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Abstract: Transforaminal lumbar interbody fusion (TLIF) is a commonly used technique for treating
lumbar degenerative diseases. In this study, we developed a fully computer-supported pipeline to
predict both the cage height and the degree of lumbar lordosis subtraction from the pelvic incidence
(PI-LL) after TLIF surgery, utilizing preoperative X-ray images. The automated pipeline comprised
two primary stages. First, the pretrained BiLuNet deep learning model was employed to extract
essential features from X-ray images. Subsequently, five machine learning algorithms were trained
using a five-fold cross-validation technique on a dataset of 311 patients to identify the optimal
models to predict interbody cage height and postoperative PI-LL. LASSO regression and support
vector regression demonstrated superior performance in predicting interbody cage height and
postoperative PI-LL, respectively. For cage height prediction, the root mean square error (RMSE) was
calculated as 1.01, and the model achieved the highest accuracy at a height of 12 mm, with exact
prediction achieved in 54.43% (43/79) of cases. In most of the remaining cases, the prediction error
of the model was within 1 mm. Additionally, the model demonstrated satisfactory performance in
predicting PI-LL, with an RMSE of 5.19 and an accuracy of 0.81 for PI-LL stratification. In conclusion,
our results indicate that machine learning models can reliably predict interbody cage height and
postoperative PI-LL.
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1. Introduction

Over the past few decades, transforaminal lumbar interbody fusion (TLIF) has been
commonly used to treat lumbar degenerative diseases, demonstrating the benefits of achiev-
ing satisfactory arthrodesis through a unilateral approach with minimal impingement on
neural components [1,2]. In addition to relieving spinal nerve compression, the primary
objective of TLIF is to restore sagittal balance and the intervertebral body height [3–5].

In terms of sagittal alignment, several studies have reported a close relationship
between postoperative sagittal malalignment and postoperative residual symptoms in
patients with lumbar fusion [5,6]. Among the parameters of spinal alignment, subtraction
of lumbar lordosis (LL) from the pelvic incidence (PI) is a crucial indicator of postoperative
outcomes after short-segment lumbar interbody fusion for lumbar pathologies. Patients
with PI-LL (PI minus LL) mismatch have increased risks of adjacent segment disease
(ASD), late surgical complications, and revision surgery [7–9]. Therefore, postoperative
alignment prognosis, especially for critical parameters such as PI-LL, is required for optimal
preoperative planning for lumbar fusion. However, predicting postoperative alignment in
patients is challenging. Ailon et al. [10] reported that only 42% of cases were accurately
predicted by 17 experienced surgeons specializing in treating spinal deformity. Although
various methods exist for predicting postoperative parameters in patients with adult spinal
deformity [11,12], a method for predicting the value of PI-LL in TLIF procedures still needs
to be developed.

Selecting an interbody cage with the correct height is a crucial aspect of lumbar in-
terbody fusion. Utilizing an undersized cage may result in the inability to restore the
intervertebral height and segmental lordosis, as well as in complications such as pseu-
darthrosis and cage migration [13–15]. By contrast, utilizing an oversized cage may increase
the likelihood of nerve root compression, ASD, or cage subsidence [15]. In clinical prac-
tice, the cage height has long been selected subjectively by surgeons depending on their
operational experience. Few studies have predicted the height of fusion cages on the basis
of the intervertebral height of the pathological segment [16] or the anterior and posterior
disc height on a preoperative computed tomography (CT) image [17]. However, in severe
degenerative diseases, such as spondylolisthesis and spinal deformity, when the disc height
is greatly reduced, these methods are often inaccurate. Thus, estimating the height of
interbody cages remains a challenge.

The choice of the cage height affects sagittal balance (and vice versa), and preoperative
spinal parameters play a key role in determining the appropriate size of the implanted
device for achieving favorable parameters after surgery [16,18]. Therefore, it is imperative
to develop regression models for predicting interbody cage height and postoperative pa-
rameters based on preoperative data. However, manual measurements are time-consuming
for obtaining all parameters and are prone to rater-dependent errors. Presently, auto-
mated tools involving artificial intelligence (AI) are employed to enhance the accuracy and
efficiency of measuring spinal alignment parameters from radiographic images [12,19].
Despite these advancements, there is a notable gap in the literature as, to the best of our
knowledge, the integration of AI-derived parameters into regression models for surgical
planning remains underdeveloped. Moreover, while AI has found broad application across
various surgical domains, its utilization in TLIF surgery has predominantly been observed
in predicting postoperative clinical outcomes, with limited clarity in its integration into
surgical planning [20,21]. This study aims to develop a dedicated pipeline utilizing AI and
machine learning (ML) to reliably predict interbody cage height and postoperative PI-LL in
TLIF surgery based on preoperative X-ray images.
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2. Materials and Methods
2.1. Patient Selection

A total of 311 patients who underwent L4–L5 TLIF surgery between January 2019 and
December 2021 at our institution were included in this retrospective study. The following
patients were included: (1) patients with lumbar degenerative diseases, such as lumbar
disc herniation, lumbar spinal stenosis, and spondylolisthesis; (2) patients who underwent
TLIF surgery to implant a single interbody cage; and (3) patients who did not experience
any complications, such as cage migration, pseudarthrosis, or fusion failure, and did not
require revision surgery because of cage problems or ASD during the follow-up period (at
least 6 months). We chose a 6-month follow-up period to capture immediate postoperative
outcomes and identify potential complications within the early recovery phase, aligning
with common practices in spine surgery research.

The following patients were excluded: (1) patients with a history of lumbar fractures
or patients who received a diagnosis of one-segment lumbar degenerative disease at
other levels, multiple lumbar degenerative diseases, lumbar scoliosis, spinal tumors, or
severe osteoporosis; (2) patients who received two interbody cage implants; (3) patients
with unstandardized sagittal radiographs with low image quality for segmentation or
radiographs lacking a femoral head; and (4) patients who experienced neurological or
neuromuscular episodes during the follow-up period, as they could have unsatisfactory
postoperative outcomes, leading to errors in training the model.

In addition to preoperative and postoperative X-ray images and the size of the surgi-
cally implanted interbody fusion cage, the demographics of each patient were obtained.
Standing lateral X-ray images in a neutral position were chosen due to their superior
quality and standardization compared to intraoperative X-ray images. Furthermore, varia-
tions in spinal parameters across different postures may introduce inconsistencies among
patients [22,23]. Consequently, to minimize segmentation bias and errors in parameter
measurements, only one lateral neutral radiograph was selected for each patient. Imag-
ing data were obtained using a Radnext 50 X-ray machine from Hitachi Global (Tokyo,
Japan). X-ray exposure parameters were set to 78 kVp and 60–100 mAs, with all machines
equipped with an Automatic Exposure Control system. A certified radiographer conducted
an examination for each image to ensure the visibility of vertebrae from T12 to the lower
sacrum, two femoral heads, open intervertebral disc spaces, visible spinous processes, and
the superimposed posterior margins of each vertebral body. The Exposure Index value was
additionally employed as part of our quality control measures.

2.2. X-ray Segmentation and Feature Extraction

A pretrained BiLuNet model was employed to segment each input X-ray image into
various semantic regions, including the L1, L2, L3, L4, and L5 regions; a sacrum region; and
two femoral head regions (Figure 1) [24]. The model demonstrated proficient performance
in lumbar spine segmentation, as substantiated by the results presented in our previous
study [25]. After resizing the original image to 512 × 512 pixels, the model generated an
output image with four labels: background, lumbar vertebral regions, sacrum, and two
femoral heads. Nearest-neighbor interpolation was then used to resize the segmented
image to its original size. Based on the contours of the segmented areas, a computer
vision algorithm obtained multiple corner points to measure the spinal parameters on
preoperative X-ray images. This process employed OpenCV tools to calculate contours,
fit appropriate polygons, determine the corner points of the polygons, and measure the
spinal parameters. Subsequently, these features were combined with four demographic
features—namely, age, gender, body height, and fusion indication—to derive input features
for ML algorithms. These factors were explored in previous studies [16,26], demonstrating
their impact on spinal parameters and TLIF surgery outcomes. Consequently, we aimed
to integrate these clinical factors with image features to enhance the overall predictive
capability of the model. Finally, the PI-LL value was measured from the postoperative
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X-ray image by two experienced surgeons (C.-Y.L. and M.-H.W.) and served as a validation
standard for ML models.
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Figure 1. Study flowchart depicting four subprocesses: data cohort collection, feature extraction,
feature validation, and ML model construction and validation. ML: machine learning; SVR: support
vector regression; LR: LASSO regression; DT: decision tree; KNN: K-nearest neighbor; MLP: mul-
tilayer perceptron; RFE: recursive feature elimination; RMSE: root mean square error; MAE: mean
absolute error.

To assess the measurement precision of the BiLuNet model, two authors (A.T.B. and
G.M.T.) independently measured the aforementioned parameters using magnetic resonance
imaging (MRI) and compared their results with those of the model. Since the MRI angle
parameters in the supine position differ from those obtained from standing X-ray images,
only bone distance features were selected to evaluate interobserver reliability.

2.3. ML Implementation

We divided our ML pipeline into three steps: data extraction, model building, and
validation (Figure 1). All steps were performed using Python 3.7 and scikit-learn 1.1.2
package [27].
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2.3.1. Data Preprocessing

The categorical features were encoded as one-hot embeddings, and no normalization
was applied to them. Each missing value of continuous variables was examined and re-
placed by the mean value of each parameter. Due to distinct units and large differences
between feature ranges, the z-score was employed in the data normalization step [28]. This
involved subtracting the mean and dividing by the standard deviation for each feature.
Z-score normalization was chosen for its ability to standardize scales, accommodating di-
verse units and magnitudes within the dataset while preserving distribution characteristics.
This widely accepted practice enhances result comparability and interpretability.

2.3.2. Regression Models

Various ML models were evaluated to determine their performance for the aforemen-
tioned features. These models included five regression algorithms: decision tree (DT),
LASSO regression (LR), support vector regression (SVR), K-nearest neighbor (KNN), and
multilayer perceptron (MLP). Hyperparameter optimization was conducted for each ML
algorithm through the GridSearchCV method to achieve improved results. The algorithm
with the highest performance was selected as the baseline model to construct the final ML
model. After baseline ML models were obtained for either cage height or postoperative
PI-LL prediction, we employed Recursive Feature Elimination (RFE) for feature selection.
RFE operates iteratively, removing the least crucial features and rebuilding the model with
the remaining features.

To determine the optimal number of features, an RFE loop was performed with cross-
validation (RFECV function). The mean absolute error (MAE) of the model was then
calculated across all repetitions and folds of the RFECV function. Generally, the scikit-
learn library represents the MAE as a negative value to maximize it. Therefore, a model
with a large negative MAE value is regarded as superior for RFE visualization. After
the RFE process, the final model was built using the optimal subset of features, with the
SHapley Additive exPlanations (SHAP) value indicating the importance of each feature in
model prediction [29]. In particular, the computation of SHAP values involves the iterative
comparison of a model’s predictions with and without the inclusion of a specific feature.
This process is carried out for each feature and every sample in the dataset.

2.4. Statistical Analysis and Measurement Metrics

A five-fold cross-validation (k = 5) was performed to assess the efficacy of the ML
regression algorithms. The model was then trained on k − 1 data splits, and the trained
model was tested on the remaining held-out split. Subsequently, the performance of each
model was averaged across all data splits for comparison. This cross-validation scheme
provided a more reliable test result than that derived using a single fixed testing data
split, especially when training data were limited. It also guaranteed that each data point
was tested exactly once. Furthermore, we repeated this process five times with a different
random data split and reported the mean and variance.

To compare the performance of all ML algorithms, both the root mean square error
(RMSE) and the MAE of each model were calculated. The testing error in each case was
then visualized to evaluate the accuracy of prediction. To examine the reliability of features
in the deep learning model, the intraclass correlation coefficient (ICC) was calculated using
SPSS version 18.0 (SPSS, Chicago, IL, USA). The 95% confidence interval of the ICC estimate
suggests poor reliability for values below 0.5, moderate reliability for values between 0.5
and 0.75, adequate reliability for values between 0.75 and 0.9, and excellent reliability for
values greater than 0.9 [30]. Schwab classification [31] was then performed with three levels
of PI-LL, and the final model was evaluated in terms of its ability to stratify postoperative
PI-LL based on the accuracy index and F1-score. This classification system was chosen due
to its widespread acceptance and relevance in clinical practice within the spinal surgery
community [32,33]. Generally, a PI-LL value below 10◦ yields a modifier of 0, a value
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between 10◦ and 20◦ yields a modifier of 1, and a value greater than 20◦ yields a modifier
of 2 [31].

3. Results
3.1. Patient Characteristics

This study included 126 men and 185 women, with a mean age of 64.08 years (standard
deviation: 11.19) and a mean body height of 159.45 cm (standard deviation: 8.39). In total,
88 patients had lumbar disc herniation, 154 patients had lumbar spinal stenosis, and
69 patients had lumbar spondylolisthesis. Figure 2 depicts the ground truth distribution
of two predictable parameters. Most of the cases (149/311 cases) had cage heights of
12–13 mm, with only few cases having fusion cage heights of 8, 9, and 15 mm. Similar
uneven distribution was observed in PI-LL values after surgery, with the majority of
patients having PI-LL values ranging from 0 to 20. These unbalanced proportions posed a
challenge for the optimization of the ML algorithms.
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3.2. Performance of ML Algorithms

A total of 53 features were extracted from preoperative X-ray images using a deep
learning model (Supplementary Table S1). These features demonstrated highly reliability,
as evidenced by interobserver reliability within an ICC range of 0.78–0.947 (Supplementary
Table S2). These results affirm the robust performance of the deep learning model in
accurately measuring spinal parameters. Following the inclusion of 4 clinical features, a
total of 57 features were input into the regression models.

Subsequent experiments were conducted to determine the optimal parameters of each
ML algorithm in predicting both cage height and postoperative PI-LL. Table 1 enumerates
the ranges of all scrutinized hyperparameters and their corresponding optimal values.
Upon comparison of the five algorithms with optimal parameters, LR exhibited superior
performance in predicting the cage height, with an RMSE of 1.06 and an MAE of 0.76.
Notably, SVR emerged as the optimal model for predicting postoperative PI-LL, displaying
the lowest RMSE (5.4) and MAE (4.15) among the algorithms considered, followed by LR,
MLP, KNN, and DT (Table 2). Consequently, LR was selected as the baseline model for
predicting the cage height, while SVR was selected for predicting PI-LL.



Bioengineering 2024, 11, 164 7 of 15

Table 1. Hyperparameter optimization for ML algorithms for the prediction of interbody cage height
and postoperative PI-LL.

ML Algorithm Hyperparameter Ranges Optimal Values for Cage
Height Prediction

Optimal Values for
PI-LL Prediction

LR Alpha = [0, 1], interval = 0.001 0.001 0.01

DT
Criterion = [squared_error, friedman_mse, absolute_error, poisson]
min_samples_split = [10, 20, 30, 40, 50]
min_samples_leaf = [5, 10, 20, 30, 40]

poisson
30
20

squared_error
50
5

SVR
kernels = [poly, linear, rbf, sigmoid]
C = [0.1, 1, 10, 100]
gamma = [0.001, 0.01, 0.1, 1]

sigmoid
10

0.001

linear
0.1
1

MLP

hidden_layer_sizes = [(50, 50, 50), (100, 100, 100), (200, 200, 200)]
activation = [tanh, relu]
solver = [sgd, adam, lbfgs]
alpha = [0.0001, 0.001, 0.05]

(200, 200, 200)
relu
lbfgs
0.05

(200, 200, 200)
tanh
sgd

0.0001

KNN
n_neighbors = [5, 10, 20, 30, 40, 50]
metric = [euclidean, manhattan, minkowski]
weights = [uniform, distance]

20
euclidean
uniform

5
euclidean
distance

Table 2. Performance of ML algorithms in the prediction of interbody cage height and postoperative
PI-LL. RMSE: root mean square error; MAE: mean absolute error.

Algorithm
Cage Height Postoperative PI-LL

RMSE MAE RMSE MAE

DT 1.11 ± 0.042 0.85 ± 0.038 7.05 ± 0.85 5.39 ± 0.72

LR 1.06 ± 0.011 0.76 ± 0.01 5.42 ± 0.56 4.2 ± 0.42

SVR 1.09 ± 0.008 0.77 ± 0.01 5.4 ± 0.52 4.15 ± 0.48

MLP 1.16 ± 0.02 0.87 ± 0.016 6.36 ± 0.8 4.84 ± 0.76

KNN 1.11 ± 0.042 0.85 ± 0.038 7.05 ± 0.85 5.39 ± 0.72

3.3. Final Model
3.3.1. Feature Selection

Figure 3 depicts the RFECV results for two baseline modes. In the LR model for
predicting interbody cage height, the RFE curve identified 23 features as the optimal
input for achieving peak performance, with a negative optimum cut-off MAE of −0.693.
Likewise, the SVR model for predicting postoperative PI-LL identified 24 features as the
optimal number, with a negative cut-off MAE of −4.096. The two subsets of features were
subsequently employed to retrain the models (Supplementary Table S3), and the final
models underwent validation using the testing set.

3.3.2. Optimal Model Performance

As shown in Table 3, the finalized LASSO algorithm for cage height prediction demon-
strated an RMSE of 1.01 and an MAE of 0.7. These values reflect an enhancement over
the metrics obtained prior to feature reduction (i.e., 1.06 and 0.76, respectively). Figure 4
depicts the accuracy of cage height prediction using the testing set, with 42.12% (131/311)
of cases achieving exact values. Our model demonstrated commendable accuracy for
interbody cage heights with the range of 10–13 mm. Notably, the most accurate prediction
was obtained for a height of 12 mm, with 54.43% (43/79) of cases accurately predicted.
Simultaneously, the accuracy ratios for sizes 10, 11, and 13 mm were 52.63% (20 of 38 cases),
51.02% (25 of 49 cases), and 42.86% (30 of 70 cases), respectively. In the majority of the
remaining cases, the model exhibited a 1 mm prediction error, resulting in an overall
accuracy rate of 88.75% (276 out of 311 cases) within the acceptable margin of 1 mm.
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Baseline Model Performance Optimal Model Performance

RMSE MAE RMSE MAE

Cage height prediction 1.06 0.76 1.01 0.7

Postoperative PI-LL prediction 5.4 4.15 5.19 3.86
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Due to the limited sample sizes in the 8, 9, and 15 mm fusion cage groups, the model
encountered elevated prediction errors. Specifically, four of the six cases with an actual
cage height of 8 mm were erroneously predicted to have a height of 9 mm. Within the 9 mm
group, predicted values were 8 mm in three cases and 9 mm in two cases. Notably, for the
15 mm group, the model tended to predict interbody cage heights within the range of 13 to
14 mm in 10 out of 14 cases.
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Moving on to postoperative PI-LL prediction, the final SVR model achieved lower
RMSE and MAE values on the testing set compared to the baseline model (5.19 and 3.86
versus 5.4 and 4.15; Table 3). In Figure 5A, the model’s performance on both the training
and testing data is depicted, indicating a well-calibrated model where most points cluster
around the regression line. This observation suggests close alignment between predicted
PI-LL values and actual values. However, in cases with PI-LL values exceeding 20, more
considerable errors were observed. Furthermore, the model exhibited high precision in
stratifying postoperative PI-LL, achieving an accuracy of 0.81 and a high F1-score for the
0 group (Figure 5B).
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3.3.3. Feature Importance

Figure 6 visualizes the ten most influential features in the two final models. In predict-
ing interbody cage height, the intervertebral height at the midpoint of L4–L5 (L4L5_mid)
emerged as the most crucial factor. This prediction was notably influenced by three angles:
LL, PI, and the L4–L5 intervertebral disc angle (L4L5_angle). Additionally, crucial parame-
ters included the intervertebral heights of lumbar segments from L3 to S1, encompassing
the intervertebral height at the midpoint of L3–L4 and L5-S1 (L3L4_mid and L5S1_mid),
the posterior intervertebral height of L3–L4 (L3L4_post), and the anterior intervertebral
height of L3–L4 and L4–L5 (L3L4_ant and L4L5_ant). Among the factors related to verte-
bral body size, only the upper vertebral width of L3 (L3Width_up) was included in this
influential list.

Preoperative LL, relative LL (RLL), and PI played crucial roles in predicting postoper-
ative PI-LL. Essential features associated with PI-LL after surgery predominantly involved
angles related to preoperative sagittal alignment, such as sacrum slope (SS), pelvic tilt (PT),
and L5-S1 intervertebral disc angle (L5S1_angle). Additionally, factors influencing PI-LL
prediction were linked to the height of the vertebral body, including the anterior height
of the L5 vertebra and the posterior height of the L2 and L3 vertebrae (L2Height_Post
and L3Height_Post).
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4. Discussion

Spinopelvic alignment restoration is essential for both adult spinal deformity surgery
and short-segment lumbar interbody fusion [8,34,35]. However, determining the influence
of each factor on sagittal alignment is difficult because the normal standing posture is jointly
determined by multiple lumbosacral factors [36,37]. As shown in Figure 6 in the present
study, the postoperative value of PI-LL is substantially influenced by the preoperative
values of LL, RLL, and PI. However, because the PI value is regarded as a constant anatomic
feature with slight variation in pathologic disorders or lumbar spine interventions [38],
determining the postoperative LL is typically necessary for predicting the optimal PI-LL.
According to previous research, LL restoration after surgery is closely linked to preoperative
LL and PI [39–42]. Therefore, LL and PI can be used to predict the LL and PI-LL values
after surgery, as in our model.

Appropriate parameters must be obtained for enhancing surgical quality, and surgeons
must develop effective strategies to achieve harmonious sagittal alignment. Our model
demonstrated a strong capacity to generate a satisfactory PI-LL value while being able to
forecast the potential range of this value. By selecting patients without ASD for the dataset,
the algorithm trained on these data was able to generate a favorable PI-LL value, which
can be used to reduce the incidence of ASD in patients [7]. Our PI-LL prediction model
was also able to provide predictions for surgical planning in selecting the appropriate
surgical technique and instruments. Actually, the optimal PI-LL has been the subject of
debate. Satoshi et al. [43] reported that this value is inconsistent. Meanwhile, multiple
studies have suggested that surgeons must strive to reduce PI-LL to 10◦ or less whenever
possible [8,44,45]. According to our model, if unsatisfactory PI-LL prediction values are
obtained before surgery, surgeons could consider implementing additional intraoperative
techniques. To achieve an adequate LL value, strong fixation with a curved rod system can
be implemented. In some cases of severe hypolordosis, osteotomy techniques such as pedi-
cle subtraction osteotomy are also a viable option [46]. Furthermore, the predictive results
of postoperative PI-LL from our algorithm may aid in rod bending or in the determination
of the number of spinal levels requiring fixation when a surgeon receives intraoperative
fluoroscopic images. However, previous studies have revealed substantial discrepancies
between standing and prone angle measurements [47,48]. Therefore, these models must
be further developed to ensure their seamless integration from preoperative planning to
actual surgery.

Size, shape, and position play a crucial role in the insertion of an intervertebral cage.
However, findings regarding the importance of the implant shape and placement have
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been inconsistent. Cage lordosis and final LL after surgery are strongly correlated, with
a more anterior placement resulting in greater intervertebral lordosis [18]. Conversely,
some in vitro biomechanical and clinical studies have reported that the cage position and
geometry do not affect sagittal alignment after lumbar interbody fusion [49–51]. The cage
height typically serves as a key factor applied by surgeons for improving lordosis [52,53],
and our research has primarily focused on predicting this index. Most of our cage height
values were between 12 and 13 mm, which are consistent with the recommended cage
heights of 11, 12, or 13 mm for the L3–L4 and L4–L5 levels in a previous study conducted
in the Chinese population [16]. In addition, our model performed well for cases within
this range, indicating its potential clinical applicability for the Asian population. Overall,
predicting the appropriate interbody cage size can assist surgeons in decision-making and
improve postoperative outcomes, particularly for inexperienced surgeons. Prediction using
our model can also provide the cage height with an error of approximately 1 mm only
(Figure 4). Consequently, fewer cages need to be sterilized, thus reducing the costs of
surgery. In addition, the costs of treatment decrease due to the reduced operation duration
and complication rates. Therefore, patients evidently benefit from the development of
these models.

Our results indicated that the disc height of the pathological segment and the two
adjacent levels plays a crucial role in predicting the height of the interbody cage (Figure 6).
To predict this value, Wang et al. [16] developed a regression model that emphasizes the
importance of the intervertebral height at the midpoint of the pathological segment (MIVH):
interbody cage height = 11.123 − 0.563*gender + 0.149*MIVH. In our study, gender was
one of the final 23 features used to build the optimal model, but its influence was not as
evident as that of the other parameters. With the exception of the parameters associated
with the intervertebral disc height, PI and LL contributed to the prediction of the interbody
cage height. These two parameters also contributed to the aforementioned prediction of
postoperative PI-LL. Lafage et al. [11] discovered that pelvic retroversion and global sagittal
balance in adult patients with spinal deformities were primarily influenced by the PI and
LL values. Here, we emphasized that PI and LL are among the most crucial parameters for
both long- and short-segment fusion surgeries.

Multiple researchers have attempted to develop algorithms for predicting postopera-
tive sagittal parameters and the interbody cage height, aiming to enhance accuracy and
applicability in clinical practice. Traditionally, these formulas featured a limited set of
variables to simplify computations. Lafage et al. [11,54] developed one of the most accurate
formulas for predicting the sagittal vertical axis (SVA). They used only four variables in
their formula: PI, LL, thoracic kyphosis, and age. Legaye and Duval-Beaupère [38,55]
proposed multilinear regression models for calculating LL by using only basic parameters,
such as thoracic kyphosis, SS, PI, PT, and T9 spinopelvic inclination. In contrast to prior
approaches, our goal was to incorporate all significant lumbar parameters into algorithm
development. Because our prediction models (LR for the interbody cage height and SVR
for postoperative PI-LL) and previous models share the same characteristic of utilizing
multiple linear algorithms, we took advantage of the current technological advancements to
incorporate as many variables as possible. However, certain factors, such as the width and
length of the vertebral body, were found to be crucial features in our model, a novel finding
absent from the existing medical literature. While this discovery might be serendipitous
during model training with our dataset, it necessitates further verification in subsequent
research. Previously, employing multiple parameters may have been impractical for rou-
tine clinical use. However, leveraging computational power, contemporary methods now
facilitate improved predictive accuracy, rendering these predictions applicable in clinical
scenarios. According to Langella et al. [56], computer-assisted methods are associated with
a failure rate below 20% for predicting PI and SVA. To the best of our knowledge, this study
is pioneering in presenting a pipeline and diverse models for predicting PI-LL and cage
height from preoperative X-ray images through AI.
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This study has several limitations. Firstly, it is imperative to acknowledge the retro-
spective nature and single-center design, which inherently presents constraints due to a
modest sample size. As a result, optimal interbody cage height or postoperative PI-LL may
be subject to variability influenced by subjective factors such as the surgeon’s technique
and patient demographics. Moreover, the small sample size and unbalanced data posed
challenges in achieving satisfactory accuracy for certain cases despite employing various
resampling techniques. Although these methods were applied, they did not yield im-
proved results, highlighting the necessity to expand the sample size and explore alternative
strategies for addressing imbalanced data. Despite these constraints, the introduction of
multiple algorithms in this study introduced a pioneering concept, setting the groundwork
for enhanced predictive accuracy in future multicenter studies. Moreover, subsequent
research should aim to validate our model in diverse patient populations to ensure its
reliability across different patient profiles. Secondly, this study was limited to patients
with monosegmental TLIF at the L4–L5 level, and only one sagittal parameter, PI-LL, was
predicted. However, using our algorithms, a large number of postoperative parameters
can be predicted not only for single-level fusion surgery but also for surgeries involv-
ing multiple levels. Thirdly, sagittal balance is associated with factors such as SVA, T1
spinopelvic inclination, and C7 plumb line, which are evaluated using full-length spine
radiographs [45,57,58]. Because we focused only on short-segment fusion, we examined
only the lumbar region. Therefore, global sagittal balance factors must be examined for
TLIF surgery in the future. Lastly, the complexity of our model, involving multiple steps,
increases the probability of errors. Additionally, the accuracy of features extracted from
X-rays through AI could be enhanced by incorporating successful models for vertebral
body segmentation from MRI or CT images, as demonstrated in recent studies [59,60].To in-
crease predictive accuracy, a synthetic model must be developed, integrating radiographic
parameters from X-ray, MRI, and CT scans. This comprehensive approach will contribute to
refining and validating the predictive capabilities of our model in diverse clinical scenarios.

5. Conclusions

This study marks a significant stride in the development of end-to-end AI models
tailored for predicting interbody cage height and postoperative PI-LL in TLIF surgery.
Our findings underscore the efficacy of sophisticated computer-assisted models in spinal
morphometry, showcasing the remarkable accuracy of ML algorithms. These models
emerge as valuable tools for surgeons, offering substantial support in both preoperative
planning and postoperative assessment. Our results highlight the significance of integrating
multiple crucial parameters, particularly preoperative PI and LL, into multilinear regression
equations. This innovative approach demonstrates promise in predicting outcomes for
spinal fusion surgery, emphasizing the potential for improved precision in patient-specific
treatment strategies. However, to ensure model reliability and generalizability, further
validation and refinement with larger datasets and multicenter studies are required.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/bioengineering11020164/s1; Table S1: Spinal parameter features extracted
using a deep learning model; Table S2: ICCs validating the reliability of the deep learning model in
measuring bone distance parameters compared with the MRI results; Table S3: Two subsets of crucial
features for two baseline ML models.
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