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Abstract: Room reverberation can affect oral/aural communication and is especially critical in
computer analysis of voice. High levels of reverberation can distort voice recordings, impacting the
accuracy of quantifying voice production quality and vocal health evaluations. This study quantifies
the impact of additive simulated reverberation on otherwise clean voice recordings as reflected in
voice metrics commonly used for voice quality evaluation. From a larger database of voice recordings
collected in a low-noise, low-reverberation environment, voice samples of a sustained [a:] vowel
produced at two different speaker intents (comfortable and clear) by five healthy voice college-age
female native English speakers were used. Using the reverb effect in Audacity, eight reverberation
situations indicating a range of reverberation times (T20 between 0.004 and 1.82 s) were simulated and
convolved with the original recordings. All voice samples, both original and reverberation-affected,
were analyzed using freely available PRAAT software (version 6.0.13) to calculate five common voice
parameters: jitter, shimmer, harmonic-to-noise ratio (HNR), alpha ratio, and smoothed cepstral peak
prominence (CPPs). Statistical analyses assessed the sensitivity and variations in voice metrics to a
range of simulated room reverberation conditions. Results showed that jitter, HNR, and alpha ratio
were stable at simulated reverberation times below T20 of 1 s, with HNR and jitter more stable in the
clear vocal style. Shimmer was highly sensitive even at T20 of 0.53 s, which would reflect a common
room, while CPPs remained stable across all simulated reverberation conditions. Understanding the
sensitivity and stability of these voice metrics to a range of room acoustics effects allows for targeted
use of certain metrics even in less controlled environments, enabling selective application of stable
measures like CPPs and cautious interpretation of shimmer, ensuring more reliable and accurate
voice assessments.

Keywords: voice metrics; simulated room acoustics; sensitivity; speech acoustics; reverberation

1. Introduction

Previous studies demonstrated the utility of computer analysis of human voice as
a convenient, accessible tool to assess vocal production quality and vocal health [1–4]
compared to other assessment methods, such as laryngeal imaging and aerodynamic analy-
sis [5–8]. When accurate acoustic voice measurements from voice samples are extracted,
these can support the diagnosis and treatment of voice disorders as well as evaluate voice
quality [9–14]. For example, previous studies have effectively evaluated voice with metrics
such as jitter, shimmer, harmonic-to-noise ratio (HNR), and smoothed cepstral peak promi-
nence (CPPs) [15–17]. The reliable and accurate extraction of voice metrics from the voice
recording’s signal is crucial for the effective assessment of voice quality. But, the reliability
of these acoustic voice metrics depends on many factors, such as recording equipment (e.g.,
microphone type, mic preamp, analog-to-digital hardware) or room conditions (e.g., rever-
beration, noise levels, types of noise) [18–22]. Not documenting or controlling for these
factors reduces the confidence in calculated acoustic voice parameters. Not accounting for
or controlling recording devices and room acoustics reduces the reliability of the calculated
acoustic voice parameters.
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Previous studies have examined how various environmental recording conditions,
such as different types of recording equipment and recording quality, affect the reliability of
acoustic voice parameters. For example, background noise at a signal-to-noise ratio (SNR)
below 30 dB significantly impacts the reliability of acoustic voice quality measurements,
such as jitter and shimmer [19,21]. Additionally, research has demonstrated that different
microphone types significantly influence clinically relevant acoustic voice parameters, such
as jitter, shimmer, and HNR, which, in turn, affect voice assessment outcomes [18,20,22–24].
While numerous papers have investigated the effects of room background noise and
recording equipment on acoustic voice measurements, research on the impact of room
reverberation remains relatively scarce in the literature. Studies examining voice production
in physical rooms with different reverberation times found significant differences in voice
quality measures [18,25]. In these cases, the room’s effect was highly influenced by the
speaker’s perception of and response to the room’s reverberation, which, in turn, influenced
voice production. Yet the recorded voice would also contain some degree of actual room
reverberation, though the extent of this impact remains unknown. In addition to speaker
adjustments to environmental conditions that typically affect the signal, previous studies
often combine reverberation with background noise, making it difficult to isolate the
specific effect of reverberation [18,25]. Another limitation is that research mainly focuses
on the impact of reverberation only on a narrow range of acoustic voice measurements
used to assess vocal health and voice quality.

This study aims to add to our knowledge and address the previous literature gaps by
using simulated room effects to investigate the impact of room reverberation times on voice
metric estimation—ruling out speaker responses to the varying room conditions. Therefore,
steady voice productions—recorded in a low-reverberation, low-noise environment—were
convolved with simulated room impulse responses covering different reverberation times
to assess their impact on common acoustic voice quality measures for steady vowel analysis.
We focused on the impact of simulated reverberation on jitter, shimmer, HNR, CPPs, and
alpha ratio. While CPPs is recommended as a primary acoustic voice metric in voice
clinics [7], the other included measures are still frequently utilized in clinical practice by
healthcare professionals, highlighting the importance of studying their reliability [26–28].
Understanding the sensitivity and stability of these acoustic voice metrics to a range of
room reverberations, without the human voice production response, allows for targeted use
of certain metrics even in less controlled environments, enabling selective application of
stable acoustic voice parameters. Such a result would be translatable to a range of linguistic
speech studies as well as in supporting better clinical acoustic voice assessments and
reliable acoustic voice markers for vocal health across diverse environmental conditions.

2. Methods
2.1. Audio Recordings

The audio recordings used in the current study were selected from a larger dataset [29,30]
and involved five college-age female native US English speakers. These participants were
recorded in a controlled laboratory environment at Michigan State University. None of the
participants recorded reported any communication limitations related to hearing, speech, or
voice. In clinical voice settings, it is common to obtain a steady vowel sample from clients
during assessment. Therefore, the recordings selected from the larger dataset included
sustained vowels [a:] held as long as comfortable. Each participant repeated the steady
vowels three times at two production goals: comfortable and clear/best quality. These
production goals were chosen to allow for a variety of voice production impacts from the
same person as well as to assess whether production style influences the reliability of acous-
tic voice measures under varying room conditions. Overall, clear speech—characterized
by exaggerated articulation, expanded vowel space, distinct formant frequencies, longer
duration, and greater intensity—enhances intelligibility and may offer greater robustness
to room acoustics than comfortable speech [31–33]. Furthermore, while running speech
was available to be used as well, steady vowels were chosen as a first step in building
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our understanding since they should be more robust to reverberation effects due to the
minimal dynamic changes in production (future endeavors can look at effects on running
speech) [34].

The voice recordings were collected in a double-walled attenuation and isolation booth
with a low background noise level of 33 dBA and a minimal reverberation time of 0.05 s.
A head-mounted, omnidirectional microphone (HMM; omnidirectional; Countryman B3)
was positioned approximately 5 cm from each participant’s mouth. The microphone was
connected to a low-noise, high-quality pre-amplifier (Millennia HV-3D) and converted
using an A/D converter (RME ADI-8 DS) through REAPER, a digital audio workstation
(WAV, 16-bit, 44.1 kHz). Vowel [a:] productions were repeated three times in the two
production styles and individually segmented for individual production analysis (6 for
each participant). After segmentation, the middle 3 s of the steady portion was selected for
analysis, ensuring it was free of abrupt terminations or initial onsets or offsets and without
rapid prosodic fluctuations in pitch and amplitude; this is a common process in vocal
quality assessments [35]. This was confirmed through careful listening and a perceptual
check of the recordings.

2.2. Simulated Room Reverberation Parameters

The recordings described above (baseline recordings from a quiet, low-reverberation
environment) were mixed with eight different levels of simulated reverberation effects, rang-
ing from very low to high reverberation times. The reverb effect in Audacity (version 2.4.1),
an audio editing software, was used to simulate various levels of reverberation. This
was achieved by mixing the baseline recordings with eight preset reverberation effects
in Audacity, ranging from minimal reverberation in near-anechoic conditions to highly
reverberant, church-like spaces. The preset parameters for each simulated room provided
by Audacity (such as room size, damping, and reverberance percentage) were used as
defined to facilitate reproducibility in future studies.

Reverberation time is calculated by measuring the time it takes for the sound pressure
level (SPL) of an impulse sound to decrease by a specific amount using a linear extrapolation
method. This involves creating a simulated impulse response, applying reverb effects,
and analyzing the decay rate of the sound to estimate the total reverberation time. In
this case, the freely available AURORA signal processing plugins for Audacity (https:
//www.aurora-plugins.com, accessed on 15 March 2024) were used [18,36,37]. This was
achieved by creating a simulated impulse response for each Audacity reverb effect using a
single sample impulse, applying the reverb effects, and then using the AURORA plugin to
generate a report of reverberation time at different third-octave bands (125 Hz to 16 kHz).

In this study, T20 was used for reporting reverberation time. T20 was estimated as the
time it took for the sound pressure level (SPL) to decrease by 20 dB, specifically between a
5 dB and 25 dB drop, and was then used to estimate the total reverberation time for a 60 dB
decrease by extrapolation. T20 (and T30, for that matter) is particularly useful in situations
where the full 60 dB decay cannot be directly measured, providing a reliable approximation
of the room’s reverberation characteristics. T20’s shorter decay range (compared to T30 or
T60) makes it less susceptible to modeling effects and noise, ensuring more accurate and
consistent results in simulated environments. In summary, T20 was chosen for its balance
of precision and practicality in estimating reverberation time in this situation [38–40].

Figure 1 shows an example of the calculated T20 values across different frequency
bands for four levels of simulated reverberation in Audacity: Minimal (indicating a simu-
lated anechoic chamber), Low, Medium, and High Reverb (referring to three rooms with
three reverberation levels). As is common in real rooms, the simulated reverberation time
decreases with higher frequencies, particularly for low, medium, and high reverberation
effects. Table 1 lists the mean T20 values, averaged across all bands, for each simulated
room condition and the anechoic chamber, along with the original Audacity effect names.
The simulated anechoic chamber had a reverberation time (T20) of 0.004 s. While this value
does not correspond to a typical room, it reflects the characteristics of treated acoustic
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spaces designed for minimal reverberation. This condition was included to examine the
impact of the convolution/reverb process and ensure that any digital effects introduced
were accounted for without adding additional reverberation.
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Figure 1. Examples of the computed reverberation time (T20) for four of the simulated room
conditions across different octave band frequencies. Minimal Reverb represents a simulated anechoic
chamber, while Low, Medium, and High Reverb correspond to simulated rooms with increasing
levels of reverberation intensity.

Table 1. Average reverberation time (T20) values across all frequency bands for each simulated room,
including the simulated anechoic chamber, generated using Audacity software (version 2.4.1).

Audacity Reverb Effect Simulated Room T20 (s)

Vocal I Anechoic Chamber 0.004
Small Room Dark Room 1 0.53

Small Room Bright Room 2 0.70
Vocal II Room 3 0.79

Large Room Room 4 0.91
Medium Room Room 5 0.95

Bathroom Room 6 1.03
Church Hall Room 7 1.80

2.3. Acoustic Voice Measurements

Various acoustic voice parameters, commonly used in voice evaluation, were calcu-
lated using the baseline recordings of each subject and then recalculated after applying
the eight different levels of simulated reverberation. While there were many voice metrics
that could have been used, we chose five commonly used to estimate voice quality in voice
research and clinical voice settings and are also part of the multiparameter acoustic voice
quality index (AVQI) [41–43]: jitter, shimmer, HNR, CPPs, and alpha ratio. These voice
metrics were estimated with PRAAT software (version 6.0.13) [44]. The PRAAT software is
open-source and widely used in linguistics, voice, and speech research and clinical settings,
ensuring consistency and repeatability of reporting. Below is a brief description of each of
these acoustic voice parameters and their relevance to voice quality assessment.

Jitter and shimmer are time-based measures used to assess the irregularities associated
with vocal fold vibration. Jitter measures cycle-to-cycle variability in the fundamental
frequency, while shimmer evaluates cycle-to-cycle changes in amplitude. Higher values
for both metrics suggest greater vocal fold vibration instability, indicating poorer voice
quality [45].

HNR is another time-based key acoustic voice parameter to assess voice quality. It
quantifies the ratio of harmonic (periodic) to noise (aperiodic) components in the voice
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signal—with higher HNR indicating a clearer, better-quality voice and lower HNR associ-
ated with increased turbulent noise, hoarseness, and vocal fold dysfunction [46,47].

The alpha ratio is a spectral-based parameter. It measures the balance between high-
and low-frequency energy in the acoustic voice signal [48]. It provides insights into
voice quality, with lower values indicating weaker high-frequency energy associated with
hypofunctional voices and higher values reflecting stronger high-frequency energy linked
to hyperfunctional voices [49–52].

CPPs is a spectral-based (cepstral-based) acoustic voice parameter commonly used
to evaluate vocal quality and correlates with vocal health. The metric corresponds to the
prominence of the harmonic structure of the voice signal, which is organized relative to
the background noise caused by breathy airflow [53,54]. Higher CPPs values indicate
a well-organized harmonic structure and periodic signal, reflecting better voice quality.
Lower CPPs values suggest disrupted periodicity and are often associated with breathiness
and roughness, making it a robust measure for assessing vocal quality [16,34].

The percent change in each voice metric due to different levels of simulated reverbera-
tion (T20 values) was calculated using the original recording measurements as the reference
point. Percentage transformation was chosen to standardize measures across different
scales, enabling meaningful comparisons between variables with varying units or magni-
tudes. By highlighting relative changes rather than absolute values, general trends and
proportional relationships were highlighted in the data, which are central to the objectives
of our study. Scatter plots were then created for each measure, showing the relationship
between simulated reverberation time and the percent change in the measurement. A
linear regression analysis was conducted to quantify this relationship, using the slope
and intercept of the fitted lines to represent how each measure changes with increasing
reverberation. The strength of the associations was also assessed, and the goodness-of-fit
(R2) of each linear regression model was evaluated to ensure the reliability of the results [25].
The detailed results of this analysis are presented in the next section.

3. Results

Using simulated reverberation, measured in T20, the impact of reverberation levels
on voice recordings was assessed in terms of five commonly used acoustic voice measures
—jitter, shimmer, HNR, alpha ratio, and CPPs. The percent change in each measure was
evaluated relative to its baseline (before reverberation) for two vocal styles: comfortable
[a:] and clear [a:]. This section provides a detailed analysis of the results and concludes
with a summary of the linear regression models (slope, intercept, and R2) for each measure
in relation to reverberation time.

Figure 2 shows jitter as a function of T20 where the mean values for all participants
are shown with error bars indicating the standard of deviation. The impact is expressed as
the percent change in jitter compared to its baseline value (before adding reverberation).
The y-axis shows the percent change, while the x-axis displays the reverberation time in
the simulated room. The figure presents two plots, one for each vocal style: comfortable
and clear. Overall, increasing reverberation time results in noticeable alterations to the
original jitter values for both styles. At the lowest simulated reverberation time (0.004 s),
the jitter values remain nearly identical to the original values, with only marginal changes
observed. For reverberation times below 1.03 s, the difference between the two styles
remains relatively small, with changes around 20%. However, at higher reverberation
times, the clear style shows less jitter variability. The maximum mean changes in jitter
reach about 60% in the comfortable style, compared to around 30% in the clear style
at the longest reverberation time (1.80 s). Additionally, there is a noticeable increase in
variability (standard deviation) in jitter change across subjects at higher reverberation
levels, particularly in the comfortable style.
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production. The red dashed line indicates the linear regression fit.

As Figure 3 illustrates, shimmer values exhibit a much larger percent change than
jitter in both vocal styles, as reflected by the steeper slope of the regression line and the
expanded y-axis scale (0–400%). Both vocal styles display a similar upward trend with
comparable mean changes and close variability across different reverberation levels. At a
low reverberation time close to 0.5 s, the change in the shimmer values increases by around
40%. Between 0.7 and 1.03 s, shimmer changes nearly double from baseline, reaching close
to 100%, with an anomaly at 0.91 s where the change approaches 200%. The maximum
shimmer change occurs at the longest reverberation time, peaking at a 300% rise (three
times the original value).
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Figure 3. The mean and standard deviation of the absolute percent change in shimmer as a function
of simulated reverberation time T20 for comfortable (left) and clear (right) sustained vowel [a:]
production. The red dashed line indicates the linear regression fit.

As shown in Figure 4, HNR is more stable than the previous two measures, with
change below 20% across most common reverberation levels. Only in the comfortable style
does the change reach 30% in the most reverberant case (1.80 s). Across both styles, for
reverberation times between 0.7 and 1.03 s, the change fluctuates around 10%, with minimal
change (approximately 3–4%) at the lowest reverberation time close to 0.5 s. Additionally,
in the comfortable style, variability among subjects increases with higher reverberation
levels, but in the clear style, variability remains consistent above a reverberation time
of 0.6 s.
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ratio (HNR) as a function of simulated reverberation time T20 for comfortable (left) and clear
(right) sustained vowel [a:] production. The red dashed line indicates the linear regression fit.

As can be seen in Figure 5, alpha ratio shows similar trends for both vocal styles. At
reverberation times below 1.03 s, the percent change in alpha ratio remains modest, not
exceeding approximately 25% in the comfortable style. In contrast, the clear style exhibits a
sharper increase, reaching around 70% at the same reverberation time. As reverberation
increases further, particularly in a highly reverberant environment (T20 = 1.80 s), the percent
change in alpha ratio rises significantly, approaching 150% in the comfortable style and
300% in the clear style. Excluding the maximum reverberation time, variability across
subjects is relatively small in the comfortable style, while the clear style demonstrates
slightly larger variability with greater standard deviation.
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production. The red dashed line indicates the linear regression fit.

As shown in Figure 6, CPPs demonstrates a robust behavior to reverberation effects,
being the least affected measure compared to the previous acoustic voice parameters. As
reverberation time increases, CPPs shows a gradual upward trend, similar to the other
measures. Yet, at reverberation times below 0.8 s, the percent change remains at 5% or less
for both vocal styles. Even at the highest reverberation time (T20 = 1.80 s), the increase is
moderate, rising to about 18% in the comfortable style and 15% in the clear style. Variability
across subjects, represented by the error bars, is consistently small throughout, with the
clear style showing particularly narrow margins, indicating lower variability.
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prominence (CPPs) as a function of simulated reverberation time T20 for comfortable (left) and clear
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Table 2 presents a summary of the linear fit equations and R2 values corresponding
to each acoustic voice parameter included in the previous analysis, with reverberation
time T20 (Rev) as the independent variable. The results give numbers to what is seen in
the figures, such as shimmer change remarkably exhibiting the largest slope in both vocal
styles, with a slope of 155.27 in the comfortable style and 161.28 in the clear style, indicating
a strong response of shimmer to increasing reverberation. The R2 values for shimmer are
also the highest among all measures, at 0.78 for the comfortable style and 0.86 for the clear
style, suggesting a strong fit to the linear model. Alpha ratio change displays the second
largest slope among the parameters. It also demonstrates the most significant difference
between the two styles. The clear style has a notably steeper slope of 129.65 compared to
69.12 in the comfortable style—indicating the strong response toward reverberation in the
clear style—yet both styles have the same R2 value of 0.63.

Table 2. Linear regression models and R2 values for the percent change in acoustic voice parameters
as a function of reverberation time T20 (Rev) for comfortable and clear style. The slope and intercept
values of the fitted linear models are provided, along with the R2 values that indicate the goodness-
of-fit for each model.

Vocal Parameter
Comfortable [a:] Clear [a:]

Linear Fitted Models R2 Linear Fitted Models R2

Jitter change (28.47) Rev – 6.23 0.7 (16.94) Rev – 1.12 0.78
Shimmer change (155.27) Rev – 21.56 0.78 (161.28) Rev – 17.93 0.86

HNR change (16.15) Rev – 1.10 0.85 (10.14) Rev – 0.63 0.84
CPPs change (8.66) Rev – 1.12 0.8 (7.25) Rev – 0.65 0.8

Alpha ratio change (69.12) Rev – 22.49 0.63 (129.65) Rev – 41.73 0.63

Jitter change follows with a moderate slope of 28.47 in the comfortable style and 16.94
in the clear style, implying greater vulnerability between the change in the jitter value
and reverberation in the comfortable vocal style. The clear style shows a slightly better fit
(R2 = 0.78) than the comfortable style (R2 = 0.70), and HNR and CPPs changes show smaller
slopes. HNR changes exhibit a slope of 16.15 in the comfortable style and 10.14 in the clear
style, with both models having high R2 values of 0.85 and 0.84, respectively, suggesting that
the linear relationship is well-fitted in both cases with less steep slopes. CPPs changes have
the lowest slopes overall (8.66 for comfortable and 7.25 for clear), with equal R2 values of
0.80 for both styles, indicating minimal sensitivity to reverberation impact and consistent
model performance across the different vocal styles.
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4. Discussion

Acoustic voice analysis in isolated sound booths with high-quality recording devices
ensures reliable voice evaluation. However, clinicians often collect recordings in inadequate
room acoustics, either in person or remotely, impacting reliability. This study aimed to
determine whether acoustic voice quality measurements are affected by changes in room
conditions, specifically reverberation, and how this could potentially influence clinical
assessment decisions. The present work addressed several limitations identified in previous
research. Many earlier studies focused on a limited range of reverberation times or com-
bined reverberation with other environmental factors, such as background noise [18,25].
This is because previous investigations were often limited by physical space or experimen-
tal constraints, which were addressed here by simulating a range of rooms. Furthermore,
most previous studies did not control for the adjustments speakers involuntarily make in
reaction to varying levels of reverberation and noise [18,23,25].

By isolating the effects of reverberation and simulating a broader range of conditions,
this study offered a more detailed and comprehensive analysis of how reverberation alone
influences five voice quality acoustic voice measures: jitter, shimmer, HNR, alpha ratio,
and CPPs. These acoustic voice measurements were chosen for their reported connection
to voice quality evaluation [15,16,23,55,56]. The acoustic voice parameters jitter, HNR, and
alpha ratio were found to be relatively reliable measures, though only within an acceptable
range of room reverberation time below T20 of around one second. Additionally, with
a proper, clear vocal style, HNR and jitter became more reliable and less susceptible to
adverse reverberation conditions. Shimmer, however, showed unreliability even with
minimal reverberation, regardless of vocal style, suggesting caution in its interpretation.
In contrast, CPPs demonstrated stability across both reverberation levels and vocal styles,
making it the most reliable metric for consistent voice quality assessment.

4.1. Detailed Discussion Points

The absolute percent change in the five acoustic voice parameters was examined in
response to the eight simulated reverberation conditions (ranging from minimal reverb
time T20 at 0.004 s to a large reverb time T20 at 1.80 s). Overall, the analysis revealed that the
five acoustic voice measures demonstrated varying degrees of sensitivity to reverberation
times. The most robust measure identified was CPPs, showing the least sensitivity to
room reverberation among all the acoustic voice parameters. Even in a highly reverberant
environment (T20 1.80 s), regardless of the vocal style, the percent change in CPPs values
did not exceed 20%, indicating high stability. The linear regression model confirmed this,
with CPPs showing strong R2 values—demonstrating a good fit—and the lowest slope
reflecting its minimal vulnerability to reverberation. This high stability highlights CPPs as
a reliable acoustic voice metric for assessing voice quality in varying acoustic environments
and across different vocal styles in clinical settings. These findings align with a prior
study, which also found that CPPs was the acoustic voice parameter least affected by room
acoustics, including background noise, reverberation, and microphone type [18].

In examining the impact of reverberation on other acoustic voice measurements, jitter
and HNR emerged as relatively robust parameters, demonstrating better stability than
shimmer and alpha ratio. Both metrics showed behavior similar to CPPs under moderate
reverberation conditions (T20 below 1.03 s), with mean changes under 20%. However,
in highly reverberant conditions above 1.03 s, jitter and HNR exhibited instability, with
larger percent changes. The vocal style also played a role in determining the percent
change for these metrics: in the clear vocal style, both jitter and HNR did not exceed 25%,
closely mirroring CPPs. In the comfortable style, however, the change climbed above 30%,
indicating more susceptibility. This comparison underscores the importance of clear vocal
production strategies in mitigating reverberation effects on these two measures. Most
previous studies focused on the impact of background noise on the reliability of jitter
and HNR [19–21,23,57], with findings showing jitter’s robustness compared to shimmer
(aligning with our results), as well as HNR stability but within an acceptable noise level
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(below 43.8 dB). Few studies have examined the effects of reverberation specifically, though
some reported relatively low sensitivity for jitter and higher sensitivity for HNR, often
in studies that mixed reverberation with noise levels [18]. Thus, HNR and jitter can be
reliable measures for evaluating voice quality in moderately reverberant clinics, especially
when patients phonate in a clear vocal style, which further enhances the reliability of
these measures.

Alpha ratio exhibited relatively high sensitivity to reverberation compared to HNR
and jitter, as seen both visually and in the regression models, showing large slope values.
However, alpha ratio displayed low percent changes at reverberation times below 1.03 s,
particularly in the comfortable vocal style, indicating stability under moderate reverberation
conditions. For longer reverberation times, the measure became less reliable, with more
than a doubling of its original value. This finding mostly aligns with another study
that showed alpha ratio’s relative robustness but under different types of environmental
conditions, with moderate levels of background noise [23]. Although both studies differ
in environmental conditions—background noise in that study and reverberation in the
present work—the general sensitivity pattern for alpha ratio remains close. Therefore,
alpha ratio can be considered a reliable measure in low-reverberation environments, but in
adverse acoustic conditions, it should be interpreted carefully.

Shimmer demonstrated the highest sensitivity to increasing room reverberation com-
pared to the other acoustic voice parameters, with this effect observed in both vocal styles.
Even at relatively low reverberation (T20 around 0.5 s), shimmer values were altered by
approximately 40% from their original value. Linear regression models reinforced this
outcome, showing shimmer with the largest slope values among all acoustic voice met-
rics, suggesting its strong responsiveness to variations in room acoustics. This outcome
is consistent with previous research, which indicates shimmer’s vulnerability to room
acoustics, including background noise and reverberation, compared to measures like f0,
alpha ratio, jitter, and CPPs [18–21,23]. This suggests that shimmer should be used with
caution unless room conditions are well controlled, with minimal reverberation, to ensure
reliable voice assessment.

4.2. Limitations and Future Directions

As with all research, there are inherent limitations and future opportunities. In this
study, room reverberation was simulated using freely available software, Audacity, and
applied to clean vowel productions. While using Audacity allows for easy repeatability
by others, future research could employ more advanced simulation of virtual acoustical
environments (e.g., Odeon, Ramsete) and compare such simulations to actual impulse
responses in real rooms (e.g., clinical rooms, classrooms, churches, or gyms). Other room
acoustic factors can also be considered in future studies, along with reverberation time,
such as clarity index and early decay time, which can contribute to altering the acoustic
voice signal. While this study focuses on reverberation, it typically coexists with some
level of room noise. Future studies should explore the controlled effects of different types
of noise and eventually combine noise with reverberation. These steps are crucial for
understanding the impact of room acoustics on parameters before considering the human
impact of production changes within these environments. Therefore, the current study
represents an essential step in this ongoing process.

Although the acoustic voice measures studied provide insights into their reliability un-
der varying room acoustics, their use may differ by clinical roles, such as otolaryngologists,
phoneticians, and speech-language pathologists. Understanding how often healthcare
professionals include acoustic voice measures in voice evaluations is crucial to contextu-
alize their reliability. A survey could identify commonly used measures in settings like
hospitals, clinics, and rehabilitation facilities and assess how these environments impact the
robustness of evaluations. In addition, new measures intended for future clinical use, such
as nonlinear or multiparametric approaches (e.g., dysphonia severity index, acoustic voice
quality index) [53,58–62], should be tested for their reliability before advancing toward
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practical clinical applications. This would help future research expand parameters to ensure
clinical relevance across diverse conditions.

Future studies could also test a range of recorded speech tasks and vocal quality. For
example, recordings could include both healthy and dysphonic voices or other factors such
as vocal age to support the generalizability of the findings. In this case, healthy female
steady vowel recordings were used, as steady vowels are a common clinical assessment
elicitation, and voice disorders are more common in females [63–67]. While this approach
was sufficient to demonstrate the sensitivity of parameters using five samples, it limited the
generalizability of findings across genders and different frequency ranges. A larger, more
diverse dataset, balanced across disorders and severity and including both male and female
voices, will be essential in future work to enhance robustness and applicability. Also, while
the use of sustained vowels was appropriate as they are a standard task in clinical and
research settings, future research should also consider the influence of room acoustics on
other running speech. Regardless of these limitations and future opportunities, the present
study provides practical steps necessary for understanding the effects of room acoustics on
voice measures and which parameters may be more suited to the range of environmental
conditions found in vocal use.

5. Conclusions

In conclusion, this study provides valuable insights into the impact of simulated room
reverberation on common voice quality measures, which are critical for assessing voice
quality. By simulating various reverberation levels and applying them to sound-booth
recordings, we eliminated extraneous environmental effects such as background noise,
recording equipment, and speaker adjustments, allowing for the pure impact of reverbera-
tion to be assessed—an aspect rarely studied on its own. The findings highlight the varying
reliability of acoustic voice measures under different reverberation conditions. These find-
ings have important clinical implications for voice assessments in spaces with varying
room acoustics as well as more general vocal quality assessment situations, underscoring
the differential sensitivity of common acoustic voice measures to environmental conditions.
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