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Abstract: This perspective sheds light on the transformative impact of recent computational advance-
ments in the field of protein therapeutics, with a particular focus on the design and development
of antibodies. Cutting-edge computational methods have revolutionized our understanding of
protein–protein interactions (PPIs), enhancing the efficacy of protein therapeutics in preclinical and
clinical settings. Central to these advancements is the application of machine learning and deep
learning, which offers unprecedented insights into the intricate mechanisms of PPIs and facilitates
precise control over protein functions. Despite these advancements, the complex structural nuances of
antibodies pose ongoing challenges in their design and optimization. Our review provides a compre-
hensive exploration of the latest deep learning approaches, including language models and diffusion
techniques, and their role in surmounting these challenges. We also present a critical analysis of these
methods, offering insights to drive further progress in this rapidly evolving field. The paper includes
practical recommendations for the application of these computational techniques, supplemented with
independent benchmark studies. These studies focus on key performance metrics such as accuracy
and the ease of program execution, providing a valuable resource for researchers engaged in antibody
design and development. Through this detailed perspective, we aim to contribute to the advancement
of antibody design, equipping researchers with the tools and knowledge to navigate the complexities
of this field.

Keywords: antibody; artificial intelligence; computer-aided drug discovery; computational modeling
and simulations; deep learning; protein–protein interface; Rosetta; therapeutic design

1. Introduction

Living organisms can contain foreign substances, such as viruses or toxins, which
are known as antigens (Ags). The presence of Ags triggers immune responses in the
body, including the production of antibodies (Abs). The interaction between Abs and
Ags has become increasingly important due to the expanding use of Ab-based therapeu-
tics and diagnostics. With over 100 monoclonal Abs (mAbs) approved by the US Food
and Drug Administration (FDA) [1,2], these approaches tend to exhibit lower toxicity
and higher specificity control compared to traditional small molecule-based therapeutics.
Consequently, the global therapeutic mAb market is anticipated to reach USD 300 bil-
lion by 2025 [3]. However, optimizing Abs experimentally is a laborious process because
of the low-throughput nature of Ab screening in mammalian cells. For instance, yeast
and phage display only cover between 106 and 1010 Ab sequences [4]; while most Ab
sequence screenings in industry often exceed 1011. Therefore, significant progress has
been made in the application of deep learning (DL) towards Ab discovery, as reviewed
in multiple studies [4–8]. These advancements encompass the modeling and prediction
of Ab–target binding patterns for the identification of binding sequences [9], paratope
prediction [10], complementarity-determining region (CDR) loop structure prediction [11],
and target specificity. In this work, we present a review to discuss recent developments in
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DL approaches for Ab sequence design (Figure 1). A promising trend in the field of DL is
the widespread practice of researchers publicly sharing their code and publicly shared Ab
affinity datasets [12,13]. This collaborative approach, apart from a few commercial entities,
has facilitated synergy among disciplines. It is hoped that these collaborative efforts will
continue to strengthen and eventually reach the level of successful collaborative groups
such as the Rosetta community [14].

Figure 1. Generalized schematic of DL approaches for Ab sequence design. The three large middle
molecules are SARS Corona virus 2 (SARS-CoV-2) spikes (PDB ID: 7kkl). Three bound nanobody (Nb)
molecules are depicted with yellow caps. Hydrophobicity potential ranges from cyan for hydrophilic
through white to goldenrod for hydrophobic. Electrostatic potential ranges from red for negative
potential through white to blue for positive potential. The rainbow-colored array of molecules is Nb,
a single-chain Ab.

1.1. Historical Perspective and Rise of Deep Learning in the Biomedical Field

DL serves as a critical universal approximator capable of generalizing complex, non-
linear phenomena [15]. As a result, DL has been actively implemented in various fields
related to protein design and small-molecule drug design. These advancements in DL
approaches include the study of non-coding RNA–protein interactions [16], compound–
protein interactions [17], the annotation of protein space [18] and gene ontology (GO) [19],
and three-dimensional (3D) coordinates of drug-like molecules [20]. Likewise, DL methods
facilitate Ab development. For example, a combination of a convolutional neural network
(CNN) and a recurrent neural network (RNN) including a conditional random field [21]
was used to predict the signal peptide cleavage site of recombinant mAbs to reduce product
heterogeneity issues [22]. Most importantly, DL approaches often need to be integrated
with other physics-based modeling and simulation methods. For instance, many modern
DL protein modeling methods, including AlphaFold version 1 [23], typically refine the final
structure using Rosetta’s FastRelax [24]. However, a more precise DL-based amino acid (AA)
packer would be ideal. In this context, utilizing AttnPacker [25] appears to be the optimal
choice, as it reduces the inference time by over 100× compared to other DL-based methods,
such as DLPacker [26], and physics-based method FastRelax.

When predicting protein–protein interactions (PPIs) or PPI complex structures, a DL-
based tool called AF2Complex [27] is currently known to produce the most accurate results
according to the DockQ score [28]. We discovered that using AlphaFold-Multimer [29]
was simpler in terms of execution and analysis (see Supplementary Note S1 for details),
which provides not only accurate outcomes but also produces a readily understandable
iPTM report. On the other hand, the most recent docking and design model specifically
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tailored for Ab–Ag interactions is the Hierarchical Structure Refinement Network. It has
improved Ab docking success rates by 50%, outperforming other sequence-based and
structure-based models [30]. As demonstrated with the transformer architecture [31],
attention-based networks are powerful methods to capture interactions between input
data and often result in better accuracy [12]. Since it is believed that most epitopes are
somewhat discontinuous [32], it is critical to understand recent Ab–Ag interface-based DL
models [12,15,33] that have adopted attention-based architectures. Ideally, attention-based
methods that consider both the sequence and structural context would be more suitable
for sequence generation [34]. The superior accuracy of DL over non-DL methods is often
evident, as seen in immune status classification based on immune repertoire sequences [35]
and Fv structure prediction [12].

Enhancements in Ab affinity often result from combined AA substitutions rather
than individual site mutations [13]. Surprisingly, many affinity-boosting mutations are
found in areas that do not directly interact with the Ag. These mutations can lead to voids,
misaligned polar AA, and spatial conflicts, making them difficult to predict [36]. Therefore,
utilizing DL architectures for Ab design [12] might present advantages over traditional
computational methods [37]. Despite this, we concur that DL-based PPI modeling methods
may not always be the optimal choice, particularly due to the insufficient availability of
training data or when training is not robust. For instance, Dequeker et al. demonstrated that
their comprehensive cross-docking approach surpassed a sequence-based DL method [38].

1.2. Sequence-Based and Structure-Based Approaches with Implications for Antibody Design

Ab design methodologies can be classified into sequence-based or structure-based
methods, contingent upon the types of input and output data. In this review, we delve
into each of these categories with relevant examples and evaluations. In this subsection,
we provide a summary of each category. The development of Ab-based therapeutics
typically spans several years, and enhancing therapeutic efficacy can result in substan-
tial cost savings. In order to assess therapeutic efficacy at an early stage, a number of
prediction methods based on DL have been developed to predict Ab affinity [13,15,39].
As we analyzed, it is clear that most of these DL-assisted Ab modeling approaches only
require protein sequence data as input. This is an ideal approach because it allows for
quick implementation of the model [40], and, most importantly, Ab sequence data can be
produced on a much larger scale, significantly lowering costs compared to generating struc-
tural information about Abs [41]. Similar to the situation present in general protein data,
there is a huge amount of sequence data available (for example, metagenomic sequences
surpass 1.6 billion [42], while the Protein Data Bank (PDB) [43] only has 214,000 struc-
tures). Nonetheless, creating sequences without corresponding structures may result in
suboptimal outcomes [34]. Alternatively, structure-based models can offer details of the
models with structural features [12], like structural paratope and epitope information,
along with additional interpretable physicochemical properties [6]. Furthermore, it is
generally assumed that most antigenic determinants exhibit some degree of conformational
(i.e., discontinuous) structure [32]. Hence, including Ab structural information, either as
an input or output, can aid in identifying potential modes of action. Nevertheless, the
required Ab structure is often not available. For instance, there are only around 2000 to
5000 unique Ab–Ag complex structures [44,45], while the number of Ab sequences is over
1013. Therefore, a hybrid model that utilizes both sequence and structural information is
considered optimal for Ab design [34].

2. Antibody Design
2.1. Role of Antibodies in Mediating Protein–Protein Interactions

PPIs play a crucial role in various cellular responses and functions, making them
essential targets for the development of biomarkers and pharmaceuticals. To save ex-
perimental resources, a variety of machine learning (ML) methods have been developed,
primarily focused on predicting PPI sites or residues, and these methods have been ex-
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tensively reviewed [46]. Among many PPI cases, Ab–Ag interactions are distinct because
most cross-interface hydrogen bonds are generated between sidechains rather than be-
tween backbones [47]. Moreover, interfaces between Ab and Ag are likely to exhibit fewer
hydrophobic interactions than those observed in typical PPIs [5]. The quantity of AAs in-
volved in the design process also differs. For instance, processes such as VDJ recombination
and somatic hypermutation expand immunoglobulin (Ig) diversity to an experimentally
confirmed extent greater than 1013 and could theoretically surpass 1026 [48,49]. On the
other hand, the diversity of non-immune protein ranges from 105 to 106 [41].

Many researchers proposed that the fundamental principles governing PPI predic-
tion can be adapted to predict Ab–Ag interactions as well [50]. An example of this
is the DL-based model for the one-sided design of general PPI interfaces, which was
trained with general peptide ligands and their binding complexes, then applied to Ab–
Ag interfaces [33]. The highly successful attention DL-based Binding-ddg-predictor [15]
(Supplementary Note S2) redesigned the CDR to enhance Ab affinity (toward multiple
virus variants) and was validated with SKEMPI (Structural database of Kinetics and Ener-
getics of Mutant Protein Interactions) version 2 [51]. This kind of approach (training with
PPI, then application to Abs) is theoretically amenable with DL, as training with general
20 million protein sequences can be fine-tuned on target sequences to be optimized [52].
Additionally, general hot-spot prediction methods [53] may be applicable to immunogenic
regions [54].

2.2. Generative Modeling for Antibody Sequences

In this section, we discuss how generative modeling techniques are used to predict and
optimize Ab sequences. Gated recurrent units (GRUs), long short-term memory (LSTM)
networks, variational autoencoders (VAEs), generative adversarial networks (GANs) and
language models (LMs) have been utilized as deep generative models in molecular de-
sign [55,56] and computational protein design [57–60]. Language model-based sequence
generation can involve the use of either an autoregressive model (e.g., ProtGPT [61], Pro-
Gen [62]) or non-autoregressive language (e.g., AntiBERTy, ESM) [63]. Consequently, it is
expected that these generative DL methods have also been applied to generate or design
novel Ab sequences [64]. The designs of Ab sequences have primarily focused on the
CDR region, as it determines binding specificity [34]. The design of protein (including
Ab) sequences refers to either sidechain design with a fixed backbone [65] or concomitant
design of both the backbone and sidechain [66]. We consider generative methods for
Ab sequences to contain both cases, as Jin et al. asserted [34]. Generative methods for
Ab sequences include the identification of tight-binding Abs using variational Bayesian
neural networks [67]. Furthermore, an ensemble approach utilizing five CNNs, along with
additional methods, such as a VAE, a genetic algorithm-augmented KNN, and a genetic
algorithm-augmented CNN, was employed to generate novel CDR-H3 sequences [68].

2.2.1. Introduction to Gated Recurrent Units (GRUs) and Long Short-Term Memory
(LSTM) Models

Both GRUs and LSTM models are variations of RNNs designed to tackle the vanishing
and exploding gradient challenges inherent in traditional RNNs. For the generation of
CDR-H3 sequences and synthetic Ab–Ag structures, Robert and Akbar utilized a GRU-
based model [54]. Their methodology was predicated on the energetically optimal binding
structures located within a 3D lattice, providing a copious volume of training data. It is
worth noting that LSTM models have gained substantial popularity over GRUs within the
broader DL community. A parallel trend is discernible in the field of Ab–Ag studies as
well [2]. For example, LSTM memory models were used to generate novel Ab sequences for
affinity maturation [39] and the classification of Ag specificity (e.g., predicting the probabil-
ity of each sequence variant as either Ag binders or non-binders) [9]. Since these approaches
require a massive amount of sequence data for prioritization, they utilized deep-sequenced
libraries of therapeutic Abs. An LSTM was also used to generate Ag-specific CDR-H3
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sequences with respect to various developability parameters [69]. Humanization of Ab
sequences has been an important goal to minimize the immunogenicity of mAbs derived
from xenogeneic sources and to improve effectiveness in the human immune system [70].
Therefore, LSTM models have been used to distinguish natural human Ab sequences from
those originating from other species [71]. Another LSTM application of protein sequence
design is iNNterfaceDesign [33,72]. Specifically, it designs one-sided PPI interfaces based on
features of the protein receptor. Here, we show an example that we could run (Figure 2,
Supplementary Note S3). iNNterfaceDesign-validated benchmarks include Ab–Ag com-
plexes. Using an LSTM model with attention, it designs binder sequences (from poly
glycines) with two steps (e.g., construction of binding sites centered at anchor residues, ex-
traction of features of the binding sites, and prediction of AA sequences). Just as DeepAb [12]
does, iNNterfaceDesign [33] uses the PyRosetta package [73]. Like other Rosetta-based design
research [74], iNNterfaceDesign uses a native sequence recovery rate as the success metric.
It is very encouraging to observe that iNNterfaceDesign achieves better sequence recovery
rates than FastDesign [75] (RosettaDesign [66] during FastRelax [24]). Given the long history
of PPI design with Rosetta [76], it was an expected direction that Rosetta-based protein
interface design would incorporate DL-based modeling.
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2.2.2. Introduction to Variational Autoencoders (VAEs)

VAE models have been widely employed in various unsupervised DL applications.
Unlike GANs, VAEs enable visualization of the latent space, allowing for the represen-
tation of similar clusters together. For Ab modeling, VAEs have been utilized to model
B-cell receptor (BCR) recombination. For example, Friedensohn et al. identified sequence
patterns that are predictive of antigenic exposure by VAE [77]. Later, they experimentally
confirmed their binding specificity to target Ags. Another example is to learn the rules
of VDJ recombination [78]. A VAE is used also to directly generate the 3D coordinates of
immunoglobulins with torsion and distance awareness [79]. As shown for cryo-EM-based
3D volume generation per class [80], VAEs also prove useful in latent space sampling in
Ab design.

2.2.3. Application of Generative Adversarial Networks (GANs)

GANs have been used to model various properties, including images [81]. For
Ab sequence design, GANs have been used to design mAbs, which retain typical hu-
man repertoire characteristics such as diversity and immunogenicity while biasing the
libraries to achieve other biotherapeutic features. In particular, Just-Evotec Biologics used a
Wasserstein-GAN (WGAN) with gradient penalty for this purpose [82]. To bias their GAN
toward molecules with developability properties of interest, they utilized transfer learning.
Like DeepAb and BioPhi [83], they used the Observed Antibody Space (OAS) database [84]
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for training and testing. This database contains more than five hundred million human
sequences from more than five hundred human subjects. For Abs, it contains more than
118,386 paired heavy- and light-chain sequences and unpaired sequences.

2.2.4. Introduction to Autoregressive Method

Autoregressive methods in the DL field refers to models that use previous output as
input, often for sequential data. One autoregressive generative method for Abs includes the
co-design of sequences and 3D structures for CDRs [34], as we described in the Ab structural
modeling section, since it iterates design along with updated sequence and structural
information. Other examples include causal CNNs and transformers. Specifically, using
a residual causal dilated CNN, Shin et al. generated millions of novel Nb sequences [60].
Recently, BioPhi, a platform for Ab humanization, was released [83]. It is constituted with
Sapiens, a transformer-based Ab sequence humanization model, and OASis, a humanness
evaluation program based on a 9-mer peptide search in the OAS database [84]. We found
that BioPhi is a very user-friendly application. For example, it provides an easy-to-use
website interface. Figure 3 represents a possible use case. Among more than 26 DL-based
Ab modeling programs, this is one of the few cases that provides such a function. As we
tried this program on our own hardware, the provided instructions for installation and
execution were easy to follow as well. The runtime is very fast (i.e., fully completing within
1 min).
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Figure 3. An example BioPhi humanization result. The OASis identity can be used as a threshold
to separate human, humanized, chimeric, and murine Abs. The OASis percentile represents the
percentile of OASis identity among therapeutic Abs (Supplementary Note S4).

Most LMs use autoregressive methods, and there are several LM-based Ab sequence
generation tools. For example, the Gray group shared the Ig Language Model (IgLM), which
is trained with 558M Ab heavy- and light-chain variable sequences [85]. The IgLM generates
full-length Ab sequences based on chain type and species of origin. By diversifying loops
within an Ab, it creates high-quality synthetic libraries that exhibit biophysical properties
consistent with natural Ab sequences. These synthetic libraries also demonstrate lower
immunogenicity and greater resemblance to human Abs compared to baseline models.
Another LM-based Ab sequence generation method is the ESM-1b transformer-based, ML-
guided Antigenic Evolution Prediction (MLAEP) model [86]. ReprogBERT generates diverse
Ab (CDR) sequences (more than two-fold increase) without losing structural integrity and
naturalness [87].

3. Antibody Structural Modeling
3.1. Fragment Variable Structure and Predicting the Impacts of Mutations on the Structure
and Function

We include this subsection on fragment variables (Fvs), as they comprise the VH and
VL domains of Abs, representing the smallest segment retaining the complete binding
capacity of the intact Ab. The CDR region, which many computational modeling tools aim
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to predict, is also located within the Fv. Therefore, predicting binding based on mutations
in the Fv region has become a prevalent objective. DeepAb is one of the recent programs
addressing this pressing requirement. DeepAb details the alterations in categorical cross
entropy of designed Ab sequences. Specifically, DeepAb offers predictions on the effects
of Ab mutations on binding against a target, such as lysozyme. Furthermore, DeepAb
predicts the structures of both Fvs and Nbs. Its Fv structure prediction accuracy was the
best among four benchmark methods across all loops. Fv structure is predicted with two
stages (i.e., identifying residue relationships and structure refinement). The first stage
uses ResNet, which predicts relative distances and orientations between pairs of residues,
similar to trRosetta [88]. Interestingly, DeepAb builds initial protein structures through
multi-dimensional scaling (MDS) to bypass expensive sampling for much of the Ab struc-
ture. This approach becomes possible due to the high conservation of the framework
structural regions of Abs. This MDS approach is different than most computational protein
structure predictions [88,89] that sample protein backbone torsion angles (phi and psi) ex-
plicitly. Of course, further refinement is needed to remove clashes and non-ideal geometries
right after MDS-based initial structure generation. As transformer attention visualiza-
tion [90], DeepAb uses crisscross attention [91] to represent which residues attend more
with each other (Figure 4). The second stage is a Rosetta-based protocol for structure realiza-
tion/optimization using quasi-Newton minimization that has been used traditionally [92].
At this stage, explicit values of protein backbone dihedral angles and dCA are used. As a
recent dilated CNN-based embedding cluster protein function, DeepAb further projected
sequence-averaged LSTM embedding by species and loop structures. When we tested this
program, installation and execution were easy to follow (Supplementary Note S5).
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Other Ab structure prediction methods using DL include IgFold, which is a pre-
trained LM [93]. Despite not employing VAE, IgFold resembles IG-VAE, as it produces 3D
coordinates of full-atom Abs directly. This direct reconstruction process is carried out by
graph networks for the backbone atom coordinates and by Rosetta for the sidechain. As
with IgLM, it is trained on 558M natural Ab sequences. IgFold predicts Ab structure faster
than DeepAb and AlphaFold with comparable or slightly better accuracy. The rise of these
LM-based Ab models has been expected due to the development of various LM-based
protein designs [61,94]. Here, we share our independent benchmark result with IgFold
(Figure 5, Supplementary Note S6, see Methods section for detail). Even without PyRosetta-
based structure refinement, most predictions are accurate and produced with fast execution
speed (i.e., a few seconds per ~100 AA sequence, even without a GPU).
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root mean squared deviation (RMSD) between experiment structure and predicted structure have
floppy long terminal (either N-terminal or C-terminal) regions in experimental structures. Therefore,
it is quite likely that either the experiments themselves were incomplete or IgFold prefers well-folded
Nb structures.

Another recent attention-based DL model of immune protein structure prediction is
ImmuneBuilder [95]. It predicts the structure of Abs (ABodyBuilder2), Nbs (NanoBody-
Builder2), and T-cell receptors (TCRBuilder2). A notable improvement of ABodyBuilder2
is that it ran over a hundred times faster than Alphafold-Multimer [29], while it predicted
the CDR-H3 loop structures with marginally better accuracy in Abs and Nbs. This is inter-
esting, considering that ABodyBuilder2 is an Ab-specific version of the structure module
in Alphafold-Multimer with several tweaks. Similar results were reported for NanoBody-
Builder2 and TCRBuilder2 as well. Errors are estimated for every residue with an ensemble
of structures.

3.2. Methods and Techniques in Screening for Binding Antibodies

Numerous programs have been generated to address Ab–Ag interactions. Given the
vast number of Ab sequences to assess, these quick in silico screening techniques have been
eagerly anticipated. DLAB (Deep Learning approach for AntiBody screening) [96] is one
such example. DLAB is one of the structure-based Ab-DL methods, along with the topology-
based approach [50] and the geometric representation of the surface patches [97]. It uses
scores of the docking poses of Ab–Ag pairings. However, it adopts three-dimensional
gridding with Conv3D. While the depiction of the protein structure/interface within a
voxel grid is common in other protein DL models [98,99] and relatively easy to comprehend,
it is acknowledged that this approach is computationally demanding, particularly in terms
of memory usage [100]. The input size of the network restricts the voxel space to a single
size [5]. In fact, most traditional multilayer perceptron (MLP) and CNN architectures do
not robustly deal with rotation-invariant features [101,102]. Therefore, efforts toward SE(3)
representation such as data augmentation [103], extraction of spatially invariant features
as seen in spatial-VAE [104], and point cloud data [105] are desired. Trained with Ab
structures (modeled with ABodyBuilder [106] and ZDOCK [107]), DLAB predicts Ab–Ag
binding for Ags with no known Ab binders. This trait is similar to DeepAb [12], which
shows moderate predictability of mutational tolerability, even without explicit knowledge
of the Ag. Therefore, DLAB and DeepAb can be useful for early-stage development of Ab
therapeutics (i.e., virtual screening).

In an alternative screening approach, Kim’s team employed LM-based affinity mat-
uration techniques [108]. They examined fewer than 20 variants for each Ab, aiming
to improve binding affinities. This effort also included Abs known for their excellent
thermostability and their ability to neutralize Ebola and SARS-CoV-2 pseudoviruses. A
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noteworthy takeaway is that more than half of the mutations proposed in this LM per-
tain to framework regions, areas traditionally deemed less relevant than the CDR [109].
Other LM (ProtTrans [110])-based prediction methods of the binding affinity of Abs (BCR)
and Ags include DeepAIR [111]. The Binding-ddg-predictor [15] focuses on the design of
Ab–Ag interfaces, employing an attention-based geometric neural network for analysis.
Specifically, the geometric part of the model learns an embedding for each AA based on the
proximity of its neighboring atoms. The attention network, reflecting the learned geometric
embeddings, recognizes key residue pairs near the protein interface that have an impact on
binding affinity. As a result, it generates libraries of CDR mutations, ranking each mutation
according to its influence on binding affinity and structural stability. After this cyclical
optimization process, this DL approach improved an Ab, which displayed significantly
increased and more effective virus-neutralizing activity compared to the original Ab. We
present an example that can be leveraged using the Binding-ddG-predictor (Figure 6). In this
structure, even a single mutation (among 628 total AAs) was predicted to alter the ddG
by 0.3.
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ddG-predictor is a semi-generative method (i.e., it generates an in silico mutation library of CDRs).
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improve Ab binding to the SARS-CoV-2 Delta variant RBD).

3.3. Strategies in Designing Both Sequence and Structure in Optimizing Antibody Efficacy

A recent trend in Ab modeling includes the co-design of sequence and structure to over-
come previous approaches. For example, Jin et al. employed an autoregressive/generative
graph neural network (GNN) to co-design the sequence and 3D structure of CDRs [34].
Essentially, this approach is similar to RosettaAntibodyDesign [112], as it focuses solely on
predicting CDRs while leaving the framework region unaltered. However, instead of a
physics-based score function as used in RosettaAntibodyDesign, they used graph-based
DL. Here, a graph is a sequence–structure pair, and it models the conditional relationship
between a CDR and its environments. This unique capability is possible by modeling pro-
tein backbone angles on top of AA identity and a joint graph representation that connects
between CDR residues and between the CDR and framework (rather than single-residue
prediction with CDR only). Since framework+CDR has more than 100 residues, graph
convolution over the whole graph (>100 nodes) is challenging. Therefore, they clustered
framework residue into K-mers to minimize the graph size. Unlike previous autoregressive
models that never update residue distances, even when a new residue is added, their
model updates residue distances whenever a new residue is introduced. Consequently,
this method was very effective with a rotation/translation-invariant loss function and
outperformed all other methods (e.g., RosettaAntibodyDesign, LSTM, and AutoRegression)
in terms of speed, sequence recovery rate (<29% vs. 34%), and structure prediction. As
a multi-objective optimization, this model designs CDR-H3 sequences that have higher
neutralization probability as well.

3.4. Application of Diffusion Methods

Another co-design of CDR sequence and structure involves a diffusion probabilistic
model, which demonstrated competitive binding affinities according to Rosetta energy func-
tions, other protein design metrics, and in vitro experimental validation [113]. AbDiffuser,
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in particular, utilizes the Aligned Protein Mixer (APMixer), an innovative neural network
designed for the processing of proteins from an aligned protein family [113]. APMixer
is more memory-efficient and operates more rapidly than GNNs and transformer-based
models. Additional applications of diffusion models in Ab applications encompass diffu-
sioN Optimized Sampling (NOS) [63] and EvoDiff [114]. NOS enables direct execution of
designs within the sequence space, effectively bypassing substantial constraints associated
with structure-based methods (i.e., limited data and complex inverse design challenges).
Remarkably, NOS shows better sequence recovery by infilling than IgLM [85], RFdiffu-
sion [115], and DiffAb [116]. EvoDiff utilizes evolutionary data to generate proteins beyond
the reach of structure-based modeling techniques. It improves Fréchet ProtT5 distance
(FPD) even better than RosettaFoldDiffusion (RFdiffusion) [115]. The denoising diffusion
probabilistic model has recently been employed in numerous general protein structure
prediction and design models [115,117–123] and in generating end-to-end protein–ligand
complexes [124]. Hence, the application of the SE(3) diffusion model specifically to Abs was
anticipated. A drawback of the diffusion-based Ab model is its need for an Ab framework
attached to the target Ag.

3.5. Graph-Based Supervised Learning for Biophysical Property Prediction

In this section, we discuss the application of graph-based learning in predicting
biophysical properties of Abs. GNNs have been widely used across all scientific do-
mains [17,125]. For applications in property prediction, message-passing neural networks
(MPNNs) have been used to predict IC50 values with anti-SARS database and molecular
property [125]. For PPI research, GNNs have been used to predict various features, such
as the 3D structure of a protein–protein complex [126], synergy scores of drug combina-
tions [127], and effects of mutations on protein-protein binding affinity [128], PPI link [129],
PPI site [130,131] and patterns in protein–protein interfaces [132]. For Ab modeling specif-
ically, GNNs have been used to co-design the sequence and 3D structure of CDRs and
affinity maturation [34,133].

To consider physiological impact of novel therapeutics, DL-based Ab developability
filtering methods [9,82] can save a huge amounts of resources. These Ab developability
filtering methods aim to predict various biophysical properties. These physicochemi-
cal/biophysical properties include thermal and colloidal stability, aggregation, fragmenta-
tion, hydrophobic patches/surfaces, solubility, post-translation modification (PTM), and
half-life (pharmacokinetics), as reviewed in [1]. Most of these properties can be trained on
either numerical or categorical values with DL methods. However, when Ab-related bio-
physical predictions use generative methods, the copy problem (i.e., generative modeling
may reproduce the training data too closely) [134] should be avoided to generate reasonably
novel Ab sequences. Overall, computational constraints that govern the developability
of therapeutic Abs are summarized as evenly distributed hydrophobic residues across
the surface, avoiding glycosylation motifs and CDR residues with reasonable levels of
charges [135]. Various non-DL-based in silico methods for Ab developability parameter
computation were summarized by Akbar et al. [41]. Other aspects of Ab developability,
such as avoiding unusual CDR sequences that are not explicitly explained by biophysi-
cal properties, can be examined through the perplexity calculated from an ensemble of
LMs [136]. A supervised graph-based approach shows considerable potential in predicting
biophysical properties during Ab design. Even when non-DL ML methods such as random
forest, Gaussian processes, and nearest neighbors or a simple MLP were employed, graph-
based signatures demonstrated their effectiveness in capturing the interaction interfaces
between Ab and Ag and in predicting binding affinity [137].

3.6. Curation of Sequence and Structural Datasets to Develop Unsupervised Machine
Learning Methods

To achieve success with unsupervised ML techniques, it is essential to have high-
quality datasets comprising sequences and structures. With abundant data, these methods
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can excel in identifying patterns or tendencies and grouping them within the latent space,
broadening their domain of application. Moreover, it is crucial to tackle data bias in the
training set to guarantee precise extrapolation. However, the existing databases of Ab
and PPI sequences and structures (Tables 1 and 2), which were used for development of
various DL-driven Ab modeling programs (Table 3), do not offer comprehensive coverage
of all known antibody sequences. Additionally, many Ab sequences and structures are
redundant. This obvious limitation of the datasets is evident, given the fact that in addition
to the core regions of Abs (i.e., the framework) but the CDR region alone requires a 2060

possible combinatorial search space of various sequences [34]. Therefore, to minimize
data bias, reasonable in silico generation methods (such as Absolut! [54]) can be consid-
ered to reduce the gap. Additionally, interpretable models would be useful to assess
data completeness [138]. Effective embedding can also minimize the data bias issue by
better intra/extrapolation. For example, recently, a dilated CNN-based embedding was
employed to model a protein function [18]. Specifically, the findings demonstrate that using
contextualized word-embedding representation for protein sequences [139] eliminates the
need to incorporate explicit structural information, which, in turn, effectively simplifies the
modeling process [140]. These computational efforts will eventually allow for effective Ab
sequence modeling. A similar analogy can be found in computational protein structure
prediction. Due to recent advancements in multiple sequence alignment (MSA)-based
structure prediction [141], the sampling process has become significantly more efficient.
This enhancement significantly addresses the vast potential inherent in protein folding, a
concept previously referred to as Levinthal’s paradox [142]. Therefore, as the Akbar group
has contributed a substantial amount of Ab structure data for training with GRUs [54],
scientists have widely adopted transformer based MSA programs like AlphaFold [141]
and RoseTTAFold [143] to generate synthetic Ab structures. Nonetheless, it is crucial to
acknowledge the superiority of LMs, such as IgFold [93] and OmegaFold [144], in terms
of the overall prediction accuracy for Ab structures. This holds true particularly for the
complex structure of CDR3. Furthermore, these LMs exhibit a notable advantage in terms
of speed when compared to AlphaFold, representing a significant improvement in the field.

Table 1. Ab sequence and structure databases. We present mostly large-scale databases. Other
databases were reviewed by Akbar et al. [41] and Wilman et al. [2].

Data Source Description Number of Entries

AbDb [45] Expert-curated Ab structure database ~2 k full structures

Absolut! [54] In silico generated Ab–Ag bindings 159 antigens times 6.9 million
CDR-H3 murine sequences

AntiBodies Chemically Defined Database
(ABCD) [145]

Manually curated depository of
sequenced Abs 23 k sequenced Abs against 4 k Ags

CoV-AbDab (in SAbDab) [146] Coronavirus-binding Ab sequences
and structures

4 k homology models and
500 PDB structures

iReceptor [147] Ab/B-cell and T-cell receptor
repertoire data >5 B

Observed Antibody Space (OAS) [84] Paired and unpaired (VH/VL)
Ab sequences >1 B

SAbDab [44] Ab structures available in PDB >5 k
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Table 2. PPI sequence and structure databases. We present mostly large-scale protein interaction databases. Other databases were reviewed by Akbar et al. [41].
SKEMPI V2.0 is for general PPIs, yet it is also the largest Ab–Ag binding affinity database.

Data Source Description Number of Entries

IntAct [148] Binary interactions from the literature and user submissions >1 M
MINT (in IntAct) Protein interaction information disseminated in the literature >130 k

SKEMPI V2.0 Structural Kinetic and Energetic database of Mutant Protein Interactions 7 k
STRING [149] Direct (physical) and indirect (functional) PPIs >20 B

Table 3. Some of the prominent antibody modeling programs. A full list of programs is presented in Supplementary Note S7.

Model Goal Input Type Output Architecture Metrics Note

Binding-ddg-
predictor

Redesign the CDR to
enhance Ab affinity
(targeting multiple

virus variants)

Sequence Predicted binding affinity Attention-based geometric
neural network kD (dissociation constant)

Through an iterative optimization procedure,
this DL method found that the optimized Ab

exhibited broader and much more potent
neutralizing activity compared to the

original Ab

BioPhi
Humanize the sequence and
evaluate the humanness of

the sequence
Sequence Sequence and

predicted humanization Transformer Accuracy (%), ROC, AUC,
and R2

Different methods were more successful in
different cases, further encouraging the

assembly of a diverse arsenal of
humanization methods

DeepAb Predict the Ab mutation
effect on binding Sequence Structure and

predicted affinity

RNN for sequence
representation and ResNet

to predict six distances
and angles

Orientational coordinate
distance and AUC

Provides an attention layer to interpret the
features contributing to its predictions

IgFold Predict Ab (Fv) structure Sequence Predicted Ab structures

Pre-trained language model
followed by graph networks

that directly predict
backbone atom coordinates

Orientational coordinate
distance and RMSD

Representations from IgFold may be useful
as features for ML models

IG-VAE
Directly generate 3D

coordinates of
full-atom Abs

Known IG structures Diversified IG structures VAE
Distance matrix

reconstruction and torsion
angle inference

Intended for use with existing protein design
suites such as Rosetta

iNNterfaceDesign One-sided design of
protein–protein interfaces

Both sequence and
structure (features of

protein receptors)

Redesigned protein
interface sequence

and structures
LSTM with attention Recovery rates of the native

sequence and hot spot

First neural network model for prediction of
amino acid sequences for peptides involved

into interchain interactions

RefineGNN
Co-design of the sequence
and 3D structure of CDRs

as graph

Both sequence
and structure

Both sequence and
structure

Autoregressive/generative
graph neural network

Perplexity of sequences and
the RMSD

Co-designs the sequence and 3D structure of
CDRs as a graph
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4. The Role of Antibodies and Deep Learning in the Fight against SARS-CoV-2
4.1. Understanding How SARS-CoV-2 Interacts with Host Cells

To more effectively illustrate the application of DL in Ab research, we discuss SARS-
CoV-2 in this section. The human death toll of SARS-CoV-2 is estimated to be 10~20 million
so far [150]. Additionally, this disease has impacted economics negatively. Therefore,
many structural studies about the disease have been reported, such as those investigating
Nb [151] or Fab [152] binding to the receptor-binding domain (RBD). Often, structural
studies of the target protein suggest plausible routes of development, such as the sug-
gestion of an anti-neuraminidase Ab as a starting point for the design of an anti-SARS
Ab [153]. The authors of the abovementioned NB and Fab binding studies attempted to
inhibit angiotensin-converting enzyme 2 (ACE2) binding either directly or indirectly. This
ACE2-RBD interaction can be blocked by fusion proteins (such as extracellular portions of
ACE2 or RBD fused to the Fc portion of human IgG1) as well [154]. Fusion glycoproteins lie
on the surface of enveloped viruses and are important for the cell entry of viruses [155]. This
fusion protein-targeting approach has been gaining traction for other viruses, such as respi-
ratory syncytial virus. For example, the King group computationally designed immunogens
that induced potent neutralizing Ab responses [156]. All three classes of fusion proteins
(i.e., I, II, and III) have different structures, mechanisms (triggering molecule/pH or re-
versibility between pre-fusion and post-fusion), and applicable viral families. For SARS-
CoV-2, which belongs to the Coronaviridae family, class I fusion protein acts as the fusion
machinery. As a result, class I fusion proteins have been studied most extensively. To de-
velop ML models to combat SARS-CoV-2, it is necessary to have a specific dataset for class
I fusion proteins. Well-known cryo-EM structures show that class I fusion proteins have a
high proportion of alpha helices in their post-fusion conformation with coiled coils [152].
The structural stability of the pre-fusion and pre-hairpin states, which are intermediate
stages between pre-fusion and post-fusion, is lower compared to that of the post-fusion
state [141]. This implies that the examination of pre-states should incorporate both kinetic
and thermodynamic properties, leveraging tools like molecular dynamics or Monte Carlo
simulations, as well as quantum mechanical calculations. In contrast, the post-fusion
state can primarily be evaluated based on its thermodynamic properties. Stabilization of
the pre-fusion and intermediate states prior to reaching the post-fusion stage can aid in
averting viral infections. Alternatively, as suggested earlier, direct inhibition of the binding
interaction between ACE2 and the receptor-binding domain (RBD) is also a viable strategy.

4.2. Overview of Experimental Datasets in Studying SARS-CoV-2

We present various experimental datasets that were used as training sets for DL
related to SARS-CoV-2. Neutralizing antibodies (nAbs) are effective for the prevention and
treatment of SARS-CoV-2-related infections. Therefore, phage-display immune libraries
were employed to isolate effective nAbs against SARS-CoV-2 from pooled peripheral blood
mononuclear cells (PBMCs) of COVID-19 convalescent patients [157]. This phage-display
screening identified a neutralizing IgG that attaches to an epitope located on the N-terminal
domain of SARS-CoV-2 [158]. mAbs that neutralize and obstruct the binding of the SARS-
CoV-2 spike protein to ACE2 can also be discovered through target-ligand blocking methods
and BCR sequencing. This involves linking the BCR to Ag specificity via sequencing [159].
For such campaigns or screenings, the dissociation constant (KD) and IC50 are crucial
measurements. The binding kinetics (KD) of the mAbs to the target molecule are typically
assessed using surface plasmon resonance (SPR) [1]. To quickly assess developability,
protein thermal unfolding temperatures, such as the midpoint temperature (Tm) and onset
temperature (Tonset), can be gauged using differential scanning fluorimetry. Of course,
these experimental screenings can be lessened or supplemented by virtual screenings of
Abs [9,39,96].



Bioengineering 2024, 11, 185 14 of 24

4.3. How Deep Learning Is Advancing Research on SARS-CoV-2

In this section, we present a range of DL techniques used to address SARS-CoV-2
challenges on top of a well-summarized review [160]. For instance, CNNs have been
employed to pinpoint the representative genomic sequence of SARS-CoV-2 among various
viral genome strains [161]. Furthermore, DL methods have been utilized to repurpose
existing drugs for COVID-19 through network-based approaches [162] and to analyze
COVID-19 computed tomography imaging using UNET [163]. Thus, the impact of DL
methods in the fight against SARS-CoV-2 is significant, with an ever-growing list of specific
contributions. However, DL’s role in SARS-CoV-2 Ab design has largely been confined
to predicting binding affinity related to general PPIs [164]. This limitation stems from the
challenge of fine tuning existing general PPI-based DL models for SARS-CoV-2-targeted
Ab design due to a scarcity of SARS-CoV-2-specific datasets. For instance, only around
500 experimentally determined SARS-CoV-2-specific structures exist (Table 1). Nevertheless,
given the recent successful applications of DL for the optimization of specific SARS-CoV-2
variants [15], it is expected that the development of DL-based COVID-19 Ab designs will
become more prevalent. DL methods have expedited the development of therapeutics by
identifying epitopes, offering a time-efficient alternative to experimental screening [165,166].
Many of these methods have been employed to combat SARS-CoV-2 or hold the potential
to be applied for the same. Specifically, T-cell epitope prediction utilizing artificial neural
networks includes RNN-based prediction of peptide–human leukocyte antigen (HLA)
class II binding [167], along with sparse encoding and BLOSUM [168] encoding-based
prediction of HLA-DR binding, an MHC class II cell surface receptor encoded by the
HLA [169]. Conversely, B-cell epitope prediction employing artificial neural networks
includes RNN-based prediction of linear or continuous B-cell epitopes of an antigen [170].

There is substantial room for enhancements in DL methodologies used in Ab design
that can be universally applied, not only for SARS-CoV-2. First, incorporating evolutionarily
conserved sequence information (MSA) can enhance DL-based Ag design, as its effective-
ness has already been demonstrated in general protein structure prediction [141,143] and
design [74]. Aside from the CDR-H3 region, Ab sequences exhibit high similarity, which
supports the feasibility of using MSA. Secondly, diversifying Ab repertoires reflecting
in vivo insertion and deletion of AAs into the V region, post-translational modifications,
and the use of non-protein cofactors [171] have not been fully realized in DL approaches [41].
Nonetheless, this limitation is being addressed; for instance, glycan information in proteins
has been converted to lattice representations to generate a wealth of DL training data [54].
DL has not advanced as much in certain areas, including germ lines, Ab formats (Fc-fusion,
scFv, and Fab), specific sequence liabilities (deamidation and glycosylation sites), and
clearance likelihood [4]. Lastly, many generative programs for Ab sequence design lack
appropriate code/document sharing. To make a greater impact on the community, more
collaborative approaches should be encouraged.

Establishing a foundation for ML and structural modeling for SARS-CoV-2 requires
careful consideration. For instance, smaller monomer–monomer interactions (such as those
between the RBD and Nbs) can be investigated via docking [29,172]. However, the entirety
of the class I fusion protein often exceeds 2000 AA, making AlphaFold-Multimer studies
impractical due to memory limitations. Attempts to circumvent this by removing the C-
terminal region to fit into the AlphaFold-Multimer’s memory (such as on Google Colab Pro+)
often results in orientations between chains that significantly deviate from experimental
findings. As such, a threading method with individual structure is recommended. Vaccine
design strategies using non-DL ML methods encompass combinatorial ML approaches
such as support vector machine, k-nearest neighbors, logistic regression, random forest,
and extreme gradient boosting. These methods underpin reverse vaccinology, which starts
by predicting the optimal vaccine candidate through bioinformatics analysis of the Ag
genome [173].
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5. Conclusions and Future Directions

We have highlighted several DL-based Ab modeling programs [12,15,33,79] that uti-
lize Rosetta [174] for ddG calculation, structure idealization, sequence design, sidechain
optimization, and visualization. Given that the Rosetta group is one of the forefront groups
of computational protein design [66], it has been expected that they will continue incorpo-
rating DL methods to enhance their current capabilities in Ab design [175,176] and Ab and
protein stability improvement [177,178]. This will aid in addressing challenges such as Ab
thermal stability [179] and Ab structure prediction [180].

Reliable Ab–Ag interaction prediction, particularly due to the diverse conformations of
the H3 loop in CDR, has remained an elusive goal [12,68]. For example, AlphaFold-Multimer
has not demonstrated reliable Ab–Ag binding prediction [29]. The limited amount of data,
varying biological platforms [4], and structural alterations upon Ag interaction [181] also
present challenges when applying DL to Ab research. Consequently, it has been a typical
approach to employ databases that encompass both Ab-specific and broader PPI data [182],
as we previously mentioned.

However, recent advances in DL approaches for Ab sequence design and classification
have accelerated Ab development, enabling the exploration of a much larger protein se-
quence space than display libraries can offer [9]. For instance, generating a vast number
of simulated 3D Ab–Ag complex structures that represent various biological complexi-
ties [54] may provide a valuable foundation for the enhancement of DL techniques in Ab
sequence design. Furthermore, LM-based Ab structure prediction methods such as IgFold
and OmegaFold, which are faster and offer similar or better quality predictions compared to
AlphaFold, are starting to emerge. LMs hold considerable promise and are highly generaliz-
able. For instance, Hie and colleagues have shown that their approach is not limited to Abs
but can be effectively extended to other proteins as well [109]. In every test instance, it was
observed that the general-purpose protein LM yielded better results than methods focused
solely on Abs.

Here, we share opinions that are applicable both to general PPIs and Ab sequence
design. First, other than two cases [35,83], most current sequence-based DL models for Ab
sequence design and modeling represent protein sequences with one-hot encoding. This
traditional method often used in RNNs is fine for most cases and sometimes ideal for ease of
training on the available limited data [12]. However, transformer models can deal with long
protein sequence information more easily [19]. Therefore, it better captures relationships
between sequences with an attention model and can visualize these relationships intuitively
as well [31].

Secondly, it is worthwhile to focus on updating models originally designed for individ-
ual monomer prediction. A prime example of this methodology is AlphaFold-Multimer [29].
It employs the same Evoformer, a transformer with multiple sequence alignment (MSA)
representation and pair-wise information, as the original AlphaFold [141]. However, it
adopts a longer-distance cutoff for the frame-aligned point error (FAPE) loss. This loss
refers to the distances between the actual and predicted atoms in the local reference frame
of each residue. This adjustment is implemented to facilitate the training of interchain pairs.
Notably, this method has demonstrated higher accuracy compared to previously promi-
nent techniques, including AlphaFold-refined ClusPro docking. Thirdly, the protein–protein
docking score is better in a standardized form between the DockQ score and TRScore [183]
for consistent comparison and reporting.

Finally, as highlighted by Shaver et al. [4], the use of pre-training techniques like
masked language modeling (MLM) embodied in models such as Bidirectional Encoder
Representations from Transformers (BERT) [184] and the Generative Pre-trained Trans-
former (GPT) [185] could greatly benefit the Ab sequence research community. The MLM
technique involves obscuring certain residues in a protein sequence and training the model
to predict the hidden AAs based on the rest of the sequence. This approach has already
demonstrated potential in protein sequence applications [19,186]. One of its key benefits
is its swift deployment time. Even though the training process and final structural refine-
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ment can be time-consuming, the actual implementation of pre-trained models in both
the pharmaceutical industry and academic research is quite manageable. As a result, we
can anticipate the development of more LM-based Ig modeling methods, such as IgLM
and IgFold.

6. Methods

We used ChimeraX [187] to generate Figure 1. The examples that we ran and the
analysis scripts that we used for Ab programs are presented in Supplementary Notes
S2–S6. For the IgFold benchmark (Figure 3, Supplementary Note S6), we downloaded
the entire 1252 VHH (i.e., Nb) PDB structures from SAbDab (as of February of 2023).
Then, according to the Chothia naming convention, we chose all one-chain PDB structures
and removed entries with duplicated structures, leaving 51 unique representative Nb
structures. We converted these into fasta files and ran IgFold. RMSD values were calculated
by BioPython [188] after superimposing comparing structures. The RMSD values calculated
in this way match to those calculated by ChimeraX.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11020185/s1, References [189–192] are cited in the
Supplementary Materials, Supplementary Note S1. Running and interpretation of AlphaFold-Multimer
result; Supplementary Note S2. Example binding-ddg-predictor script; Supplementary Note S3. Exam-
ple iNNterfaceDesign script; Supplementary Note S4. Example BioPhi script; Supplementary Note S5.
Running DeepAb; Supplementary Note S6. Example IgFold script; Supplementary Note S7. Detailed
list of Ab modeling programs.
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