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Abstract: Background: Gait is the manner or style of walking, involving motor control and coordi-
nation to adapt to the surrounding environment. Knowing the kinesthetic markers of normal gait
is essential for the diagnosis of certain pathologies or the generation of intelligent ortho-prostheses
for the treatment or prevention of gait disorders. The aim of the present study was to identify the
key features of normal human gait using inertial unit (IMU) recordings in a walking test. Methods:
Gait analysis was conducted on 32 healthy participants (age range 19–29 years) at speeds of 2 km/h
and 4 km/h using a treadmill. Dynamic data were obtained using a microcontroller (Arduino Nano
33 BLE Sense Rev2) with IMU sensors (BMI270). The collected data were processed and analyzed
using a custom script (MATLAB 2022b), including the labeling of the four relevant gait phases and
events (Stance, Toe-Off, Swing, and Heel Strike), computation of statistical features (64 features),
and application of machine learning techniques for classification (8 classifiers). Results: Spider plot
analysis revealed significant differences in the four events created by the most relevant statistical
features. Among the different classifiers tested, the Support Vector Machine (SVM) model using a
Cubic kernel achieved an accuracy rate of 92.4% when differentiating between gait events using the
computed statistical features. Conclusions: This study identifies the optimal features of acceleration
and gyroscope data during normal gait. The findings suggest potential applications for injury pre-
vention and performance optimization in individuals engaged in activities involving normal gait.
The creation of spider plots is proposed to obtain a personalised fingerprint of each patient’s gait
fingerprint that could be used as a diagnostic tool. A deviation from a normal gait pattern can be
used to identify human gait disorders. Moving forward, this information has potential for use in
clinical applications in the diagnosis of gait-related disorders and developing novel orthoses and
prosthetics to prevent falls and ankle sprains.

Keywords: gait; walking; gait analysis; artificial intelligence; machine learning; falls; orthesis

1. Introduction

Walking is the most natural mode of locomotion in humans to travel independently
and in an efficient manner and it has proven health benefits for older adults. Walking has
essential benefits for physical and psychological health [1,2]. The WHO points out that
walking 30 min a day is enough for our body to obtain the improvements associated with
this practice. According to Perry and Burfield, the human gait cycle consists of two primary
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phases, the stance and swing phase, each consisting of several functional periods. The
stance phase encompasses the following functional periods: loading response, midstance,
terminal, and preswing. On the other hand, the swing phase is divided into initial swing,
mid swing, and terminal swing [3]. In general, human gait can be defined as movement
consistent with translation for the whole body permitted by a repetition of movements of
body segments while maintaining balance. This procedure is accompanied by movement
processes automatically controlled by the brainstem and spinal cord [4].

Although the study of gait has been of interest since ancient times [5], the development
of gait analysis techniques (also known as walking or motion analysis) has experienced its
greatest development in the last century. Studies involving high-quality motion analysis
systems have provided substantial insight into human gait patterns, not only of healthy
subjects but also those with various movement disorders [6,7]. This has led to numerous
investigations related to how gait disturbance can be a predictor of specific pathologies [8].

Injuries resulting from falls in older adults represent a significant health burden [9].
The frequency of falls increases with age and the fragility level. Between 32–42% of people
aged 70 years and over fall each year [10–12]. About one-third of these individuals are
estimated to experience one or more falls each year, while 10% experience multiple falls
annually [12]. Fall-related injuries are a healthcare problem associated with subsequent
disability, hospitalization, morbidity, and mortality [13]. Approximately 1% of healthcare
costs are fall-related expenditures in high-income countries [14]. For young individuals,
lateral ankle sprains are another crucial condition related to gait problems. The peak
incidence of ankle sprains occurred between the ages of fifteen and nineteen (7.2 per
1000 person-years) [15]. It is estimated that upward 45% of all sports-related injuries
involve an ankle sprain [16–18]. Ankle injury rates range from 0.82 to 1.65 injuries per
1000 athletes-exposures depending on the sport [19].

The study of normal gait remains fundamental and relevant, whether it is driven by
the interest in describing gait using new technological tools for clarifying the neuromus-
cular and biomechanical manifestations of the pathology, or for the purpose of designing
intelligent orthoses that prevent the consequences of falls or the effects of ankle sprains.
Many studies related to human gait analysis use Inertial Measurement Units (IMUs) sensors
equipped with gyroscopes and accelerometers to measure spatio-temporal [20], kinemat-
ics [21], and kinetics features [22]. These small-size, affordable, energy-efficient, and easy-
to-use sensors may play an important role in biomechanics fields due their fast processing
and measurements during the physical activity [23,24]. The present study aimed to identify
the key features of normal human gait using inertial unit (IMU) recordings in a walking
test. Although there are many studies where inertial units are used to analyse normal
human gait, each employs different features or markers to assess gait performance [25–36].
The current literature lacks concise studies that specify which key features may be used
to optimally distinguish the most relevant events in human gait. Noteworthy examples
include studies that utilize different kinds of features, such as the filtered acceleration and
gyroscope data itself without feature extraction [23], spatiotemporal parameters [20,26], or
biological outcomes (e.g., accelerations, stability, regularity, etc.) [33]. This study employed
advanced statistical methods to determine the most relevant statistical features to consider
in analysing acceleration and gyroscope signals from IMU devices. Understanding the
key characteristics of a normal gait pattern is crucial, as any gait disorder will modify this
normal pattern.

2. Materials and Methods
2.1. Study Design

A cross-sectional study was conducted at the Functional Anatomy Lab at the Uni-
versitat Internacional de Catalunya. The study procedures were conducted following the
Declaration of Helsinki (World Medical Association, 2013).
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2.2. Participants

A total of 32 participants (age range 19–29 years) were recruited for this study. In the
context of our gait-related research conducted on the university campus, participants were
recruited through university-wide communication channels, such as email newsletters,
bulletin boards, and social media platforms, to invite students, staff, and faculty members.
The inclusion criterion for selecting volunteers stipulated that they did not exhibit issues
pertaining to movement or ambulation. Exclusion criteria included inability or difficulty
walking at the indicated speeds, surgical intervention in the lower limb within the past five
years, history of muscle or ligament injury in the lower extremity, and any musculoskeletal
or neurological injury that alters or could alter ambulation.

2.3. Data Collection

Descriptive data and anthropometric measurements were collected from each par-
ticipant, including age, gender, body weight, body mass, and leg dominance. These
measurements are presented in Table 1. In our study, we defined leg dominance as the
preferred or dominant leg that an individual naturally employs for activities such as kicking
a ball or taking a step forward. The numerical data, including age, body weight, and body
height, exhibited normal distributions in both subsets, categorized by gender and leg domi-
nance. No significant differences in age were observed in either subset. However, gender
disparities were observed in body mass and body height, whereas leg dominance did not
show any notable differences. Dynamic data were collected using an Arduino Nano 33 BLE
Sense Rev2 microcontroller board (Arduino, Monza, Italy) [25,26] positioned in the forefoot
area of each foot [27–30] (refer to Figure 1B). The microcontroller board was equipped with
IMU sensors (BMI270) capable of detecting acceleration with a three-axis accelerometer
(±2 g acceleration scale and 0.06 mg/LSB of resolution) and gyroscope data [31–33]. In-
tegrating the IMU sensor onto the same microcontroller board benefits us by mitigating
electromagnetic interference, a challenge that tends to be more pronounced when dealing
with standalone accelerometers connected via external wiring. The default factory cali-
bration settings were found to be suboptimal. Therefore, we conducted a calibration of
the IMU system using the protocol outlined by Tedaldi [37] to ensure the accuracy and
reliability of the acquired data. Our experience has underscored the importance of regular
recalibrations, conducted either weekly or after every five experiments, whichever occurs
first, to mitigate performance deterioration resulting from component drift and aging.
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Table 1. Descriptive data of the participants (age, body mass, and body height) classified together
by gender.

Variables Gender
Leg Dominance N Mean (SD) CI 95% Shapiro-Wilk W

Age
(years)

Male 10 21.9 (1.85) (20.6; 23.2) 0.873
Female 22 22.2 (2.67) (21.0; 23.4) 0.909

Body mass (kg) Male 10 73.8 (5.87) (69.6; 78.0) 0.953
Female 22 59.9 (8.98) (55.9; 63.9) 0.969

Body height
(cm)

Male 10 183.2 (5.27) (179.4; 187.0) 0.917
Female 22 166.0 (4.31) (164.0; 167.9) 0.968

Acceleration sensors detected changes in the Arduino’s velocity in their three main
axes, whereas the gyroscope sensors detected the changes in the angular velocity. The
orientations of the three axes are shown in Figure 1C. Acceleration in x-axis (AccX) detects
velocity changes in the sagittal plane, with forward movements registered as positive and
backward movements as negative. Gyroscope in the x-axis (GyrX) detects as positive the
clockwise movement. Acceleration in the y-axis (AccY) indicates velocity variations in
the frontal plane, cataloging movements to the right as positive and movements to the
left as negative. Gyroscope in the y-axis (GyrY) detected as positive the counterclockwise
movement. Finally, the acceleration in the z-axis (AccZ) registered upward movements as
positive and as downward negative. Gyroscope in the z-axis (GyrZ) detected as positive the
counterclockwise movement. Planes were described in an inclined plane as is the forefoot.
Clock or counterclockwise is based on their respective acceleration vector. Considering the
placement of the Arduino on the subject instep, this factor influences the data axes.

2.4. Procedure

The experimental protocol comprised two distinct parts: a 30-s forward walk on
a treadmill (Domyos Intense Run, Decathlon, Villeneuve-d’Ascq, France) at a speed of
2 km/h, followed by an uninterrupted 30 s at 4 km/h. (refer to Figure 1A).

Throughout the entire experiment, participants were given specific instructions to
wear suitable sports clothing and shoes. The Arduino board was secured on the forefoot
of each participant. We established a USB connection between each Arduino board and
the Coolterm software (Coolterm 2.0, The Meiers) (refer to Figure 1A) to ensure accurate
data collection.

To prevent any interference with the natural gait of the participants during the forward
walk, we employed 3-m cables. After data collection, we exported the acquired data for
further processing and analysis using a custom script in MATLAB 2022b (Mathworks,
Boston, MA, USA).

2.5. Data Processing

Acceleration and gyroscope data from the left and right legs were collected and
processed using a custom script (MATLAB 2022b, Mathworks, Boston, MA, USA). The data
were sampled at a frequency of Fs = 73.5 Hz. To reduce low-frequency movements during
gait, a 5th order, low-pass Butterworth filter with a cutoff frequency of 4 Hz was used.

The magnitude of the filtered acceleration and gyroscope data was computed for each
leg. The magnitude represents the magnitude of the acceleration or angular velocity vector.
By comparing the magnitudes of the left and right leg data, the delay between the signals
was estimated, allowing for their alignment.

Next, we selected 25 s out of the total 30 s of data for each speed (2 km/h and 4 km/h),
removing 2.5 s from each lateral (start and end), to be used in the study. In order to label
specific gait events, the Signal Labeler tool provided by MATLAB was utilized (see an
Example in Figure 2).
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Figure 2. Gait representation based on acceleration magnitude (blue) and x-axis acceleration (green)
at 2 km/h.

The Heel Strike label indicates the moment when the heel of the foot first makes
contact with the ground during a gait cycle, while the Toe-Off label represents the moment
when the toes leave the ground. Additionally, to precisely identify the locations of these
events, we incorporated an FSR (Force-Sensing Resistor) sensor (OpenSmart FSR Sensor,
Shenzhen, China) positioned at Area 2 of the foot chart to determine Toe-Off and Area 40 of
the foot chart to specify Heel Strike [34]. The peaks detected from the FSR sensor provided
us with precise information regarding the occurrence of these gait events.

Based on the labeled Heel Strike and Toe-Off events, the Swing Phase and Stance
Phase were determined. The Swing Phase was defined as the period from Toe-Off to Heel
Strike, during which the foot swings forward in preparation for the next step. Conversely,
the Stance Phase was defined as the period from Heel Strike to Toe-Off, during which the
foot remains in contact with the ground.

In order to perform feature extraction, various statistical features were computed on
the data: gyroscope, acceleration in their three axes, and their magnitude. The magnitude
of the acceleration was described as follows:

|Acc| =
√

Acc2
x + Acc2

y + Acc2
z (1)

And the magnitude of the gyroscope was described in a similar way, as:

|Gyr| =
√

Gyr2
x + Gyr2

y + Gyr2
z (2)

These features included mean, standard deviation, median, interquartile range, min-
imum, maximum, skewness, and kurtosis [35,36]. To segment the data, a time window
approach was utilized. Each time window consisted of seven consecutive samples, and sub-
sequent windows were incremented by four samples. This step allowed for the extraction
of relevant features within distinct movement phases.

The selection of the time window size was driven by the need to obtain a sufficient
number of samples to accurately identify stance and swing phases. Specifically, it was
required to meet the minimum sample counts for confident phase identification at different
walking speeds. We labeled both stance and swing phases, as illustrated in Figure 2,
allowing us to determine the necessary number of samples for each phase. For example,
during the stance phase at 4 km/h, a minimum of 38 samples (corresponding to the lower
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confidence interval) was necessary to achieve a 99.7% confidence level for the mean value.
At a speed of 2 km/h, the minimum sample count for the swing phase remained consistent
at 4 km/h, totaling 21 samples.

The stance phase was divided into four subphases: loading response, midstance,
terminal, and preswing. For accurate characterization of each subphase in the future, it was
necessary to have 9–10 samples per subphase. Similarly, the swing phase was divided into
three subphases: initial swing, midswing, and terminal swing, and requires seven samples
per subphase.

To ensure sufficient coverage of each subphase and avoid excessive repetition in the
time window selection, the time window of seven samples with an increment of four
samples was chosen as it provided a reasonable balance between capturing the necessary
data and minimizing redundancy.

2.6. Feature Selection

The selection of features was carried out based on two main considerations: statisti-
cal tests and feature correlation. Two different thresholds were explored, employing the
ANOVA test and the Post-Hoc test, which were computed using Jamovi version 2.3.21
(The jamovi project, 2023, Sydney, Australia), a GUI interface based on the R language.
Initially, normality tests were conducted on the features. Visual inspection indicates suffi-
ciently normal distributions considering the robustness of ANOVA to non-normal error
distributions [38].

The first option for feature selection was the one-way Welch’s ANOVA test since we
compared the categorical feature Phase (and/or Event), which has more than two sub-
groups (Heel Strike, Stance, Toe-Off, and Swing), with each quantitative feature measured
using IMU sensors. The Welch Method was used because of unequal variances between
subgroups in a quantitative feature, i.e., standard deviation in Stance and Swing phases. Al-
ternatively, the Tukey HSD Post-Hoc Test was employed to analyze the differences between
each pair of phases, in case the F-test was significant. The Tukey test is used to compare two
means as it protects against the inflated risk of type I error arises when several significance
tests are performed after ANOVA.

For this initial analytical approach, we had two sets of features: ANOVA and Post-Hoc
features. The ANOVA features were selected from those with a p-value from the F-test lower
than 0.01 across all subgroups (Heel Strike, Stance, Toe-Off, Swing). On the other hand, the
Post-Hoc features were identified through the Tukey HSD Post-Hoc Test. These features
demonstrated a significant pairwise difference, indicated by a p-value lower than 0.05, in
the comparisons of Stance-Swing and Toe-Off-Heel Strike. Moreover, to ensure specificity,
these features also exhibited p-values higher than 0.05 in all other pairwise comparisons.

Subsequently, the second approach focused on establishing a threshold for feature
correlation with the intention of selecting the quantitative features that exhibited less
correlation than the specified threshold. Pearson Correlation coefficients were employed for
the correlation calculations. The feature selection filter operated using both the correlation
matrix and the ranking of features based on F-test importance. This process encompassed
all quantitative features. For instance, at a threshold of 80%, if two features exhibited a
correlation of 0.83, the filter retained the feature with the highest importance according to
the F-test and discarded the other. This process iterated across all features until none of
them surpassed the 0.80 correlation threshold.

We had a total of 22 possibilities to consider, meaning 22 sets of features, comprising
two tests per 11 correlation thresholds. To determine the most suitable approach, we
considered the number of features used and the resulting accuracy obtained using a
Narrow Neural Network. By evaluating these factors, we aimed to identify the optimal
approach for feature selection, as well as to identify the most relevant features for our study.
More comprehensive information will be provided in Section 3.1 of the Results.
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2.7. Spider Plots

To assess the quantitative variables of the most relevant features in each phase, spider
plots were utilized. Separate spider plots were generated for the data captured at 2 km/h
and 4 km/h, as well as a combined spider plot including both datasets, referred to as the
Walk data. Each spider plot represented the characteristics of features during both phases
(Swing and Stance) and events (Heel Strike and Toe-Off).

From each spider plot, four distinct areas were calculated and obtained: Heel area,
Stance area, Toe area, and Swing area. These areas provided insights into the distribution
and magnitude of the variables within each phase and event. Additionally, a bar plot
was created to display the ratios between velocities, along with the corresponding areas.
This visualization allowed for a comparative analysis of the areas and their relationship
to the different walking velocities. To explore the clinical applications and delve into the
interpretation of the results, please refer to Section 4.

2.8. Machine Learning Analysis

This section aims to identify manually labelled gait events (Toe-Off and Heel Strike)
and phases (Stance and Swing) by using different artificial intelligence classifier models
fed with the statistical features extracted automatically from the gyroscope and accelera-
tion signals. Several classifier models, including decision trees, support vector machines
(SVM), Neural Networks (NNs), and k-nearest neighbor algorithms (KNN), were com-
puted and evaluated. Many studies rely on machine learning methods for the recognition
process. Decision trees (DT) and k-nearest neighbor (KNN) algorithms are commonly
used to identify gait phases and disorders [23,39,40]. For analyzing and sorting different
activities such as running, jumping, or walking, support vector machines (SVM) are usually
employed [23,41].

The machine learning analysis was performed using two different sets of features
from the labelled gait events: the features selected through the feature selection method
and the complete set of 64 features initially considered. A 5-fold cross-validation was
implemented for each machine learning model to mitigate the risk of overfitting. The
performance of the models was assessed by quantifying their validation accuracy, which
represents the percentage of correctly detected gait events. By comparing, in terms of
value, the performance of the models using these two feature sets, we aimed to evaluate
the impact of feature selection on the predictive power of the models.

3. Results
3.1. Feature Reduction

The accuracy of the Neural Networks consistently increased in both sets (based on
ANOVA test threshold and Post-Hoc test threshold) as the correlation threshold was
progressively raised (refer to Figure 3A). As we increased the correlation threshold, more
features were included, leading to improved accuracy in the predictions. Among the
correlation thresholds tested, the Post-Hoc test at 0% correlation demonstrated the highest
ratio of accuracy to features, with a value of 0.83 (see Figure 3B). Analyzing the Post-Hoc test
results, an increase in correlation (and thus feature inclusion) led to a decrease in the ratio,
except for a notable peak at 70% correlation, where the ratio reached 0.82. Additionally,
when examining the ANOVA test, lower correlations resulted in a reduced ratio, which
then stabilized at 0.76 from 30% to 60% correlation. However, beyond 60% correlation, the
ratio declined steadily, reaching almost 0.5 at 100% correlation.

After analyzing the results, the Post-Hoc test at 70% correlation was chosen as the
preferred approach. This particular test yielded a total of 14 features for accurately predict-
ing gait events at both 2 km/h and 4 km/h. The achieved accuracy using these features
was 84.7%.
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Figure 3. The selection of features is based on correlation thresholds (x-axis) derived from the ANOVA
test (blue) and the POST-HOC test (green). (A). Plot of the accuracies achieved using a Narrow Neural
Network, along with the corresponding number of features used. (B). Plot showing the ratio between
the normalized accuracy achieved using a Narrow Neural Network and the absolute value of the
normalized number of features, with a subtraction of −1 to obtain values closer to 1 for fewer features
and closer to 0 for more features.

The analysis revealed that Heel Strike exhibited the highest values among the top
four features when compared to the other gait phases or events. Additionally, all the
features demonstrated different values for each phase within the 95% confidence interval
(CI), except for Min |Acc|, which had the lowest F-Value among the top four features and
showed the same values for both the Toe-Off event and Swing phase. Figure 4 presents the
features in order of their relevance, based on the F-Value of the ANOVA test.
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Figure 4. Bar plot presenting the F-Value of the selected features in descending order.

The identified features are shown in the following table (Table 2).
Among the identified features, the most important were as follows, described in

Table 2 and named below:

1. Mean of the magnitude of the gyroscope data (Mean |Gyr|)
2. Maximum value of the magnitude of the acceleration data (Max |Acc|)
3. Interquartile range of the gyroscope data in the x-axis (IQR GyrX)
4. Minimum value of the magnitude of the acceleration data (Min |Acc|)
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Table 2. Descriptive statistics of the TOP 4 selected features divided by gait events.

Ranking Features Units * Gait Event
Phase Mean (SD) CI 95%

1 Mean |Gyr| dps

Heel Strike 2 (34.6) (75.0; 77.5)
Stance 20.4 (20.7) (20.2; 20.7)
Toe-Off 47.6 (28.2) (47.1; 48.1)
Swing 67.2 (30.4) (66.2; 68.4)

2 Max |Acc| at

Heel Strike 0.44 (0.21) (0.43; 0.45)
Stance 0.08 (0.14) (0.08; 0.09)
Toe-Off 0.17 (0.12) (0.17; 0.17)
Swing 0.22 (0.12) (0.21; 0.22)

3 IQR GyrX dps

Heel Strike 61.0 (42.7) (59.5; 62.5)
Stance 10.8 (16.3) (10.6; 11.0)
Toe-Off 31.0 (28.8) (30.5; 31.6)
Swing 47.1 (33.2) (45.9; 48.3)

4 Min |Acc| at

Heel Strike 0.10 (0.07) (0.10; 0.11)
Stance 0.02 (0.03) (0.02; 0.02)
Toe-Off 0.05 (0.03) (0.05; 0.05)
Swing 0.05 (0.03) (0.05; 0.05)

* dps: degress per second; at: atmospheres.

3.2. Spider Plots

Figure 5 presents a spider plot that showcases the selected features for gait analysis.
The phases and events are represented by distinct colors: Heel Strike in blue, Stance in
red, Toe-Off in purple, and Swing in yellow. Observations from the plot indicated that at
4 km/h, there was a clearer distinction between the gait events, compared to 2 km/h. The
spider plots illustrates the gait pattern during the different events and phases at varying
velocities. There was evidence of the clarity of distinguishing the gait events and phases at
4 km/h, compared to 2 km/h.
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Figure 5. Spider plots illustrating the mean values of the selected features in the four studied
categories: gait events (Toe-Off and Heel Strike) and phases (Stance and Swing) at different speeds:
(A). 2 km/h and (B). 4 km/h.
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Figure 6 illustrates the computed areas obtained from the spider plots for each phase
and velocity. Notably, the areas exhibit an increase as the velocity rises. The ratios between
the areas are as follows: Heel Strike = 3.07, Stance = 4.24, Toe-Off = 2.05, and Swing = 2.02.
When ordered in descending order based on the area, the sequence is as follows: Heel
Strike, Toe-Off, Swing, and Stance, at both velocities. Specifically, at 2 km/h, the areas for
Toe-Off and Swing are approximately 1500 u.a.² each, indicating a similar magnitude for
these two events and phases, respectively, at this velocity.
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Figure 6. Bar plot displaying the area of the spider plot in the four studied categories: gait events
(Toe-Off and Heel Strike) and phases (Stance and Swing) at 2 km/h (blue) and 4 km/h (green).
The red lines connecting them serve as a graphical representation of the distinct ratios between the
velocities, obtained by dividing the values from 4 km/h by those from 2 km/h.

3.3. Machine Learning Analysis

Figure 7A presents the accuracy results, while Figure 7B displays the prediction speed
obtained from various types of algorithm models. A wider box plot indicates a greater
dispersion in accuracy or prediction speed among algorithms from the same model type.

Regarding accuracy, Discriminant (Discr), Kernel, Naive Bayes (NB), and Neural
Networks exhibit thin box plots, while Random Forest (RF), Support Vector Machine
(SVM), and Decision Tree (Tree) show wide box plots. Additionally, using all features
showed a greater accuracy compared to using only 14 features. In terms of prediction
speed, Discr, KNN (K-Nearest Neighbors), Kernel, and SVM exhibited thin box plots, while
NB, NN (Neural Networks), and RF had wider ones. Interestingly, the increase in the
number of features results in decreased prediction speed in all models, except for Decision
Trees. Specific attention has been directed towards certain algorithms (refer to Figure 7B
and Table 3). The Fine Tree Algorithm displayed greater accuracy and prediction speed
when additional features were integrated. On the other hand, SVM (Cubic and Gaussian)
and Random Forest (Bagged Trees) exhibited a low ratio of Prediction Speed to Accuracy.
In contrast, Neural Networks (NNs) exhibit a high ratio and achieve high absolute values
in both Prediction and Accuracy.

Among the Neural Networks (NNs) tested, the NN Bilayered stood out with the
highest ratio of accuracy to features reaching an impressive 91.5%. This indicates that
the NN Bilayered achieved a high level of prediction accuracy while utilizing a relatively
smaller number of features.

The Machine Learning analysis demonstrated that as the number of features increased,
there was a corresponding increase in prediction speed. This trend is similar to what was
observed with the Fine Tree Algorithm, indicating that increasing the number of features
improved the prediction speed for both methods.
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Figure 7. Boxplots illustrating the (A) performance and (B) prediction speed of all Machine Learning
Models using the selected features. (C) Plot representing the ratio of Prediction Speed divided by
Accuracy for Machine Learning Models with an accuracy higher than 85%, including Fine Tree
due to its high Prediction Speed, using selected 14 features (blue) and 64 features (red). (D) Pre-
diction speed/accuracy ratio, which indicates the trade-off between computational efficiency and
model performance.

Table 3. Relevant parameters of the Machine Learning models with an accuracy higher than 85%,
including Fine Tree due to its high Prediction Speed.

Model Type Features Accuracy Prediction Speed [obs/s]

Fine Tree
16/64 75.5% 151,330
64/64 82.5% 200,710

SVM Cubic
16/64 87.1% 9856
64/64 92.4% 6100

SVM Median Gaussian
16/64 86.4% 3599
64/64 92.3% 2772

Bagged Trees 16/64 86.0% 20,118
64/64 91.6% 18,352

NN Medium
16/64 86.6% 171,405
64/64 91.5% 166,463

NN Wide
16/64 87.1% 134,552
64/64 89.9% 120,355

NN Bilayered 16/64 85.5% 159,197
64/64 91.5% 174,773

NN Trilayered 16/64 86.1% 172,190
64/64 91.3% 143,525
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The implementation of a cubic kernel in the Support Vector Machine (SVM) resulted in
the highest accuracy, reaching 92.3% when utilizing 64 features. However, the SVM Cubic
still maintained a high accuracy of 87.1% even with a reduced feature set of 14 features.

4. Discussion

Recently, the study of human gait has become a topic of major interest within the field
of human motor control. The analysis of gait could be a predictor of specific pathologies or
could identify walking and posture problems, load anomalies, and muscle failure, which
would not be measurable with normal clinical exams [8,23]. Another possible reason is the
high human and economic cost of falling [13,14]. All this has led to numerous studies that
describe the characteristics of normal gait using a multitude of methods [34,42,43], some
of them using artificial intelligence [44], with the aim of being able to develop both injury
prevention programs and orthoses to improve gait mechanics.

Spider plots, or radar chart plots, are valuable visualization tools that provide gait
mapping in healthy young adults and offer a comprehensive overview of an individual’s
gait pattern [45–47]. The use of spider plots in healthy adults seems to provide essential
baseline data for gait analysis, helping to establish normal gait patterns and variations
within this population [48]. They offer a promising approach for posterior pattern recog-
nition in individuals with pathological conditions, allowing us to use them in clinical
applications [46,49,50].

The best way to understand the benefits of the spider plot [51] for understanding gait
pathology is by comparing normal versus pathologic (sprain and foot drop) plots (Figure 8).
The same leg (right) for the normal and pathological data was plotted. In the absence of any
impairments, we anticipate a consistent pattern of parameters across each specific phase
or event. Nevertheless, pathological conditions may have the potential to alter the values
of certain features during particular events or phases, which we will discuss further in
this section.
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primary phases and events at 2 km/h: (A). Stance phase and Toe-Off event during foot drop and
(B). Swing phase and Heel Strike event. The red and green arrows indicate a decrease or increase in
the magnitude of the features respectively.

Ankle sprains typically hold greater significance during the Stance Phase and the
Heel Strike event, which occurs when the foot initially contacts the floor [3]. Conversely,
conditions such as foot drop become more noticeable during the Swing Phase and the
Toe-Off Event. This is often due to weakness in the anterior tibialis muscles or a lack of
specificity in the plantar flexors during the Toe-Off Event [52].

The statistical feature assessing the maxima (Max) on the radar plot indicates the
greatest achievable value of acceleration or rotation (gyroscope) during a specific time
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window within the treadmill test. The data from a patient with an ankle sprain showed
Max AccY and Max GyrZ values, and consequently Max |Acc| and Max |Gyr|, their
magnitude, would tend to increase significantly (see Figure 1C for axis reference), due to
the inversion of the ankle.

The following paragraphs delve into the anticipated behavior of statistical features
measured within the context of two pathological conditions: foot drop and ankle sprain. It
is crucial to note that no specific tests have been conducted using the treadmill. Instead,
the discussion is founded on the expertise of physiologists and the data collected from
healthy subjects.

The statistical feature measuring the interquartile range (IQR) reveals the variability
in acceleration or gyroscope measurements during testing. Foot drop tends to reduce IQR
AccX and IQR Gyr Y, impacting overall magnitude, thereby leading to decreased IQR
|Acc| and IQR |Gyr| due to limited dorsiflexion and resulting in reduced movement
and a narrower motion range. Regarding ankle sprains, elevated maximum values can
potentially indicate an increased IQR. However, the effect on the IQR depends on the
sprain’s severity. Sharp and severe sprains, where multiple values spike, are likely to
impact the IQR. In cases of rapid sprains with a brief peak and a quick return to normal gait,
the IQR may remain relatively unaffected, particularly as values below the 75th percentile
remain relatively unaffected.

The statistical feature known as kurtosis (Kurt) provides insights into the shape of
the data. More precisely, low kurtosis suggests that there are numerous data points in the
tails of the distribution, whereas high kurtosis indicates a concentration of data points in
the central portion of the distribution. Variations in kurtosis values from those typically
seen in normal gait analysis can indicate abnormalities in gait. Foot drop, which presents
as inconsistent movement, can temporarily raise gyroscope values, leading to occasional
outliers that diminish the Kurt |Gyr| feature. Furthermore, a decrease in acceleration along
the x-axis can centralize the values, leading to an increase in Kurt AccX and, consequently,
the Kurt |Acc| features.

The statistical feature skewness (Skew) quantifies the asymmetry of the data distribu-
tion. A positive acceleration skewness implies a right-skewed distribution, indicating a
greater concentration of data points with lower acceleration values and fewer extremely
high values. This trend could be indicative of a gait pattern characterized by slower move-
ments, often observed in cases of foot drop. Conversely, a negative acceleration points to a
left-skewed distribution, indicating more data points with higher acceleration values and
fewer extreme low values. This might imply a gait pattern characterized by swifter or more
abrupt movements, present during an ankle sprain.

Lastly, the statistical feature known as the mean (Mean) calculates the central values
within a normal distribution. However, it can be influenced by outliers, making it less
robust in such cases. In cases of foot drop, as per the hypothesis, a decrease in minimum
values, a reduction in kurtosis, and maintaining the maximum in a positively skewed
distribution are likely to result in an increased mean. Conversely, in the context of an ankle
sprain, an increase in the maximum values and decrease of the skewness is expected to
lead to an elevated mean, regardless of whether the interquartile range (IQR) increases
or decreases.

It is worth highlighting that the present analysis of normal healthy individuals re-
vealed four features to be the most relevant ones for the prediction of the two phases
and two events of the gait (Heel Strike, Stance, Toe-Off, Swing). However, despite this
finding, the integration of a more comprehensive set of features (14) has demonstrated its
contribution to enhanced prediction accuracy [53]. This observation suggests that while
certain features may play a prominent role in the predictive model, a broader set of fea-
tures provides valuable additional information, leading to improved performance. Further
studies should be conducted at higher velocities to gain a deeper understanding of the
relationship between increased velocity and the algorithm’s performance in distinguishing
the phases.
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These results further reinforce the applicability of SVM in gait prediction [54–56], as
well as Neural Networks [29,30]. Unlike other findings, NNs performed worse than SVM
Cubic [57]. Greater accuracy indicates better performance of the algorithm in accurately
predicting outcomes [58], while a greater prediction speed implies faster processing of
predictions on test data. The results suggest that SVM Cubic can be a promising tool for
diagnosis when prediction speed is not a determining factor. Meanwhile, NN Bilayered,
which has high prediction speed and shows potential in recognizing events such as ankle
sprains [59], is affected by time in gait recognition [60]. Liu et al. [61] observed worse
ground reaction forces in patients after a lateral ankle sprain. These differences include
greater reaction force in the midfoot and lateral forefoot [62], a laterally deviated center of
pressure [63], and increased braking and propulsive forces [30] compared with uninjured
participants. Fereydounnia et al. [64] found a worse reactivity and contraction of the
peroneal musculature in patients who had suffered ankle sprains [32]. Therefore, it seems
that the correct activation of this musculature is related to the prevention of ankle sprains
by decreasing the inversion position [65,66]. With all this information, it seems essential to
know the normal gait patterns and to have tools such as the one presented in this study for
the detection of any abnormalities.

To draw definitive conclusions, further studies should explore the incorporation of
more features, for instance, including spectral features, to refine and validate the results.

5. Limitations, Conclusions and Future Directions

The findings of this study should be interpreted within the context of its limitations.
First, it is crucial to note that the study was conducted on a treadmill rather than in a
real-world setting, such as on the streets. This distinction may influence the generalizability
of the results to everyday situations. Moreover, there was a small sample. However, a
significant number of variables have been analyzed to obtain the main characteristics of
the gait. Additionally, the study included a limited number of subjects within a specific
age range. This restricted age group might limit the broader applicability of the findings.
To enhance the robustness of future research, we intend to focus on encompassing a more
diverse range of age groups to understand potential variations in the observed outcomes
better. A point to consider for future studies is the placement of the Arduino. Initially, it
was secured on the forefoot of each participant using their respective shoelaces. However,
starting from participant 20 onwards, we transitioned to using an elastic strap that encircles
the foot for enhanced convenience and consistency.

In this study, an IMU unit was employed, considering the foot as a single segment
under the rigid solid principle, which means that the foot is considered as singular entity
when measuring its motion. Traditional kinematics mesurements of the multi-segment foot
and ankle complex typically involve four segments (shank, hindfoot, forefoot, and toes)
and are conducted using stationary motion capture devices. However, these devices are
primarly confined to gait laboratories and are not practical for everyday clinical use. An
alternative approach for assessing foot and ankle complex kinematics involves using an
IMU attached to each segment using the algorithm proposed by Rouhani et al. [52].

In our case, for simplicity’s sake, we utilized a single IMU system. Although a single
IMU unit may not provide a detailed diagnostic understanding of the underlying causes of
foot abnormalities, using data from a single IMU on the foot segment alone offers a practical
and less cumbersome method for assessing joint-level impairments in clinical practice. This
is because the deviations in the foot segment detected by a single IMU system may be
enough to discern the effects of conditions such as ankle sprains and foot drop pathologies.

This paper presents a preliminary study demonstrating a promising approach to
gait recognition using spider plots as a diagnostic tool. The present results identify the
optimal features of acceleration and gyroscope data during a normal gait. Using spider
plots has provided valuable insights into gait mapping in healthy young adults, offering
a comprehensive overview of their gait patterns. The creation of these spider plots is
proposed to obtain a personalized fingerprint of each patient’s gait fingerprint, to be used
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as a diagnostic tool. A deviation from a normal gait pattern can be used to identify human
gait disorders.

In summary, the statistical kinematics features in the spider plot can be helpful in the
context of gait analysis for diseased individuals because:

• Identifying abnormal gait patterns: High kurtosis or significant skewness may serve
as indicators of deviations from the typical gait patterns, potentially suggesting the
presence of underlying pathologies or impairments in the kinematic movement of
the subject.

• Quantifying variability: Both kurtosis and skewness can express how variable the
acceleration data are.

Since excessive variability is linked to instability and a higher risk of falling in people
with gait problems, it may be crucial to evaluate this aspect of gait data.

• Monitoring rehabilitation progress: These measures can also be used to track changes
in gait over time. In the context of rehabilitation, a reduction in kurtosis and skew-
ness may serve as an indicator of enhanced gait stability as the patient undergoes a
rehabilitation intervention.

This information is valuable for advancing clinical applications in diagnosing gait-
related disorders and developing novel orthoses to prevent falls and ankle sprains, since
the alteration of the kinematic statistical parameters of the accelerometer and gyroscope
will be proportional to the degree of severity of the subject’s pathology or injury.
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