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Abstract: This study primarily aimed at developing a novel multi-dimensional methodology to
discover and validate the optimal number of clusters. The secondary objective was to deploy it for
the task of clustering fibromyalgia patients. We present a comprehensive methodology that includes
the use of several different clustering algorithms, quality assessment using several syntactic distance
measures (the Silhouette Index (SI), Calinski–Harabasz index (CHI), and Davies–Bouldin index (DBI)),
stability assessment using the adjusted Rand index (ARI), and the validation of the internal semantic
consistency of each clustering option via the performance of multiple clustering iterations after the
repeated bagging of the data to select multiple partial data sets. Then, we perform a statistical analysis
of the (clinical) semantics of the most stable clustering options using the full data set. Finally, the
results are validated through a supervised machine learning (ML) model that classifies the patients
back into the discovered clusters and is interpreted by calculating the Shapley additive explanations
(SHAP) values of the model. Thus, we refer to our methodology as the clustering, distance measures
and iterative statistical and semantic validation (CDI-SSV) methodology. We applied our method
to the analysis of a comprehensive data set acquired from 1370 fibromyalgia patients. The results
demonstrate that the K-means was highly robust in the syntactic and the internal consistent semantics
analysis phases and was therefore followed by a semantic assessment to determine the optimal
number of clusters (k), which suggested k = 3 as a more clinically meaningful solution, representing
three distinct severity levels. the random forest model validated the results by classification into the
discovered clusters with high accuracy (AUC: 0.994; accuracy: 0.946). SHAP analysis emphasized the
clinical relevance of "functional problems" in distinguishing the most severe condition. In conclusion,
the CDI-SSV methodology offers significant potential for improving the classification of complex
patients. Our findings suggest a classification system for different profiles of fibromyalgia patients,
which has the potential to improve clinical care, by providing clinical markers for the evidence-based
personalized diagnosis, management, and prognosis of fibromyalgia patients.

Keywords: cluster analysis; machine learning algorithm; K-means; Big Data; fibromyalgia;
rheumatic diseases
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1. Introduction

Fibromyalgia represents the most prevalent source associated with chronic wide-
spread musculoskeletal pain, accompanied by fatigue and sleep disturbances, which are
present for at least three months and not explained by any other medical condition [1].
Fibromyalgia patients may exhibit a variety of other somatic symptoms including func-
tional impairment and psychiatric symptoms [2]. It is most common in women, and the
prevalence rises with age [3–5]. The estimated prevalence is 6.4% (7.7% in women and
4.9% in men) in the United States [4], and 3.3 to 8.3% in Europe and South America [5].
The etiology and pathophysiology of fibromyalgia is currently not known, and there is no
evidence of inflammation in the soft tissues [2]. It is considered a pain regulation disorder,
often classified as central sensitization [6], due to alterations in central nervous system pain
and sensory processing [7].

Identifying patient subgroups can assist in comprehending the modifiable risk factors
associated with each cluster and optimize personalized therapeutic strategies [8]. This is
important in fibromyalgia patients, as physicians may hesitate to accept them due to diffi-
culty in controlling symptoms and a lack of information about treatments and causes [9].
Prior research identified subgroups of women with fibromyalgia based on various char-
acteristics, such as pain, tender points, disability, sensory, cognitive, psychological, or
physical features [10–14]. Previous clustering research on fibromyalgia excluded patients
with trauma history, and comorbid systemic and rheumatological diseases [10]. However,
it is important to include comorbidities and trauma since fibromyalgia is more frequent
in rheumatic diseases [15]. Moreover, up to one-fourth of the patients had precipitating
physical trauma [16], and psychological trauma; especially, childhood trauma is a risk
factor for the fibromyalgia onset [17].

In recent years, machine learning (ML) has emerged as a pivotal tool in various
fields, including the medical field [18,19] due to its ability to uncover patterns and insights
from complex datasets. For instance, graph-based deep learning has been utilized for
medical diagnosis [20], and inverse reinforcement learning (IRL) algorithms have optimized
performance in complex systems [21]. These advancement in ML, particularly in clustering
techniques, have shown promise in various medical applications [22–24]. The potential
of ML in enhancing the understanding and treatment of complex medical conditions like
fibromyalgia is significant, especially given the challenges in subgroup identification and
the need for personalized treatment strategies.

Recent advances in clustering methods lack consensus on optimal methods and
validation approaches. Therefore, the primary aim of our study is to address this unmet
need by developing and evaluating a novel comprehensive multi-dimensional. clustering
methodology. This methodology is designed to be broadly applicable in various contexts,
with a specific emphasis on determining the optimal number of clusters in a given dataset.
The secondary objective is the application of this developed methodology to the specific
case of clustering fibromyalgia patients. This application is intended to demonstrate
the utility of the methodology in a practical healthcare context, providing insights into
the heterogeneity of fibromyalgia. By implementing the suggested novel clustering
methodology, we aim to identify the optimal clustering approach for fibromyalgia patients
and provide a generalizable method for other clinical datasets. This study presents
a significant contribution to clustering methods and to clinical knowledge discovery,
offering a robust and comprehensive novel clustering framework. Furthermore, unlike
prior research in the fibromyalgia domain, which included dozens of [14] or several
hundred patients [10,11,13], our study includes 1370 patients with a comprehensive
documentation of their socio-demographics, comorbidities, symptoms, trauma, sleep,
pain, functional problems, and treatment modalities. This enabled us to address the full
heterogeneity of the population of fibromyalgia patients.
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2. Methods
2.1. Data Source, Study Participants and Questionnaire

This research is part of the Rheumatic Monitor study, which focuses on advancing
personalized medicine by identifying patterns that predict the severity of rheumatic dis-
eases and treatment response [25]. In the Rheumatic Monitor study, we developed a mobile
application for iPhone and Android operating systems that collects baseline and dynamic
questionnaires and includes an option to report on pain attacks and visualize pain reports.
More about the Rheumatic Monitor study and the application can be found on the research
website: https://www.rheumaticmonitor.org/, accessed on 1 January 2024 [25].

We recruited 1370 fibromyalgia patients voluntarily from an Israeli fibromyalgia
association who responded to a comprehensive questionnaire. In total, 163 features,
151 categorial and 12 numerical, were obtained via a the 28-question online survey, based
on the Rheumatic Monitor application questionnaire, including variables for painful areas,
co-morbidities, sleep problems, and other domains. The parameters used in the analyses
are depicted in Figures 3–7.

Eligibility criteria
Inclusion criteria: Patients aged 18–99 years, with a fibromyalgia diagnosis given by

their rheumatologist.
Exclusion criteria: Patients under 18 years, and pregnant women/breastfeeding

women; patients under 18 years of age due to the need for additional ethical approvals
required for minors and their distinct epidemiological and medical characteristics.

2.2. Ethical Approval

The study received approval from the Institutional Review Board (IRB) of Hadassah
Medical Organization (HMO), approval number 0205-19-HMO. As the study only entailed
anonymous survey analysis, an exemption from informed consent was granted by the IRB.

2.3. The Clustering, Distance Measures and Iterative Statistical and Semantic Validation
(CDI-SSV) Methodology

We propose a comprehensive multi-dimensional validation methodology for clustering
fibromyalgia patients, integrating both syntactic (based on data’s quantitative attributes)
and semantic (based on meaning) distance measures. Figure 1 illustrates this methodology.
We refer to the first phase of our methodology as the CDI phase, a syntactic analysis that
employs several clustering algorithms, and distance measures. These are followed by
multiple iterations to evaluate the influence of varying initial seeds, clustering consistency
with partial data, and within and between algorithm clustering consistency. Subsequently,
the SSV phase utilizes statistical analysis to validate the clinical semantics of the potential
clustering options that survived our rigorous pipeline. Finally, validation of the clusters is
conducted using a supervised machine learning (ML) model to classify the patients back
into the discovered clusters, and the interpretation is further enhanced through Shapley
additive explanations (SHAP) analysis.

https://www.rheumaticmonitor.org/
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Figure 1. The CDI-SSV Methodology: An Integrated Approach for Clustering Validation. The
figure provides an overview of the Clustering, Distance measures, and Iterative Statistical and
Semantic Validation (CDI-SSV) methodology. The CDI phase serves as the initial step, involving the
evaluation of cluster quality, the impact of different starting seeds, and the consistency of clusters
across various algorithms and pre-defined values of k. Within- and between-consistency checks, along
with evaluations of internal semantic consistency, are performed to assess the optimal algorithm and
values of k. In the subsequent SSV phase, an external semantic analysis of the results is conducted,
with a particular focus on the clinical context, thus enhancing the validation process. Finally, machine
learning techniques are employed to validate the results, and their interpretation is facilitated by
SHAP (Shapley additive explanations) values.

2.4. Data Scaling

Prior to clustering the dataset, we applied feature-wise scaling to the data using
StandardScaler from sklearn.preprocessing, so each feature contributed equally to the
analysis. This standardized each feature to a mean of zero and a standard deviation of one.
Such standardization ensures that features with larger ranges do not disproportionately
influence the clustering, thereby maintaining comparability across our dataset’s diverse
features, such as clinical and demographic variables. We then applied various clustering
algorithms available in the scikit-learn (sklearn) library in Python [26].

2.5. The CDI (Clustering, Distance Measures, and Iterative) Phase
2.5.1. Clustering Algorithms

We evaluated and compared three widely-used clustering algorithms: K-means [27,28],
Gaussian mixture [29,30], and agglomerative clustering [31], utilizing different linkage
methods (complete, ward, average, and single) [32]). These algorithms were selected for
their proven effectiveness in handling diverse data types and their widespread use in
similar studies. For each of these algorithms, we employed the default parameters as
implemented in the scikit-learn (sklearn) library in Python. This decision was made to
ensure consistency with standard practices in the field and to facilitate reproducibility
by other researchers. We also used Gower’s distance metric [33] as the distance function
between data points, suitable for mixed data types like ours.
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2.5.2. Distance Measures
Syntactic Clustering-Quality Evaluation Metrics

To assess clustering quality, we used internal metrics like the silhouette index (SI) [34,35],
Davies–Bouldin index (DBI) [36], and Calinski–Harabasz index (CHI) [37]. These metrics
were chosen for their ability to provide a comprehensive assessment of clustering quality.
The SI score provides insights into the matching of data points to their assigned clusters
and neighboring clusters, with higher scores indicating better matching. The DBI score
measures the separation between clusters, with lower scores indicating better separation.
The CHI score indicates the degree of cluster definition, with higher scores representing
better-defined clusters. For each algorithm and number k of clusters, we calculated the SI,
DBI, and CHI. In addition to these metrics, we employed the adjusted Rand index (ARI) to
quantify the similarity between two clustering solutions. The ARI score ranges from −1 to 1
(0: random correlation; 1: perfect correlation). These metrics collectively offer a balanced
evaluation of cluster cohesion and separation, essential for our study’s objectives.

Assessment of the Clustering’s Quality via Multiple Syntactic Distance Evaluation Metrics

To assess the robustness and stability of the clustering algorithms under various
conditions, we employed several approaches [38–40]. We computed three evaluation
distance measures metrics (the SI, CHI, and DBI) for each algorithm (K-means, Gaussian
mixture, and agglomerative clustering using all four linkage methods), and for each value
of k, with and without the use of Gower’s distance metric. This allowed us to compare
the performance of the different algorithms and examine the impact of the number of
clusters (k) on the quality metrics.

2.5.3. Iterative Phase

We tested the stability of our algorithms under different conditions, such as varying
starting seeds, and using subsets of data. This helped us ensure the reliability of our
clustering results.

Assessing the Clustering’s Sensitivity to Starting Seeds

We conducted a thorough evaluation to examine the impact of initial seeds on the
performance of the K-means and Gaussian algorithms. To assess their sensitivity, we
performed 30 iterations of each algorithm, both with and without the utilization of the
Gower’s metric. This evaluation used various k values, employing SI, CHI, and DBI as the
evaluation metrics. The results were presented in a box plot showcasing the mean score
index across all runs. This analysis allowed us to assess the stability of algorithms under
diverse starting conditions.

Within and between Clustering Consistency Using the Adjusted Rand Index (Ari)

We performed 30 iterations using a randomly selected subset amounting to 70% of
the data to assess cluster consistency. We counted the number of “bad clusters” defined as
clusters containing <5% of the data, and calculated the SI, CHI, and DBI scores for each
algorithm and k value. The mean, standard deviation, and distribution of these scores were
analyzed using box plots.

Within and between Clustering Consistency Using the Adjusted Rand Index (ARI)

To evaluate the overall clustering consistency, we applied each algorithm to the dataset
for 10 iterations using random seeds. We saved the resulting labels after each iteration.
Intra-algorithm consistency was assessed by calculating ARI scores for all possible pairs of
labels (45 pairs in total for 10 iterations), assessing the consistency of patient assignment to
the same cluster across different iterations, seeds, or metrics for each algorithm. Additionally,
inter-algorithm similarity was examined by comparing the results of two different algorithms,
aiming to verify the consistency of patient assignment with different algorithms.
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Internal Semantic Assessment through Multiple Bagging Iterations Using Partial Subsets
(70%) of the Data

In addition to the internal evaluation metrics and ARI scores, we conducted a semantic
evaluation of the clustering results. For each k value, we clustered the dataset 10 times
using a random 70% subset selected through bagging. To assign semantic labels to clusters
across iterations, we manually identified semantically similar clusters based on key clinical
features, to ensure that those with similar semantics had the same label. For example, we
consistently labeled cluster “Ci,0” from iterations i = 1 to 10 as “Cluster 0”, which repre-
sented the cluster that appeared to be the “sickest” in each iteration. We identified cluster
semantics using aggregative features, such as the sum of pain locations, and compared the
proportions of categorical demographic and clinical features (e.g., percentage of females)
among clusters with different semantics generated in different iterations. Specifically,
we compared Cluster C_(i,km

) (e.g., the semantically identified sickest cluster, generated
for k = k, in iteration i) to Cluster C_(j,km

) for 1 ≤ i, j ≤ 10, i ̸= j (e.g., the semantically iden-
tified sickest cluster generated in each of the 10 iterations). This comparison was performed
for all m = 1..k clusters, resulting in 45 × k pairs of clustering instances being compared.
We employed a Z proportion test to calculate the difference in proportion of each of the
151 categorical features for each cluster. This analysis helped us to assess the consistency
of cluster semantics across iterations and identify potential sources of variability in the
clustering results.

2.6. The SSV (Statistical and Semantic Validation) Phase

Once the method and the optimal number of k clusters were determined, we moved to
the SSV phase. Here, we statistically validated the clusters’ clinical relevance by analyzing
associations with various patient features.

2.6.1. External (Clinical) Semantic Assessment Using Statistical Analysis

To statistically evaluate the selected clusters, we analyzed the associations of the
clusters with continuous and categorical features. For continuous features, we calculated
the mean and standard deviation and employed the student t-test (k = 2) or ANOVA
corrected with Bonferroni (k > 2) to examine the differences in cluster distributions. For
categorical features, we computed frequencies and percentages and utilized either Pearson’s
chi-square test (k = 2) or the likelihood ratio test (k > 2). The significance level was set
at 0.05 to determine the statistical significance of the observed results.

2.6.2. Cluster Validation and Interpretation Using Machine Learning and SHAP

To validate the clusters identified, we used a random forest model to predict the
cluster assignments for each patient. For this model, we utilized the default parameters
as implemented in the scikit-learn (sklearn) library in Python. This machine learning
approach was chosen for its robustness and ability to handle complex, multi-dimensional
data. Further, to understand which features most influenced these predictions, we utilized
SHAP values. SHAP values provide insights into the contribution of each feature to the
prediction made by the model, thereby clarifying which features are most influential in
defining each cluster, enhancing the interpretation of the clustering results. To facilitate this
computation, we utilized the TreeExplainer method, designed for tree-based models [37,38];
like random forest, this method allows for an efficient and accurate interpretation of the
model’s output. Moreover, to enhance interpretability, we grouped features into aggregative
sums, enabling us to analyze the collective impact of related features on the clustering,
providing a more holistic view of the factors that differentiated the patient clusters.
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3. Results
3.1. Results of the CDI Phase
3.1.1. Results of the Clustering Phase

In total, 1370 subjects were included in the analysis. Initially, we employed principal
component analysis (PCA) [41,42] to visualize the outcomes of various clustering algo-
rithms across different k values. The PCA analysis incorporated 88 components, which
accounted for over 80% of the data’s variance. For a visual representation of each algorithm
across different k values, refer to Figure A1, Appendix A. The visualizations indicate that
the K-means and Gaussian clustering methods exhibit greater similarity in their cluster
assignments compared to those under the agglomerative clustering method using the Ward
linkage criterion. Interestingly, applying different linkage criteria to the agglomerative
method often resulted in most data points being assigned to a single cluster, suggesting
that linkage criteria other than that of Ward may yield less meaningful cluster assignments.

Additionally, we examined the impact of various linkage criteria on agglomerative
clustering results as illustrated by a dendrogram in Figure A2, Appendix A. The den-
drogram reinforces our observation that employing linkage criteria other than that of
Ward tends to result in less meaningful cluster assignments. Consequently, the careful
selection of an appropriate linkage criterion is crucial for achieving meaningful results in
agglomerative clustering.

3.1.2. Results of the Distance Measure Phase

The evaluation metrics (SI, CHI, and DBI) were employed to assess the quality of
clusters generated by the K-means, Gaussian mixture, and agglomerative Ward algorithms
for various k values. These results are depicted in Figure 2.

Figure 2. Evaluation of clustering algorithms using evaluation metrics. (A) Silhouette index (SI):
the SI scores for different values of k indicate that K-means with Gower’s distance metric achieved
the highest score for k = 2, 3, and 5. (B) Calinski–Harabasz index (CHI): K-means consistently
outperformed other algorithms, achieving the best score across all values of k. (C) Davies–Bouldin
index (DBI): K-means demonstrated superior results for all values of k.

For clarity, we omitted results from agglomerative algorithms with linkages that
clustered almost all points into a single cluster. However, their results can be found
in Figures A3–A5, Appendix A.

Silhouette Index (SI)

The SI measure displayed in Figure 2A shows that using Gower’s distance metric
improved the results. Specifically, K-means with Gower’s distance metric achieved the
highest SI score for k = 2, 3, and 5, followed by Gaussian mixture with Gower’s distance
metric, which exhibited a slightly better score for k = 4. The agglomerative Ward algorithm
performed relatively worse across most k values. Additionally, K-means outperformed
Gaussian mixture for k = 1 and 5 but not for k = 2 and 3. Notably, the SI score tends to
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decline with an increasing k value in almost all algorithms, except for K-means, where it
remains relatively consistent for k = 3, 4, and 5.

Calinski–Harabasz Index (CHI)

Figure 2B illustrates the CHI measure. K-means consistently achieved the highest
score for all k values, followed by Gaussian mixture and the agglomerative algorithm with
Ward linkage. Interestingly, the use of Gower’s metric led to inferior results. The CHI score
also decreased as k increased.

Davies-Bouldin Index (DBI)

The DBI measure is depicted in Figure 2C. The use of Gower’s metric significantly
worsened the results, leading to their exclusion from Figure 2C. K-means consistently at-
tained the best (lowest) DBI score across all k values. Gaussian mixture outperformed the ag-
glomerative algorithm with Ward linkage for k = 2 and k = 3 but not for k = 4 and k = 5. Un-
like the SI and CHI scores, no improvement in the DBI score was observed as the k increased.

In summary, Figure 2 shows that K-means outperformed the other algorithms in two of
the three evaluation metrics. Specifically, in terms of the CHI score, K-means demonstrated
superior performance across all k values, surpassing all other algorithms. Additionally, for
the DBI score, K-means achieved the best (lowest and thus best) score across all k values
after excluding algorithms that clustered most points into a single cluster. These results
suggest that K-means exhibits greater robustness and stability compared to those of the
other algorithms examined in our study.

3.1.3. Results of the Iterative Phase
Assessment of Clustering Algorithms’ Sensitivity to Initial Seeds

We conducted 30 iterations of the K-means and Gaussian algorithms, with varying
starting seeds for different k values. As expected, agglomerative clustering was not influ-
enced by the starting seed. The results are depicted in Figures A6–A8, Appendix A, which
present the boxplots of SI, CHI, and DBI scores.

Although clustering algorithms are acknowledged to be sensitive to initial seeds, we
found minimal variation in performance across different seeds in our dataset. K-means
with k = 2, 3, and 4 exhibited a standard deviation of performance of less than 0.05 across
seeds. However, using Gower’s metric led to increased variance in certain cases, yielding
inferior results in terms of the DBI score. Hence, our findings suggest that while Gower’s
metric can improve performance and reduce variance in some scenarios, it might increase
variance in others.

Evaluation of Cluster Consistency Using Random Subsets of 70% of the Data

In this assessment, involving counting the number of “bad clusters”, K-means, both
with and without the Gower metric, did not generate any bad clusters for k = 2, 3, and 4.
Conversely, agglomerative algorithms using average, single, and complete linkages consis-
tently generated a high number of bad clusters, as detailed in Table A1, Appendix A. These
findings are supported by the visualization in Figure A1, where these algorithms clustered
most points into a single cluster, resulting in underrepresented clusters. Using the Gower
metric in K-means, Gaussian mixture, and agglomerative clustering with complete linkage
reduced the number of bad clusters and improved the clustering iterations. Notably, an
increase in the value of k corresponded to a proportional rise in the number of bad clusters
across all algorithms.

Comparison of SI, CHI, and DBI Scores using 100% and 70% of Data

To explore clustering performance, we calculated the SI, CHI, and DBI scores for each
iteration and k value, using a random subset of 70% of the data, and compared them to
the scores obtained when using the complete dataset. The comparative analysis, presented
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in Figure A9, Appendix A, reveals consistent performance, with mean scores showing little
variation between using 100% and 70% of the data.

Assessing Consistency within and between Clustering Methods Using the Adjusted Rand
Index (ARI)

To evaluate consistency within and between clustering algorithms, we conducted
an analysis of intra-algorithm and inter-algorithm similarity. For each algorithm and
k value, we performed clustering on the entire dataset using 10 random seeds, saved the
resulting labels, and calculated the ARI score for all possible pairs of labels, resulting in
45 pairwise comparisons. The results of the intra-algorithm and inter-algorithm analyses
are presented in Table 1.

Table 1. Intra-algorithm and inter-algorithm adjusted Rand index (ARI) scores using 10 random seeds.

Intra-Algorithm adj. Rand Index k = 2 k = 3 K = 4 K = 5 Intra-Algorithm adj. Rand Index k = 2 k = 3 k = 4 k = 5

K-means 0.998 0.977 0.893 0.722 K-means, Gaussian 0.751 0.615 0.590 0.574

Gaussian 0.990 0.747 0.673 0.597 K-means Gower, Gaussian Gower 0.764 0.743 0.931 0.900

K-means Gower 1 0.999 1 0.985 K-means Gower, Gaussian 0.756 0.537 0.561 0.525

Gaussian Gower 1 0.739 0882 0.80 K-means, Gaussian Gower 0.751 0.674 0.6239 0.543

Gaussian X Gaussian Gower 0.978 0.609 0.558 0.518 AggWard, K-means 0.764 0.743 0.93 0.9007

K-means X K-means Gower 0.944 0.819 0.642 0.546 AggWard, gaussian 0.520 0.367 0.33 0.297

AggWard 1 1 1 1 AggComplete, K-means −0.0001 −0.0002 0.0013 0.0068

AggComplete 1 1 1 1 Agg Complete, Gaussian 0.00005 0.0005 0.0045 0.0106

AggAverage 1 1 1 1 Agg Average, K-means −0.0001 0.0020 0.0008 0.0014

AggComplete Gower 1 1 1 1 Agg Average, Gaussian 0.00005 0.0018 0.0025 0.0018

AggAvg Gower 1 1 1 1 Agg Single, K-means −0.0001 −0.0002 0.0005 0.0013

In the intra-algorithm similarity analysis, K-means demonstrated remarkable robust-
ness, with minimal differences observed for k = 2 and k = 3. The utilization of Gower’s
metric improved the algorithm’s robustness across all k values. Interestingly, both K-means
and Gaussian mixture produced highly similar clustering results, regardless of whether
they used Gower’s distance metric or not, with ARI scores of 0.944 and 0.978, respectively.
As expected, the agglomerative algorithm was unaffected by different seeds and consis-
tently yielded identical results, resulting in an intra-score of 1. The ARI scores of K-means
with different metrics were quite similar, particularly for k = 2 and k = 3 (0.944 and 0.819
respectively). Similarly, Gaussian mixture with different metrics also achieved a very high
score for k = 2 (0.978).

The inter-algorithm similarity analysis revealed a high ARI between K-means and
Gaussian mixture for both metrics. Interestingly, when both algorithms employed the
Gower metric, the ARI increased for k = 4 and k = 5 (0.931 and 0.900 respectively). The
agglomerative algorithm with Ward linkage also exhibited a high ARI score, while the
agglomerative algorithm with other linkages demonstrated lower similarity.

3.2. Results of the SSV Phase
3.2.1. The Semantic Phase
Semantic Assessment of Clustering Methods Using 70% of the Data

Following the internal evaluation metrics and ARI score, we conducted a semantic
assessment of the clustering algorithms using subsets comprising 70% of the data. K-means
was chosen due to its superior performance in previous assessments, evidenced by its CHI
and DBI scores, robustness in intra-algorithm analysis, and similarity to Gaussian mixture
and agglomerative (Ward) algorithms in the inter-algorithm analysis. K-means generated
no bad clusters for k = 2, 3, and 4, but had a few bad clusters for k = 5. Despite the known
influence of the starting seed, we noted minimal variability in the scores across different
seed runs.
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To conduct this analysis, we clustered the dataset 10 times using random subsets of
70% of the data for each k value. In each iteration, we manually relabeled clusters. We then
conducted Z proportion tests to compare demographic and clinical categorical features
between clusters with different semantics.

For k = 2 and k = 3, no statistically significant differences were observed between
any pair of clusters at an alpha level of 0.001, indicating semantic consistency even
with 70% of the data. For k = 4 and k = 5, we found statistically significant differences
in 55 pairs and 2822 pairs, respectively, at alpha = 0.001.

External Semantic Assessment Using Statistical and Clinical Evaluation of Selected Clusters

Although both k = 2 and k = 3 were viable syntactic solutions for K-means, our
semantic statistical analysis indicated that k = 3 held more clinical significance. Therefore,
we will detail the k = 3 clusters generated by K-means in the following paragraphs. The
results for k = 2 are included in Appendix A and discussed below.

Demographics and Smoking Habits across the Clusters

The age range was 8–85, the mean age was 44.5 ± 12.4 years, and 1243 (90.7%) of the
participants were women while 127 (9.3%) were men. The demographics and smoking
habits across the clusters are presented in Figure 3.

Figure 3. Demographics and smoking habits across the clusters (k = 3) (likelihood ratio).

The distribution of the clusters within the study population was as follows: Cluster 0
(293 subjects, 21.4%), Cluster 1 (632, 46.1%), and Cluster 2 (445, 32.5%) (Figure 3A).

No statistically significant associations were found between any specific cluster and the
following demographic characteristics: age (p = 0.384, Figure 3B), sex (p = 0.228, Figure 3E),
being native Israeli (p = 0.793, Figure 3C), being born in any other immigrant countries
(Figure 3D), and marital status (Figure 3E). However, significant differences were observed
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among the clusters in relation to other factors. As depicted in Figure 3E, Cluster 1 reflected
the least severe condition, Cluster 0 reflected the worst, and Cluster 2 fell in between.
The following comparisons showed statistically significant differences among the clusters:
having a steady job (p < 0.001), reporting a worsening of fibromyalgia in the last year
(p < 0.001), and current smoking status (p < 0.001). Cluster 0 had the highest prevalence
among those with a high school education (p = 0.001) and diploma education (postgraduate
qualification after high school, but not an academic degree) (p < 0.001).

Comorbidities and History of Trauma across the Clusters

The distribution of comorbidities and trauma history across the clusters are presented
in Figure 4. Cluster 0 had a significantly higher prevalence of all analyzed systemic diseases
(Figure 4A), as well as of rheumatological conditions, except for systemic lupus erythe-
matosus (SLE), where it showed a significantly lower prevalence (Figure 4B). Additionally,
Cluster 0 exhibited a higher number of emotional and physical traumatic life events both
before and after the onset of fibromyalgia (Figure 4C). There were no statistically significant
differences observed between the three clusters regarding the presence of certain systemic
comorbidities, including malignancy (p = 0.619), hyperthyroidism (p = 0.194), liver disease
(p = 0.086), and kidney disease (p = 0.921). Similarly, no significant differences were found
among the clusters for various comorbid rheumatological conditions, including rheumatoid
arthritis (p = 0.209), Sjögren syndrome (p = 0.977), Ankylosing spondylitis (p = 0.155), psori-
atic arthritis (p = 0.073), familial mediterranean fever (p = 0.587), scleroderma (p = 0.307),
gout (p = 0.074), and pseudogout (p = 0.214); these non-significant findings are not shown
in the figures.

Figure 4. Comorbidities and history of trauma across the clusters (likelihood ratio).

Symptoms, Sleep and Functional Problems and Treatment Modalities across the Clusters

The distribution of symptoms, sleep problems, functional mobility problems, and
treatment modalities across the clusters are presented in Figure 5. Cluster 0 exhibited a
significantly higher number of symptoms (Figure 5A) along with a greater prevalence of
sleep problems (Figure 5B) and functional mobility issues (Figure 5C). Regarding treatment
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modalities, Cluster 0 underwent more treatments overall, except for exercising (p < 0.001).
Notably, no significant differences were observed in the use of certain treatments, such as
the Tai Chi (p = 0.256) and Feldenkrais method (p = 0.539) (Figure 5D).

Figure 5. Symptoms, sleep and functional problems and treatment modalities across the clusters
(likelihood ratio).

Years with Fibromyalgia, Pain, Sleep, Quality of Life and Treatment Effectiveness across
the Clusters

The ANOVA analysis and post hoc Bonferroni tests examining the years with fi-
bromyalgia, pain levels, sleep, quality of life, and treatment effectiveness across the clusters
is presented in Figure 6. The number of years patients had fibromyalgia did not show
any statistically significant differences between the clusters (p = 0.161). As illustrated
in Figure 6A, Cluster 0 represents the most severe condition, Cluster 1 represents the least
severe condition, and Cluster 2 falls in between. Significant differences were observed
among the clusters in terms of pain levels, sleeping hours, sleep quality, and quality of life.
Cluster 0 reported the lowest scores in treatment effectiveness, which were statistically sig-
nificantly lower than those of Cluster 1 (p < 0.001), but not statistically significant compared
to those of Cluster 2 (p = 0.319).

The distribution of specific pain locations across the clusters is depicted in Figure 6B.
Statistically significant differences were observed between the clusters for all body locations.
Contrary to previous observations, the highest proportions of patients reporting pain were
found in Cluster 2, followed by Cluster 0, which exhibited similar proportions in all painful
areas. Cluster 1 had the lowest proportions of patients reporting pain in various body areas.
Notably, none of the patients in Cluster 1 reported pain in all body areas.

In summary, our statistical and clinical evaluation of the k = 3 clusters indicates
that Cluster 0 represents the most severe condition, Cluster 1 represents the least severe
condition, and Cluster 2 falls in between. Significant differences were observed among the
clusters in terms of comorbid medical conditions, symptoms, sleep patterns, functionality,
and treatment outcomes. However, no significant differences were observed in terms of
pain locations.
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Figure 6. Years with fibromyalgia, sleep, quality of life, treatment effectiveness, and pain level and
locations (analysis of variance (ANOVA) corrected with Bonferroni test for multiple comparisons).

3.2.2. The Validation Phase: A Cluster Classification Model and Computation of Its SHAP
Values to Assess the Relative Importance of Different Features When Forming Clusters

We validated the clustering results using a random forest model to predict cluster
assignments, incorporating aggregated features like medical comorbidities and treatments.
We obtained a mean ROC (receiver operating characteristic) AUC (area under the curve)
score of 0.9943 and an overall accuracy of 0.9459 with 10-fold cross-validation. To assess the
relative importance of these aggregated features in predicting and interpreting the clusters,
we calculated SHAP values.

Figure 7A displays the top 20 features in the cluster prediction. Dot plots for cluster
0, 1, and 2 are presented in Figure 7B–D, respectively. Figure 7B shows that Cluster 0
(sickest) was uniquely positively associated with mobility functional problems, the most
significant feature for this cluster. In contrast, Cluster 1 (healthiest) and Cluster 2 ranked the
sum of painful areas as the most significant parameter and exhibited a negative association
with mobility problems, as depicted in Figure 7C,D, respectively. While Cluster 0 and 2
were positively associated with the sum of painful areas, Cluster 1 demonstrated a negative
association. Cluster 0 also had positive associations with several symptoms, painful areas,
comorbidities, sleep problems, mental health, and work absence, but showed negative
associations with quality of life, steady employment, and sleep quality and duration. Age
did not significantly contribute to cluster differences.
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Figure 7. SHAP (Shapley additive explanations) model to predict clusters, k = 3. (A) Bar plot for
mean SHAP values of k = 3; (B) dot plot for Cluster 0; (C) dot plot for Cluster 1; (D) dot plot for
Cluster 2.
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3.3. The k = 2 Solution

The k = 2 solution represented valid syntactic clustering, as determined by the three-
distance metrics used. However, both k = 2 and k = 3 were legitimate syntactic solutions
according to the ARI stability metric. Therefore, we conducted a semantic statistical analysis
to assess the clinical relevance of the clusters for both k = 2 and k = 3. The k = 3 solution
emerged as a meaningful form of clustering, identifying three sub-classes of fibromyalgia
severity: Cluster 0 (most severe condition), Cluster 1 (least severe condition), and Cluster
2 (intermediate). Significant differences were observed in various comparisons related
to comorbid medical conditions, symptoms, sleep patterns, functionality, and treatment
outcomes, although not in terms of pain locations.

To evaluate the k = 2 solution, we employed the same statistical tests, ML model
(random forest), and SHAP explanations. Detailed results for the k = 2 solution are available
in the Appendix A. k = 2 clustering resulted in two clusters: Cluster 0 with 731 subjects and
Cluster 1 with 639 subjects. Cluster 0 consisted of patients with more severe conditions,
while Cluster 1 comprised patients with less severe conditions. Further analysis showed
that Cluster 0 in the k = 2 solution combined elements of both Cluster 0 (most severe) and
Cluster 2 (intermediate severity) from the k = 3 solution. Patients in Cluster 1 for the k = 3
solution predominantly remained as Cluster 1 (healthier cluster) in the k = 2 solution.

To assess differences within each feature between the two clusters, we used Pearson’s
chi-square test for categorical parameters and an independent t-test for continuous variables.
The results of these tests are detailed in Table A2 in Appendix A. Although there were
differences between the two clusters in the k = 2 solution, the k = 3 solution exhibited a
greater number of statistically and clinically significant features. The absence of significant
differences in certain features could be attributed to the merging of the most severe and
intermediate clusters.

In the prediction models for k = 2 using the random forest model with 10-fold cross-
validation, we achieved an ROC AUC and accuracy of 0.99. The SHAP algorithm results
for K-means clustering with k = 2 are presented in Appendix A (Figure A10). Pain locations
and mobility functional problems were highly ranked in both Cluster 0 and Cluster 1, but
with opposite associations.

Both k = 2 and k = 3 partitioning options using K-means are valid clustering solutions.
However, the k = 3 solution holds greater clinical significance and may contribute to a
better understanding of the underlying mechanisms of fibromyalgia, potentially leading
to more effective therapeutic interventions. Therefore, both solutions are presented in the
results of our study.

To better understand the nuanced differences and key characteristics that distinguish
the k = 2 and k = 3 clustering solutions, we included Figure 8. This figure displays the cluster
visualizations as defined by the k-means algorithm for both k = 2 and k = 3 scenarios, using
the first two PCA components. This approach provides a more instinctive comprehension
of the clusters’ structure and the critical factors differentiating them. Additionally, the
figure includes bar plot graphs that highlight the top five influential features for each
cluster, as identified through our SHAP analysis. These bar plots provide insights into the
defining characteristics of each patient group, thereby enhancing our understanding of
each cluster in the context of fibromyalgia.
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Figure 8. Comparative visualization of k = 2 and k = 3 clustering solutions in fibromyalgia
patient analysis. The top-left panel displays k = 2 clustering using PCA components, clearly delin-
eating Clusters 0 and 1. The top-right panel presents k = 3 clustering, offering a detailed view of
Clusters 0, 1, and 2. The bottom panel includes bar plots that highlight the five most significant at-
tributes for each cluster, with the left side pertaining to the k = 2 solution and the right side pertaining
to the k = 3 solution.

4. Discussion

The present study introduces the CDI-SSV methodology, a novel multi-dimensional
approach to discover and validate the optimal number of clusters. Unlike traditional
clustering approaches that often rely on a single algorithm or metric, our method uniquely
integrates several clustering algorithms, distance measures, and bagging and clustering
iterations (the CDI phase), followed by the SSV phase, computing statistical differences
among clusters for several meaningful additional clinical semantic features. Finally, to
validate our results, we generated a machine learning model that classified the patients
into clusters and assessed the importance of the demographic and clinical features, using
SHAP values.

A key innovation of our study is the application of this multi-dimensional approach
to a large cohort of 1370 fibromyalgia patients, a scale significantly larger than that of most
previous studies in this domain. This extensive sample size allows for the capturing of a
broader spectrum of patient variability, thereby enhancing the reliability and applicability
of our findings.

To the best of our knowledge, this is the first study published that employs such
a holistic and multi-dimension methodology in a medical context, demonstrated here
with fibromyalgia patients. The integration of multiple clustering algorithms alongside
both syntactic and semantic validation techniques sets our approach apart from existing
methods. Furthermore, the incorporation of SHAP values in the validation process not
only provides a deeper understanding of the influence of demographic and clinical features
on cluster formation but also highlights the potential of our methodology in the realm of
personalized medicine.
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We suggest that the CDI-SSV methodology can be effectively applied in across various
medical domains for clustering analysis to identify patient sub-groups. Its capability to
handle large datasets and integrate multiple data dimensions makes it a versatile tool
for uncovering meaningful patterns in complex medical data. This approach has the
potential to significantly contribute to the advancement of patient stratification and per-
sonalized treatment strategies, extending well beyond the scope of fibromyalgia to other
medical conditions.

The present study found K-means to be a more robust and stable clustering method
compared to other algorithms tested. This was noted due to several findings. First, our re-
sults, presented in Figure 2, indicated that K-means outperformed other algorithms in two
out of three evaluation metrics (CHI and the DBI scores). K-means with Gower’s distance
metric also had the best SI score for k = 2, 3, and 5. Moreover, we conducted 30 iterations
of K-means and Gaussian mixture clustering algorithms with different seeds to assess their
average performance. Figures A6–A8 in Appendix A show the results. Our findings demon-
strate that the variation in performance across different seeds was minimal, especially for
K-means with k = 2 and 3, in our dataset. Furthermore, we conducted 30 iterations using
randomly bagged subsets (selected with replacement) comprising 70% of the data, and
the results presented in Table A1 demonstrate that K-means did not create “bad” clusters,
defined as clusters with less than 5% of the data, for k = 2, 3, or 4 with or without using the
Gower distance metric. The mean SI, CHI, and DBI scores did not vary significantly when
using 100% compared to 70% of the data (Figure A9). The assessment of the consistency
within and between clustering methods using the adjusted Rand index (ARI) revealed that
again, K-means was found to be a very robust algorithm, which was able to cluster indi-
viduals similarly to Gaussian mixture and agglomerative (Ward) algorithms with almost
no difference in the ARI for k = 2 and k = 3. Based on the best overall performance of
K-means according to all these assessments, we chose K-means as the preferred method
and performed a semantic assessment of clustering methods using 70% of the data. No
statistically significant differences were found, across all 151 categorical features, between
any pair of equivalent clusters for k = 2 and k = 3 at a significance level of alpha = 0.001.
Considering that both K = 2 and k = 3 were legitimate syntactic solutions, we further
performed statistical analysis and evaluated the clinical relevance of the created clusters.
While a cluster number of k = 2 yielded better syntactic performance in the SI, CHI, and
DBI scores, the ARI scores of k = 2 were similar to those of k = 3, suggesting that even
with a larger number of clusters, stability is maintained with respect to the same pairs
of patients appearing in the same cluster. Even more importantly, k = 3 partitioning
seemed to represent a more clinically meaningful partition, since the three clusters’ solution
better explained the clinical picture presented by fibromyalgia patients, which seems to
be composed of low-, intermediate-, and high-grade severity patients. Compared to the
k = 2 solution, the k = 3 solution manifested more statistically significant differences in all
comparisons among clusters in terms of comorbid medical conditions, symptoms, sleep
patterns, functionality, and treatment outcomes, but not in terms of pain locations.

A recent study by Fernández-de-las-Peñas et al. [10] also found differences between
subgroups of fibromyalgia patients in terms of psychological, cognitive, health-related, and
physical features but similar widespread pressure pain sensitivity. However, their study,
which identified only two subgroups, had a smaller population size (113) compared to that
of our study (1370) and included only women. Additionally, their methodology differed
from ours, as we employed a detailed CDI method to assess clustering. Finally, in our study,
the sickest cluster was the smallest, representing 21.4% of the population, which may be
challenging to capture in smaller cohorts.

Widespread pain is the hallmark of fibromyalgia, and therefore may not discriminate
well between fibromyalgia patients. Fibromyalgia is now thought to be a pain regulation
disorder, often classified as central sensitization [6], due to alterations in central nervous
system pain and sensory processing [7]. We found differences between clusters not only in
subjective parameters, but also in objective parameters, such as the presence of systemic
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and rheumatological comorbidities, symptoms, and functional problems such as using a
walking stick or a wheelchair, which indicates a more serious clinical condition. These
comorbid conditions may also contribute to pain. Therefore, the clinical implications of
identifying these subgroups could imply different underlying mechanisms in each of these
subgroups, a hypothesis that should be studied in future research.

Finally, to validate our clustering results using a supervised classification methodology,
our random forest model accurately classified patients into three clusters with an AUC of
0.994 and accuracy of 0.946. Then, by computing the model’s SHAP values, we identified
a distinct profile that enabled the model to classify the patients into each cluster. In
particular, Cluster 0, the sickest cluster, is characterized by mobility functional problems,
accompanying symptoms, painful areas, comorbidities, sleep and mental health problems,
absenteeism, a lower quality of life, and treatment effectiveness self-assessment. These
features serve as markers for evidence-based personalized diagnosis and might suggest
that this subgroup requires different management strategies, providing clinical application
points to patient-centered treatment.

The identification of three distinct fibromyalgia patient profiles in our study, as shown
in Figure 8, has important implications for clinical management. These profiles enable
more personalized treatment strategies, allowing clinicians to tailor interventions to each
subgroup’s severity and characteristics. For example, the most severely affected cluster
may require aggressive, multidisciplinary treatment, while others could benefit from less
intensive therapies focused on lifestyle and symptom management. These findings also
inform future research into fibromyalgia’s pathophysiology, particularly in understanding
different patterns of central sensitization across subgroups. This knowledge is crucial for
developing targeted therapies. Applying our CDI-SSV methodology in clinical practice
can facilitate the early identification of patient subgroups, leading to earlier, more effective
interventions and potentially better long-term outcomes. Ultimately, our study’s insights
could significantly refine fibromyalgia diagnosis, management, and treatment, aligning
with personalized medicine principles and improving patient care.

Strength and limitations: The main contributions of the study include [1] a novel,
highly general, multidimensional clustering methodology, CDI-SSV, for identifying patient
subgroups; [2] the application of the CDI-SSV methodology to a dataset of fibromyalgia
patients, which demonstrated its effectiveness in uncovering three distinct patient profiles,
enabling a more nuanced understanding of fibromyalgia based on demographic and
clinical features, and providing a potential to improve clinical care. The provision of clinical
markers for evidence-based personalized diagnosis, management, and prognosis enables a
more personalized tailoring of treatments and interventions.

Regarding limitations, although this study analyzed important features, it would also
be useful to obtain genetic and laboratory results, thus enabling us to better understand the
clinical significance of the different clusters.

5. Conclusions

In conclusion, our study highlights the value of the CDI-SSV methodology in cluster-
ing and classifying fibromyalgia patients, demonstrating its potential applicability beyond
fibromyalgia to other medical domains. This methodology facilitates enhanced patient
stratification, paving the way for improved clinical outcomes across various conditions.
The identification of distinct profiles within fibromyalgia patients allows for a more tar-
geted and personalized approach in diagnosis, management, and prognosis. The practical
implications of these findings, including the potential for more effective and patient-centric
treatment strategies, underscore the significance of our work in advancing the understand-
ing and care of fibromyalgia. Ultimately, this work contributes to the evolving field of
personalized medicine, offering data-driven insights and evidence-based practices that can
transform patient care.
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Appendix A. Supplementary Analyses

Figure A1. Visualization of different algorithms for different values of k. Each color represents a
different cluster. The figure illustrates the clustering results obtained using different algorithms and
values of k. Notably, the K-means and Gaussian clustering methods demonstrate a higher degree of
similarity in their cluster assignments compared to the agglomerative clustering method utilizing the
Ward linkage criterion. Also, it can be noted that when alternative linkage criteria were employed
with the agglomerative clustering method, the majority of data points were assigned to a single
cluster. This observation suggests that utilizing linkage criteria other than Ward may lead to less
meaningful cluster assignments.
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To further investigate the impact of the choice of linkage criterion on the results of
agglomerative clustering, we present in Figure A2 a dendrogram of the hierarchical cluster-
ing algorithm using different linkage criteria. As can be observed from the dendrogram,
the choice of linkage criterion has a significant impact on the results of agglomerative
clustering. Different linkage criteria can produce different cluster assignments for the same
data set. This reinforces our previous conclusion that using linkage criteria other than
Ward’s may result in less meaningful cluster assignments and highlights the importance of
carefully selecting an appropriate linkage criterion when using agglomerative clustering.

Figure A2. Dendrograms of hierarchical clustering using different linkage criteria. Each vertical
line represents a merge between clusters. The height of the vertical lines represents the distance (or
dissimilarity) at which clusters are merged. The colors signify different clusters formed, based on the
standard threshold (70% of the maximum linkage distance).

Figures A3–A5 present the scores of the different algorithms, for the different values
of k, for each of the SI, CHI, and DBI scores respectively.

Figure A3. The SI scores of each algorithm in the different values of k. The agglomerative algorithm
with complete, average and single linkage had the best scores for every k. The agglomerative
algorithm with ward linkage was the worst for almost every k (except k = 5). K-means and Gaussian
mixture have very similar scores, both when using Gower’s distance metric and when not using it.
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Figure A4. The CHI score of K-means was superior for every k, followed by Gaussian mixture and
the agglomerative algorithm with ward linkage.

Figure A5. On the left, the DBI scores of all algorithms; on the right, after the removal of the three
worst (highest) ones. The agglomerative algorithm with complete, average, and single linkage had
the lowest (best) results for all ks. K-means performed better than Gaussian mixture did for all ks.
Gaussian mixture performed better than did the agglomerative algorithm with Ward linkage for k =
2 and 3 but not for k = 4 and 5.

Figures A6–A8: Distribution of SI, CHI, and DBI scores for K-means and Gaussian
mixture with and without Gower’s distance metric for the different values of k, sampling
100% of the data, when using different starting seeds.
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Figure A6. Distribution of SI scores for K-means and Gaussian with and without Gower’s distance
metric for the different values of k, sampling 100% of the data, when using different starting seeds.

For the SI score, Figure A6 shows that using the Gower distance metric in K-means
clustering improved performance for all values of k (as was shown in Semantic Assessment of
Clustering Methods using 70% of the Data) and reduced the variance in performance across
seeds. For Gaussian mixture, using Gower’s distance metric reduced variance only for k = 2.

Figure A7. Distribution of CHI scores for K-means and Gaussian mixture with and without Gower’s
distance metric for the different values of k, sampling 100% of the data, when using different
starting seeds.
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For the CHI score Figure A7 indicates that using the Gower distance metric in K-
means clustering decreased the average performance for all values of k but only reduced
the variance in performance for k = 2 and k = 5.

Figure A8. Distribution of DBI scores for K-means and Gaussian mixture with and without Gower’s
distance metric for the different values of k, sampling 100% of the data, when using different
starting seeds.

For the BDI score, Figure A8 shows that using the Gower distance metric increased
variance and produced worse results.

Table A1. Number of bad clustering defined as clusters containing less than 5% of data by each
algorithm for each k, when using random subsets of 70% of the data.

Bad Clusterings K = 2 K = 3 K = 4 K = 5

K-means 0 0 0 18

K-means Gower 0 0 0 5

Gaussian 2 3 13 16

Gaussian Gower 0 0 1 4

Agglomerative Ward 0 5 16 34

Agglomerative average 30 60 90 120

Agglomerative average Gower 30 60 90 120

Agglomerative single 30 60 90 120

Agglomerative single Gower 30 60 90 120

Agglomerative complete 29 51 80 109

Agglomerative complete
Gower 1 16 28 47
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Figure A9. Comparison of silhouette index (SI), Calinski–Harabasz index (CHI), and Davies–Bouldin
index (DBI) scores using 100% (left) and 70% (right) of the data. The figure shows consistent performance
between 70% and 100% of the data, as mean scores did not significantly vary between them.

Table A2. Pearson’s chi-square (2) test for k = 2 was used to determine whether or not the distributions
of the two clusters differed significantly within each categorical feature.

Features Variable Cluster_0 Cluster_1 p Values

Sex Yes 656 (89.74) 587 (91.86) 0.1766

No 75 (10.26) 52 (8.14)

Other rheumatic dis. Yes 123 (16.83) 63 (9.86) <0.001

No 608 (83.17) 576 (90.14)

Behcet’s disease Yes 15 (2.05) 3 (0.47) 0.0103

No 716 (97.95) 636 (99.53)

FMF Yes 25 (3.42) 16 (2.5) 0.3208

No 706 (96.58) 623 (97.5)

Inflammatory muscle disease Yes 25 (3.42) 7 (1.1) 0.0045

No 706 (96.58) 632 (98.9)

Vasculitis Yes 4 (0.55) 7 (1.1) 0.2566

No 727 (99.45) 632 (98.9)

Osteoarthritis Yes 36 (4.92) 27 (4.23) 0.5375

No 695 (95.08) 612 (95.77)
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Table A2. Cont.

Features Variable Cluster_0 Cluster_1 p Values

Scleroderma Yes 1 (0.14) 2 (0.31) 0.4864

No 730 (99.86) 637 (99.69)

Pseudogout Yes 1 (0.14) 0 (0.0) 0.3496

No 730 (99.86) 639 (100.0)

Gout Yes 6 (0.82) 7 (1.1) 0.6009

No 725 (99.18) 632 (98.9)

SLE Yes 22 (3.01) 20 (3.13) 0.8975

No 709 (96.99) 619 (96.87)

Sjogren’s Yes 12 (1.64) 11 (1.72) 0.9086

No 719 (98.36) 628 (98.28)

Arthritis related to IBD Yes 11 (1.5) 9 (1.41) 0.8821

No 720 (98.5) 630 (98.59)

Spondyloarthritis Yes 7 (0.96) 4 (0.63) 0.4926

No 724 (99.04) 635 (99.37)

Ankylosing spondylitis Yes 10 (1.37) 11 (1.72) 0.5953

No 721 (98.63) 628 (98.28)

Psoriatic arthritis Yes 36 (4.92) 20 (3.13) 0.0942

No 695 (95.08) 619 (96.87)

RA Yes 58 (7.93) 44 (6.89) 0.4608

No 673 (92.07) 595 (93.11)

No other rheumatological condition Yes 443 (60.6) 429 (67.14) 0.0121

No 288 (39.4) 210 (32.86)

Endometriosis Yes 50 (6.84) 20 (3.13) 0.0019

No 681 (93.16) 619 (96.87)

Chronic sinusitis Yes 66 (9.03) 47 (7.36) 0.2613

No 665 (90.97) 592 (92.64)

Asthma Yes 78 (10.67) 43 (6.73) 0.0103

No 653 (89.33) 596 (93.27)

Allergy Yes 173 (23.67) 108 (16.9) 0.002

No 558 (76.33) 531 (83.1)

Liver disease Yes 16 (2.19) 15 (2.35) 0.8439

No 715 (97.81) 624 (97.65)

Obesity Yes 181 (24.76) 140 (21.91) 0.2139

No 550 (75.24) 499 (78.09)

Uveitis Yes 41 (5.61) 22 (3.44) 0.0562

No 690 (94.39) 617 (96.56)

Anemia Yes 114 (15.6) 73 (11.42) 0.0249

No 617 (84.4) 566 (88.58)

Obstructive sleep apnea Yes 62 (8.48) 29 (4.54) 0.0035

No 669 (91.52) 610 (95.46)
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Table A2. Cont.

Features Variable Cluster_0 Cluster_1 p Values

Renal disease Yes 9 (1.23) 8 (1.25) 0.9724

No 722 (98.77) 631 (98.75)

Chronic headache Yes 283 (38.71) 163 (25.51) <0.001

No 448 (61.29) 476 (74.49)

Psychiatric conditions Yes 171 (23.39) 100 (15.65) <0.001

No 560 (76.61) 539 (84.35)

Endocrinological conditions Yes 55 (7.52) 35 (5.48) 0.1272

No 676 (92.48) 604 (94.52)

Hyperthyroidism Yes 21 (2.87) 11 (1.72) 0.1593

No 710 (97.13) 628 (98.28)

Hypothyroidism Yes 70 (9.58) 83 (12.99) 0.0454

No 661 (90.42) 556 (87.01)

Dermatological conditions Yes 68 (9.3) 45 (7.04) 0.1293

No 663 (90.7) 594 (92.96)

Malignancy Yes 7 (0.96) 7 (1.1) 0.8002

No 724 (99.04) 632 (98.9)

Irritable bowel syndrome Yes 229 (31.33) 163 (25.51) 0.0174

No 502 (68.67) 476 (74.49)

Inflammatory bowel disease Yes 37 (5.06) 25 (3.91) 0.3073

No 694 (94.94) 614 (96.09)

Peptic ulcers Yes 69 (9.44) 29 (4.54) <0.001

No 662 (90.56) 610 (95.46)

Pulmonary disease Yes 29 (3.97) 10 (1.56) 0.0076

No 702 (96.03) 629 (98.44)

Hyperlipidemia Yes 94 (12.86) 85 (13.3) 0.8083

No 637 (87.14) 554 (86.7)

Hypertension Yes 91 (12.45) 77 (12.05) 0.8224

No 640 (87.55) 562 (87.95)

Cardiovascular diseases Yes 25 (3.42) 10 (1.56) 0.0299

No 706 (96.58) 629 (98.44)

Diabetes Yes 60 (8.21) 34 (5.32) 0.035

No 671 (91.79) 605 (94.68)

Having a steady job Yes 378 (51.71) 419 (65.57) <0.001

No 353 (48.29) 220 (34.43)

Fibromyalgia had worsened in the past year Yes 633 (86.59) 468 (73.24) <0.001

No 98 (13.41) 171 (26.76)

Emotional trauma before fibromyalgia onset Yes 428 (58.55) 373 (58.37) 0.947

No 303 (41.45) 266 (41.63)

Physical trauma before fibromyalgia onset Yes 279 (38.17) 201 (31.46) 0.0094

No 452 (61.83) 438 (68.54)
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Table A2. Cont.

Features Variable Cluster_0 Cluster_1 p Values

Emotional trauma after fibromyalgia onset Yes 383 (52.39) 282 (44.13) 0.0023

No 348 (47.61) 357 (55.87)

Physical trauma after fibromyalgia onset Yes 162 (22.16) 81 (12.68) <0.001

No 569 (77.84) 558 (87.32)

Pain causing awakening from sleep Yes 651 (89.06) 479 (74.96) <0.001

No 80 (10.94) 160 (25.04)

Waking up tired Yes 713 (97.54) 605 (94.68) 0.0057

No 18 (2.46) 34 (5.32)

Other sleep problems Yes 90 (12.31) 40 (6.26) <0.001

No 641 (87.69) 599 (93.74)

Sleeping medication Yes 201 (27.5) 142 (22.22) 0.0246

No 530 (72.5) 497 (77.78)

Bad dreams Yes 208 (28.45) 105 (16.43) <0.001

No 523 (71.55) 534 (83.57)

Snoring/coughing Yes 157 (21.48) 81 (12.68) <0.001

No 574 (78.52) 558 (87.32)

Waking up in the middle of the night/early
morning Yes 566 (77.43) 413 (64.63) <0.001

No 165 (22.57) 226 (35.37)

Inability to breathe comfortably Yes 137 (18.74) 61 (9.55) <0.001

No 594 (81.26) 578 (90.45)

Grinding/clenching teeth Yes 226 (30.92) 180 (28.17) 0.2666

No 505 (69.08) 459 (71.83)

Problems maintaining sleep Yes 596 (81.53) 417 (65.26) <0.001

No 135 (18.47) 222 (34.74)

Problems falling asleep Yes 470 (64.3) 289 (45.23) <0.001

No 261 (35.7) 350 (54.77)

Left foot Yes 721 (98.63) 340 (53.21) <0.001

No 10 (1.37) 299 (46.79)

Right foot Yes 720 (98.5) 335 (52.43) <0.001

No 11 (1.5) 304 (47.57)

Lower leg: left Yes 706 (96.58) 173 (27.07) <0.001

No 25 (3.42) 466 (72.93)

Lower leg: right Yes 701 (95.9) 169 (26.45) <0.001

No 30 (4.1) 470 (73.55)

Upper leg: left Yes 709 (96.99) 244 (38.18) <0.001

No 22 (3.01) 395 (61.82)

Upper leg: right Yes 698 (95.49) 253 (39.59) <0.001

No 33 (4.51) 386 (60.41)

Left buttock Yes 688 (94.12) 165 (25.82) <0.001

No 43 (5.88) 474 (74.18)
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Table A2. Cont.

Features Variable Cluster_0 Cluster_1 p Values

Right buttock Yes 696 (95.21) 160 (25.04) <0.001

No 35 (4.79) 479 (74.96)

Pelvis Yes 716 (97.95) 330 (51.64) <0.001

No 15 (2.05) 309 (48.36)

Lower back Yes 726 (99.32) 474 (74.18) <0.001

No 5 (0.68) 165 (25.82)

Upper back Yes 714 (97.67) 341 (53.36) <0.001

No 17 (2.33) 298 (46.64)

Abdomen Yes 689 (94.25) 204 (31.92) <0.001

No 42 (5.75) 435 (68.08)

Chest Yes 684 (93.57) 122 (19.09) <0.001

No 47 (6.43) 517 (80.91)

Left wrist Yes 722 (98.77) 303 (47.42) <0.001

No 9 (1.23) 336 (52.58)

Right wrist Yes 722 (98.77) 354 (55.4) <0.001

No 9 (1.23) 285 (44.6)

Lower arm: left Yes 718 (98.22) 208 (32.55) <0.001

No 13 (1.78) 431 (67.45)

Lower arm: right Yes 713 (97.54) 220 (34.43) <0.001

No 18 (2.46) 419 (65.57)

Upper arm: left Yes 697 (95.35) 102 (15.96) <0.001

No 34 (4.65) 537 (84.04)

Upper arm: right Yes 695 (95.08) 113 (17.68) <0.001

No 36 (4.92) 526 (82.32)

Left shoulder Yes 722 (98.77) 334 (52.27) <0.001

No 9 (1.23) 305 (47.73)

Right shoulder Yes 716 (97.95) 327 (51.17) <0.001

No 15 (2.05) 312 (48.83)

Left jaw Yes 678 (92.75) 141 (22.07) <0.001

No 53 (7.25) 498 (77.93)

Right jaw Yes 683 (93.43) 144 (22.54) <0.001

No 48 (6.57) 495 (77.46)

Left head Yes 695 (95.08) 163 (25.51) <0.001

No 36 (4.92) 476 (74.49)

Right head Yes 699 (95.62) 161 (25.2) <0.001

No 32 (4.38) 478 (74.8)

Neck Yes 727 (99.45) 446 (69.8) <0.001

No 4 (0.55) 193 (30.2)

All body Yes 629 (86.05) 0 (0.0) <0.001

No 102 (13.95) 639 (100.0)
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Table A2. Cont.

Features Variable Cluster_0 Cluster_1 p Values

Dizziness Yes 501 (68.54) 280 (43.82) <0.001

No 230 (31.46) 359 (56.18)

Nausea/vomiting Yes 336 (45.96) 172 (26.92) <0.001

No 395 (54.04) 467 (73.08)

Abdominal pain Yes 467 (63.89) 301 (47.1) <0.001

No 264 (36.11) 338 (52.9)

Constipation Yes 334 (45.69) 200 (31.3) <0.001

No 397 (54.31) 439 (68.7)

Heartburn Yes 297 (40.63) 179 (28.01) <0.001

No 434 (59.37) 460 (71.99)

Taste disorder Yes 169 (23.12) 38 (5.95) <0.001

No 562 (76.88) 601 (94.05)

Smell disorder Yes 198 (27.09) 69 (10.8) <0.001

No 533 (72.91) 570 (89.2)

Xerostomia Yes 403 (55.13) 221 (34.59) <0.001

No 328 (44.87) 418 (65.41)

Epistaxis Yes 84 (11.49) 46 (7.2) 0.0068

No 647 (88.51) 593 (92.8)

Frequent urges to urinate Yes 364 (49.79) 212 (33.18) <0.001

No 367 (50.21) 427 (66.82)

Tinnitus Yes 343 (46.92) 198 (30.99) <0.001

Figure A10. Cont.
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Figure A10. SHAP (SHapley Additive exPlanations) Model to predict clusters for K = 2.
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