer (ii) mapped
the high-dimensional features to a lower-dimensional feature space (i.e., 64 feature maps
to 32). However, because of the block artefacts, the extracted features appeared noisy and
so the following feature enhancement layer (iii) used 7 by 7 filters to further denoise the
feature maps. The mapping layer (iv) then mapped the cleaned feature maps to a higher-
dimensional feature space (i.e., 32 feature maps back to 64). Finally, the reconstruction layer
(v) aggregated the feature maps using 7 by 7 filters to synthesise the output image to the
same dimensions as the input.

The first four layers were 2D convolution layers that use the ReLU activation function
and a stride of 1. The final reconstruction layer was a 2D deconvolution layer. Zero padding
was only adopted in the convolutional layers that have a convolution filter size greater
than 1 (i.e., the feature extraction, feature enhancement and reconstruction layers).

Training was performed in Google Colab with a 12 GB RAM. The model was config-
ured with an Adam optimiser and a learning rate of 0.0005. No weight decay was used
and the exponential decay rates for the first and second moment estimates were left at their
default values of 0.9 and 0.999, respectively.

The ARCNN aims to learn and optimise end-to-end mapping of the input and target
images by minimising the difference (i.e., loss) in their intensity values. In this way, the
ARCNN learns to suppress block artefacts. We used mean squared error (MSE) or the L2
norm as the loss function for this neural network:

Loss =
1
n

n

∑
i=1

∥F(Yi)− Xi∥2, (5)

where n is the batch size, Yi is the noisy image, Xi is the ground truth/target, F represents
the convolutional neural network, and F(Yi) is the predicted de-noised image.
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To train the ARCNN, we obtained clinical MRIs from 35 adult knees (27.7 ± 11.2 years)
consisting of a total of 1009 sagittal slices. Ethics approval (reference # AH2627) was granted
by the Auckland Health Research Ethics Committee (AHREC). This dataset consisted
of three orthogonal MRIs for each subject and was scanned using a proton density fat-
suppressed sequence or a SPIR/SPAIR sequence and stored in an NIfTI file format. To
generate the training dataset, we applied our SR algorithm to reconstruct each of these
sagittal image slices and in the process introduce block artefacts in the image that were
characteristic of our algorithm. As a result, we had a dataset of noisy sagittal image slices
as well as their corresponding clean versions used as the target for training. We trained the
ARCNN through 600 iterations (i.e., epochs) of the entire training dataset with a batch size
of 32, and in the end predicted the denoised image to a loss of 0.0010. Further training did
not yield significant improvement in loss and so training was terminated after 600 epochs.

The trained ARCNN was then applied to the reconstructed SR image to output a
denoised SR image. The final step in the pipeline was to histogram match the denoised SR
image to a down-sampled and normalised sagittal image. Histogram matching ensures
that the voxel intensity distribution of the denoised SR image closely aligns with that of the
original sagittal image, resulting in a more faithful representation and minimises contrast
and tone differences that may have been caused by using the ARCNN.

Overall, the novelty of our study primarily lies in the original creation of our SR recon-
struction algorithm and the synergistically orchestrated sequence of steps that constitute
the entire image enhancement pipeline. The pre-processing and post-processing steps are
not entirely novel creations as they are well documented in the literature and have been
utilised in isolation before. The pre-processing steps of image registration and re-slicing are
routine steps in image processing but serve an important role in aligning the orthogonal
imaging stacks. Our linear inverse weighted SR reconstruction algorithm is then employed
to amalgamate the information from the orthogonal MR images into a single high resolution
image stack. Lastly, the ARCNN derived from Yu et al. [25] is involved in denoising the
SR reconstructed images to dampen the artefacts introduced into the image via our SR
algorithm. By strategically combining these steps, we are able to improve the resolution of
MR images.

2.4. Evaluation of Methods

To test the workflow, we obtained a dataset (n = 6) of high-resolution (HR) MRIs from
3 subjects using a GE Healthcare 3.0T MR. These images were obtained with an in-plane
resolution of 0.31 × 0.31 mm and a slice select resolution of 0.5 mm. A range of sequences
including 3D fat-suppressed (FS), water-weighted proton density (PD), PD FS and double
echo steady state (DESS) sequences were tested to evaluate the robustness of the workflow
(Table 2).

Table 2. Dataset used for evaluating the workflow.

Index Subject ID Sequence MRI Dimensions

1 1 Fat 512 × 512 × 208

2 1 PD FS 512 × 512 × 228

3 2 Fat 512 × 512 × 208

4 2 Water PD 512 × 512 × 208

5 3 DESS 512 × 512 × 236

6 3 Water PD FS 512 × 512 × 188

These image stacks were used to synthesise orthogonal clinical MR imaging stacks of
the knee with a high in-plane resolution and low slice select resolution. The synthesised
sagittal image had an in-plane resolution of 0.31 × 0.31 mm and a slice select resolution
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of 4 mm. The axial and coronal images were synthesised with an in-plane resolution of
0.31 × 0.5 mm and a slice select resolution of 5 mm.

We applied the workflow described above to evaluate the output SR reconstructed im-
age and SR denoised image qualitatively and quantitatively with the original high-resolution
image. The HR images were down-sampled to in-plane dimensions of 256 × 256 and nor-
malised from 0 to 1 to allow direct comparison with the outputs from the workflow.

For quantitative analysis, we computed the mean squared error (MSE), mean error,
peak-signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) for the SR
denoised images with their original HR image.

Mean Error =
1
N

n

∑
i=1

|Hi − Si|. (6)

The mean error is the average difference between corresponding voxels in the high-
resolution and reconstructed images, where N is the total number of voxels in the images,
Hi is the voxel intensity at position, i, in the original high-resolution image and Si is the
voxel intensity at position, i, in the SR reconstructed or SR denoised images.

MSE =
1
N

n

∑
i=1

(Hi − Si)
2. (7)

The mean squared error measures the average squared difference between correspond-
ing voxels in the high-resolution and reconstructed images.

PSNR = 10log10

(
MAX2

MSE

)
. (8)

PSNR measures of the voxel-wise differences between images. A higher PSNR value
indicates a smaller difference between the high-resolution image and the reconstructed
image, implying better image quality. “MAX” is the maximum possible voxel intensity
value in the images.

SSIM(H, S) =
(2µhµs + C1)(2σhs + C2)(

µ2
h + µ2

s + C1
)(

σ2
h + σ2

s + C2
) . (9)

SSIM compares structural similarity between two images. It takes into account lumi-
nance, contrast, and structure. SSIM values range from −1 to 1, where 1 indicates perfect
similarity. µh and µs are the means of the images, H and S, respectively. σ2

h and σ2
s are the

variances of the images, and σhs is the covariance. C1 and C2 are the constants to stabilise
the division with a weak denominator [31].

Quantitative analysis was also carried out between the intermediate SR reconstructed
and original high-resolution images. Surprisingly, we found that the SR reconstructed
image performed better for all quantitative metrics (MSE, mean errors, PSNR and SSIM)
compared with SR denoised images. This observation indicates that the ARCNN may
induce modifications to the images from their original state. However, it is crucial to note
that this discrepancy signifies a trade-off: while there might be a slight compromise in
quantitative metrics due to ARCNN’s influence, the substantial qualitative improvement in
image quality justifies its inclusion in the pipeline. The table of these results is provided in
Appendix A.4.

We generated contour plots to evaluate the spatial error distribution over individual
image slices. We also generated activation maps to gain further insight into the performance
of the ARCNN. These maps visually represent the areas of the input image that exhibit the
highest activation by the ARCNN, providing us with a better understanding of the features
that the network is focusing on during the denoising process. For this analysis, we used
the activation maps from the feature enhancement layer—an intermediate convolution
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layer responsible for denoising the extracted features. The corresponding figure displaying
the activation maps for a single slice of one of the high-resolution images is presented in
Appendix A.5.

To compare the computational expense of reconstructing an SR image, we profiled
the code and evaluated the time required to complete each section in the code. This
was performed on an Intel i5 processor and an 8 GB RAM. We also determined the time
complexity for each section of the SR step code.

3. Results

The SR method retained most of the detail from the original sagittal image (Figure 2)
while increasing the out-of-plane resolution of the image stack and the number of sagittal
slices. Block artefacts were introduced to the SR reconstructed intermediate image as
depicted by the voxels that exhibit abrupt intensity changes. These artefacts were particu-
larly noticeable in regions which transitioned from one structure to the next such as from
bone to cartilage. The ARCNN from the post-processing step was effective in reducing
the blocky artefacts across all sequences tested. This qualitatively improved the texture
and detail of the image, almost restoring the original quality of the sagittal image. For
example, in the final image, the morphological appearance of the femoral cartilage in
both the DESS sequence and Fat MRI sequence appears much more homogeneous with
smoother boundaries that were similar to those in the original image when compared with
the intermediate SR reconstructed image. This was also supported by what was observed
in the activation maps (Appendix A.5). As illustrated in A.5, numerous activation maps
showed elevated activation levels along the boundaries of bone, cartilage, and fat areas.
These regions coincide with the presence of block artefacts, affirming that the ARCNN is
effectively directed towards suppressing these artefacts in the reconstructed image.

After applying the SR method, the axial and coronal views of the sagittal image stacks
exhibited improvements in both resolution and qualitative image quality (Figure 3). Similar
improvements were observed across images produced by different sequences, although
some mild banding artefacts appear to have been introduced into the sagittal stacks in the
DESS sequence.

Overall, the mean errors between the final SR denoised image and the original HR im-
age across the six image stacks was 1.40 ± 2.22%, and the minimum error was 0% (Table 3).
The output images also had a mean PSNR of 31.94 dB and a mean SSIM of 0.886. The largest
MSE, mean errors and standard deviations as well as the lowest PSNRs were present in the
fat sequences from Subjects 1 and 2 (Table 3). The greatest errors in intensity value occurred
at the boundaries of the bone/cartilage, ligaments, muscles, and fat surrounding the knee,
with most of the voxels exhibiting minimal error (Figure 4).

Table 3. Reconstruction errors, including the overall MSE, mean error and standard deviation,
maximum error, and minimum error between the voxel intensities of the SR denoised image and the
original high-resolution image expressed as percentages. The PSNR and SSIM are also provided.

Subject (MR Sequence) MSE Mean Error ± Standard
Deviation

PSNR
(dB) SSIM Max Error Min Error

1 (Fat) 0.123% 1.75% ± 3.04% 29.11 0.897 72.4% 0%

1 (PD FS) 0.043% 1.24% ± 1.68% 33.62 0.880 71.4% 0%

2 (Fat) 0.130% 1.89% ± 3.07% 28.85 0.870 70.0% 0%

2 (Water PD) 0.037% 1.12% ± 1.57% 34.29 0.904 62.5% 0%

3 (DESS) 0.074% 1.42% ± 2.33% 31.29 0.843 79.3% 0%

3 (Water PD FS) 0.035% 0.95% ± 1.63% 34.50 0.919 68.5% 0%

Mean 0.074% 1.40% ± 2.22% 31.94 0.886 70.7% 0%
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The largest maximum error was 79.3% and occurred in the DESS sequence. The
smallest errors were present in the PD sequences with a mean error of 1.10 ± 0.15%, and
this was qualitatively reflected in the contour plots (Figure 4).
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The computational cost analysis showed that the SR step takes on average 2725 ± 569 s
(~45 min) in total to reconstruct the enhanced images (Table 4). The most time-consuming
step in the process is creating the binary tree and performing the nearest voxel search which
takes 60.9% of the time, followed by initialising the coordinate lists (25.4%) and recon-
struction (13.7%). This was supported by the time complexity analysis, where creating the
binary tree and then finding the nearest voxels took O(Nlog(N)) time, whereas initialising
the coordinate lists and reconstruction took O(N) time.
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Table 4. Computational cost analysis for the SR step, showing the time taken and time complexity for
the 3 parts of this step (initialising coordinate lists, binary tree creation and finding the nearest voxels
and reconstruction). NB: N refers to the total number of voxels in the template 3D image array.

Subject (MR
Sequence)

Initialising coordinate
Lists (s)

Binary Tree Creation and
Finding Nearest Voxels and

Their Distances (s)
Reconstruction (s) Total Time (s)

1 (Fat) 633 1609 464 2706

1 (PD FS) 846 2355 467 3668

2 (Fat) 704 1519 340 2563

2 (Water PD) 592 1487 311 2390

3 (DESS) 842 1795 372 3009

3 (Water PD FS) 532 1188 290 2010

Mean 692 1659 374 2725

Standard deviation 131 394 76 569

% of total time 25.4% 60.9% 13.7% 100%

Time complexity O(N) O(Nlog(N)) O(N) -

4. Discussion

The purpose of this study was to present a hybrid analytical SR pipeline and to quantify
the errors in the images produced by the pipeline on a test set of six high-resolution MRIs.
We presented an image-domain post-processing SR algorithm that consisted of three steps.
The pre-processing step prepared the clinical images for the SR step by re-slicing and
co-registering the image stacks. In the SR step, image data from three orthogonal images
were combined using a weighting scheme to synthesise a high-resolution image. The
post-processing step employed an ARCNN to de-noise any high-frequency block artefacts
introduced in the SR step. This pipeline was able to reconstruct a high-resolution isotropic
image from three orthogonal images with a high in-plane resolution and low out-of-plane
resolution while only introducing a mean error of 1.40 ± 2.22%, showing great promise for
clinical utility.

Our SR method improved the out-of-plane resolution while qualitatively retaining
most of the detail from the original sagittal images (Figures 2 and 3). In our test set of six
high-resolution MRIs, we found a mean error of 1.40 ± 2.22% across the different sequences,
and a mean of 1.10 ± 0.15% across the PD images, which reassured that the method was
closely preserving the details in the images. This was further supported by the output
images having a mean PSNR and SSIM of 31.94 dB and 0.886, respectively, demonstrating
that the method was significantly minimizing information loss and producing high-fidelity
images. In comparing our method to the existing literature, it is imperative to note the
inherent challenges in finding directly comparable studies. Variations in voxel thickness,
resolution, MR sequences, and anatomical structures across different datasets hinder a
straightforward comparison. However, we can still acquire some valuable insights. Com-
pared to other SR methods in the literature [5–24], we did not use interpolation, statistical
regression, or machine learning to generate voxel intensity values. Instead, voxel intensities
were calculated analytically with a linear inverse weighting scheme and the ARCNN was
only used to de-noise the high-frequency errors. Avoiding interpolation and restricting ma-
chine learning to only the post-processing step meant that our output images were devoid
of blurring and overfitting errors that other methods sometimes experience [5,18–24].

In Figure 3, we can see that the SR step improved the out-of-plane resolution of the
sagittal MRI with only a slight decrease in the in-plane sagittal image quality. Through
SR, we took a sagittal image with 25–40 slices and reconstructed an image that had over
200 slices. After denoising the image with the ARCNN, the resolution was maintained,
though we did observe mild bandings in the image for the DESS MRI. This is because
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the ARCNN only denoised the image in the sagittal orientation without any regard for
how it impacts out-of-plane image quality. This is an area we can look to improve in by
developing a 3D ARCNN that volumetrically denoises the SR reconstructed image in 3D
and thus further enhances output image quality.

Our SR method appeared to be robust to different MRI sequences (Table 3 and Figure 4)
and we saw improvements in all the images. This distinguishes our method from others
in the literature [7,15–17,23] which were only tested on a single MRI sequence, and so it
is undetermined how well their methods perform with other MRI sequences. However,
the PD MR sequences showed lower errors in intensity value and higher PSNR than the
non-PD sequences. This was likely due to the training of the ARCNN, which was only
trained on SPIR/SPAIR and PD FS sequences and not on fat MR sequences. As such, the
ARCNN did not perform as well when denoising images that had considerably different
appearances than it was trained to expect. Expanding the training dataset with data from
additional subjects and other types of MR acquisition sequences would significantly help
to reduce the errors.

The contour plots (Figure 4) highlighted that the majority of the SR image exhibited
a low error, with only a few regions of voxels exhibiting an error. Most of the error in
intensity value occurred at the boundaries of structures (e.g., bone, cartilage, muscles, and
fat). There are a couple of factors that may explain these observations. First, these were the
areas where we saw the most block artefacts in the SR reconstructed image (Figure 2). These
artefacts are most prevalent at areas of high-intensity change, such as from bone to cartilage,
or bone to fluid, and may arise due to partial volume effects. It is our understanding that
in calculating the new voxel intensity values, these high intensity changes were preserved.
As such, we hypothesise that the acquisition of more data from additional orientations may
help to reduce these artefacts. Second, these regions exhibited larger errors because this
was where the training and test sequences differed the most in contrast. We expect that
further training of the ARCNN, by including more images and MRI sequences, will reduce
these errors further.

The results of this paper should be considered in the context of the following limita-
tions. Computational efficiency is a particular limitation of the pipeline. More specifically,
the SR step is by far the most time-consuming step in the workflow, taking on average
45 min to reconstruct an SR image with around 200 slices (Table 4). In total, 61% of this
time is used to create the binary tree and find the nearest voxels and their corresponding
distances, whereas 25% and 14% of the time are used for initialising the coordinate lists
and reconstruction, respectively. Image domain methods, like the one we propose, tend
to have more of a computational burden as they can often take around 3 h to reconstruct
the image [1]. Frequency domain methods can also take around 1 h to reconstruct [1].
Machine learning methods can vary significantly in computation time from 10 s to up to
3 h [20], whereas interpolation methods tend to be consistently very efficient [21,23,24].
Our time of around 45 min is significantly quicker than the times of other image domain
methods, and although it may be slower than some other methods, it is serviceable for
clinical and research use. Computer RAM also constrains this step as the KD tree Python
function used to construct the binary tree and find the closest voxels and their distances,
requiring the coordinates of all the images to be inputted as lists. Having coordinate lists
for the histogram matched axial, coronal, original sagittal, and the template sagittal image
consumes a lot of RAM, which can limit the possible size of the SR image. Training the
ARCNN is another computationally expensive step as the large MRI sizes make training
a slow process. However, once the network is trained, the model is quick to denoise the
reconstructed images. One thing to note is that the computational results presented here are
likely overstated by the hardware we used when testing the workflow. In a clinical setting,
there is likely to be more computational power and memory capacity, which will make the
process more efficient. Further computational efficiency could also be achieved by using a
lower-level programming language such as C, something that could be implemented in
future work.
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While our study demonstrated promising results (Table 3, Figures 2–4), it is essential
to acknowledge the inherent limitation associated with the relatively small testing dataset,
consisting of only six knee MRIs. The constrained sample size raises valid concerns about
the generalizability and robustness of our proposed method across a broader range of
imaging scenarios such as varying voxel thicknesses and intensities. It is crucial to mention
that the selection of this dataset was dictated by the availability of advanced, high-resolution
MR images necessary for our unique methodology. Nevertheless, the confined dataset does
limit the scope of our conclusions. To ensure a more comprehensive assessment of our
method’s performance, future investigations will look to increase the testing sample size
while incorporating a more diverse set of imaging data which encompasses a variety of
knee morphologies and imaging sequences. The insights gained from a more extensive and
varied dataset will not only bolster the reliability of our findings, but also contribute to a
deeper understanding of the method’s performance characteristics and utility.

The SR method overcomes the limitations of MRI and thus has tremendous potential
for clinical and research purposes, reducing the need to purchase new and expensive
equipment. The improved out-of-plane resolution of the output images allows for better
visualisation than the original image; clinicians can also gain access to enhanced images for
diagnostic purposes or for surgical planning. The output images allow better visualisation
of small structures such as ligaments like the ACL, enabling researchers to generate more
anatomically accurate models of the human body for scientific exploration. Although this
research focused on the knee, the workflow can be applied to images of other anatomical
structures and so also has potential applicability outside orthopaedics.

5. Conclusions

In this study, we introduced a hybrid analytical super-resolution (SR) pipeline to
enhance MRI scans without costly hardware upgrades. Our approach effectively improved
out-of-plane resolution while preserving image quality. Validation on high-resolution knee
MRIs showcased promising results with a mean error of 1.40 ± 2.22%, a mean PSNR of
31.94 dB and a mean SSIM of 0.886 between the SR denoised and original images.

The pipeline displayed robustness across various MRI sequences and avoided issues
like blurring or overfitting associated with interpolation or extensive machine learning.
Despite being computationally intensive (~45 min per SR reconstruction), it offers a cost-
effective alternative to hardware upgrades.

Future work could focus on optimizing computational efficiency without compro-
mising accuracy, potentially exploring lower-level programming languages or parallel
processing. Moreover, refining the post-processing artefact reduction step through develop-
ing a 3D ARCNN for volumetric denoising could further enhance image quality. Expanding
the testing sample size with the inclusion of a diverse range of MR images is also important
to strengthen the reliability of our results and provide a deeper understanding of the
performance of our proposed pipeline.

This method holds significant potential for clinical use, aiding in accurate diagnosis
and surgical planning while also enabling more precise anatomical modelling for research
purposes. Overall, our hybrid SR pipeline presents a promising avenue for enhancing MRI
resolution without substantial hardware investments, contributing to advancements in
medical imaging and clinical applications.
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Appendix A.1. Presenting the Comparison between SR Images Reconstructed with Two Planes vs.
Three Planes
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Figure A1. Comparison of SR denoised images that were reconstructed with two MR image planes 
(i.e., using the sagittal and axial images) vs. with three MR image planes (i.e., using the sagittal, 
axial and coronal images). All three views of the SR denoised images are provided. 

As shown in the above figure, the denoised SR image reconstructed from two planes 
has lower image quality than the denoised SR image reconstructed from all three orthog-
onal planes. This is noticeable in all three views but especially in the view corresponding 
to the plane that was not included during reconstruction (i.e., coronal plane), which sig-
nificantly suffers with more banding and artefacts around the boundaries of the struc-
tures.  
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Table A2: Table presenting the 3D slicer registration parameters. 

Input Images  
Fixed image volume Isotropic sagittal image 
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Figure A1. Comparison of SR denoised images that were reconstructed with two MR image planes
(i.e., using the sagittal and axial images) vs. with three MR image planes (i.e., using the sagittal, axial
and coronal images). All three views of the SR denoised images are provided.
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As shown in the above figure, the denoised SR image reconstructed from two planes
has lower image quality than the denoised SR image reconstructed from all three orthogonal
planes. This is noticeable in all three views but especially in the view corresponding to the
plane that was not included during reconstruction (i.e., coronal plane), which significantly
suffers with more banding and artefacts around the boundaries of the structures.

Appendix A.2. Summary of the 3D Slicer Registration Parameters

Table A1. Table presenting the 3D slicer registration parameters.

Input Images

Fixed image volume Isotropic sagittal image

Moving image volume Axial image OR coronal image

Percentage of samples 0.002

B-spline grid size 14,10,12

Output settings

Slicer linear transform None

Slicer Bspline transform None

Output image volume Registered axial image OR Registered coronal image

Transform initialisation settings

Initialisation transform None

Initialise transform mode Off

Registration phases Rigid and affine selected

Image Mask and Pre-processing Default settings

Advanced output settings

Fixed image volume 2 None

Moving image volume 2 None

Output image pixel type Float

Background fill value 0.0

Interpolation mode Linear

Advanced optimisation settings

Max iterations 1500

Maximum step length 0.05

Minimum step length 0.001

Relaxation factor 0.5

Transform scale 1000.0

Reproportion scale 1.0

Skew scale 1.0

Maximum B-spline displacement 0.0

Expert-only parameters

Fixed image time index 0

Moving image time index 0

Histogram bin count 50

Histogram match point count 10
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Table A1. Cont.

Input Images

Cost metric NC (i.e., normalised correlation)

Inferior cut off from centre 1000.0

ROIAuto dilate size 0.0

ROIAuto closing size 9.0

Number of samples 0

Stripped output transform None

Output transform None

Debugging parameters Default settings

Appendix A.3. Worked Example Showing How the Intensity Value Is Calculated for a
Template Voxel

Table A2. Table showing the distances from the template voxel and intensity values for each of the
three hypothetical MRI image stacks.

Image Stack Distance from Template Voxel (mm) Intensity Value

Sagittal 2 173

Axial 3 198

Coronal 5 127

Using (4), dTotalijk = 2 + 3 + 5 = 10,

Using (2), wsagittal =
10 − 2

20
= 0.4

Using (2), waxial =
10 − 3

20
= 0.35,

Using (2), wcoronal =
10 − 5

20
= 0.25.

Using (1), vtemplateijk
= (0.4 × 173) + (0.35 × 198) + (0.25 × 127) = 170.25.

Appendix A.4. Presenting the Quantitative Analysis Results between the Intermediate SR
Reconstructed Image and the Original High-Resolution MR Image

Table A3. Reconstruction errors, including the overall MSE, mean error and standard deviation,
maximum error, and minimum error between the voxel intensities of the SR reconstructed image and
the original high-resolution image expressed as percentages. The PSNR and SSIM are also provided.

Subject (MR
Sequence) MSE Mean Error ± Standard

Deviation
PSNR
(dB) SSIM Max Error Min Error

1 (Fat) 0.091% 1.36% ± 2.70% 30.40 0.939 58.8% 0%
1 (PD FS) 0.013% 0.50% ± 1.03% 38.80 0.966 62.6% 0%

2 (Fat) 0.103% 1.47% ± 2.86% 29.86 0.926 64.8% 0%
2 (Water PD) 0.019% 0.76% ± 1.15% 37.20 0.965 61.3% 0%

3 (DESS) 0.058% 1.14% ± 2.12% 32.36 0.888 77.3% 0%
3 (Water PD FS) 0.027% 0.85% ± 1.39% 35.76 0.966 60.4% 0%

Mean 0.052% 1.01% ± 1.88% 34.06 0.942 64.2% 0%
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Appendix A.5. Presenting the Activation Maps for the “Feature Enhancement” Layer of the
ARCNN for a Single Slice of One of the High-Resolution MR Images
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