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Abstract: Systemic Lupus Erythematosus (SLE) is a multifaceted autoimmune ailment that impacts
multiple bodily systems and manifests with varied clinical manifestations. Early detection is con-
sidered the most effective way to save patients’ lives, but detecting severe SLE activity in its early
stages is proving to be a formidable challenge. Consequently, this work advocates the use of Machine
Learning (ML) algorithms for the diagnosis of SLE flares in the context of infections. In the pursuit of
this research, the Random Forest (RF) method has been employed due to its performance attributes.
With RF, our objective is to uncover patterns within the patient data. Multiple ML techniques have
been scrutinized within this investigation. The proposed system exhibited around a 7.49% enhance-
ment in accuracy when compared to k-Nearest Neighbors (KNN) algorithm. In contrast, the Support
Vector Machine (SVM), Binary Linear Discriminant Analysis (BLDA), Decision Trees (DT) and Linear
Regression (LR) methods demonstrated inferior performance, with respective values around 81%,
78%, 84% and 69%. It is noteworthy that the proposed method displayed a superior area under the
curve (AUC) and balanced accuracy (both around 94%) in comparison to other ML approaches. These
outcomes underscore the feasibility of crafting an automated diagnostic support method for SLE
patients grounded in ML systems.

Keywords: Systemic Lupus Erythematosus; medical treatment; machine learning; artificial intelli-
gence

1. Introduction

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune affliction that affects
various physiological systems. It serves as an exemplary autoimmune disorder, and its
intricate nature poses significant challenges. The varied clinical presentations of SLE,
coupled with distinct complexities in both diagnosis and treatment, present a formidable
task for healthcare professionals. The emergence of multiple mechanisms results in the
breakdown of self-tolerance and subsequent organ dysfunction. Progress in elucidating the
molecular and cellular foundations of this condition, in conjunction with the identification
of genetic variations, contributes to a more profound comprehension of its pathogenesis,
offering promise for therapeutic advancements in the near future.

Commonly known as lupus, it varies in prevalence depending on geographic location,
ethnicity, and research study design. In the United States, an estimated 241 cases per
100,000 adults have been reported, while in Spain, the updated figure is 210 cases per
100,000 inhabitants [1]. The Lupus Foundation of America estimates that approximately
161,000 to 322,000 individuals in the U.S. are affected by SLE, translating to a prevalence
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of approximately 0.05% to 0.1% of the population. Predominantly, it affects young, fertile
females and has resulted in increased mortality, although improved treatment modalities
have positively impacted survival rates. Notably, the onset of the disease frequently occurs
during the childbearing years. Certain demographic groups, including women, people of
color (particularly African American, Hispanic, and Asian populations), and individuals of
reproductive age, may experience higher prevalence rates. Simultaneously, several factors
contribute to a state of relative immunodeficiency in individuals with SLE, including
aging, the increasing use of targeted biologic therapies, and the chronic nature of the
disease. Furthermore, the presence of other comorbidities such as malignancy, infections,
malnutrition, and more further compounds the complexity of the disease. SLE is a complex
and heterogeneous condition, manifesting symptoms across a spectrum from mild to
severe. The precise etiology of SLE remains not fully understood, with its development
believed to result from a combination of genetic and environmental factors. Moreover,
the prevalence of SLE may undergo changes over time, influenced by factors such as
improvements in diagnostic methods and increased awareness of the disease. Collectively,
these multifaceted factors underscore the need for a comprehensive understanding of
the diverse epidemiological and clinical aspects of SLE to inform effective management
strategies and interventions.

Emerging evidence suggests that immunodeficiency and systemic autoimmunity
are interconnected manifestations of a shared underlying process [2]. Immune disorders
present as both susceptibility to infections and autoimmune symptoms, indicating a dual
impact on the immune system—reduced ability to clear infections and a disruption of self-
tolerance. On the other hand, infections are one of the most common causes of death and
are often associated with high levels of activity in SLE. Early diagnosis of immunodeficency
in SLE is the first step to contribute to detect infections, which are likely to be associated
with flares, allows prompt initiation of treatment, a better prognosis, and a reduction in
organ dysfunction [3–7]. In the absence of specific criteria that can differentiate between
a severe infection and an exacerbation in SLE, the development of clinical studies and
guidelines becomes imperative to facilitate a more precise classification of these patients [8].

In pursuit of this objective, Machine Learning (ML) draws inspiration from biolog-
ical nervous systems. Its fundamental principle revolves around presenting algorithms
with input data, subjecting them to computer analysis to predict output values within
an acceptable range of accuracy, recognizing data patterns and trends, and ultimately
assimilating knowledge from prior experiences [9]. ML delves into intricate data distribu-
tions, establishes probabilistic relationships, and identifies the minimum set of features
required to capture essential data patterns through repeated cross-validation, culminating
in the formulation of predictive models. Numerous studies have leveraged ML meth-
ods to develop more precise diagnostic algorithms for stratifying autoimmune diseases,
thereby preventing or mitigating observed morbidity [10]. ML methods consistently exhibit
superior performance compared to traditional statistical models [9,11–13]. A variety of
ML techniques, including Support Vector Machine (SVM), Binary Linear Discriminant
Analysis (BLDA), k-Nearest Neighbors (KNN), and Decision Trees (DT) [14–17], have been
employed for data analysis. These systems represent a selection of algorithms designed for
classifying data and processing information, and they have been explored in the context of
various autoimmune diseases, including SLE, rheumatoid arthritis, lupus tubulointerstitial
inflammation, and neuropsychiatric SLE [18–23].

In this paper, we present a system that utilizes the Random Forest (RF) method for
the analysis of immunodeficiency patterns in SLE patients. RF is an ML algorithm that
operates by constructing a multitude of decision trees for classification and prediction. For
its capacity to enhance accuracy and processing speed, and several notable advantages,
including a low computational burden, flexibility in model tuning, high scalability, and
algorithmic optimization, it serves as the cornerstone of this approach. Through the
application of RF, we aim to predict the immunodeficiency status of our patients, with
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the overarching goal of not only identifying optimal treatment options but also designing
personalized preventive measures and tailoring patient-specific follow-up strategies.

The paper is structured as follows. The first section outlines the topic, purpose, and
significance of this study. Second section introduces a detailed description of material and
methods. Third section entails the main findings of the study, including data, analysis,
and interpretation of the results obtained. Fourth section explores a discussion of these
results. And finally, the paper concludes with a summary of the research and some
concluding remarks.

2. Materials and Methods
2.1. Materials

The study cohort included 125 patients who met the American College of Rheumatol-
ogy criteria for SLE in 2019 [23]. These individuals were enrolled from the Autoimmune
Unit Registry at Valladolid Clinic Hospital (HCUV) between 2017 and 2019. The experi-
mental protocol adhered to the principles outlined in the Declaration of Helsinki (2008)
and received approval from the Clinical Research Ethics Committee of the HCUV. The
study was conducted in compliance with Spanish data protection laws (LO 15/1999) and
specifications (RD 1720/2007).

Consequently, a retrospective review of patients was systematically conducted, en-
compassing the collection of epidemiological, analytical, immunological, and clinical
characteristics. Relevant immunological parameters for evaluating immune competence
included leucocytes, neutrophils, CD3, CD4 and CD8 T-cell counts, CD19 B-cell and Natu-
ral Killer (NK) cell levels, serum immunoglobin isotypes (IgG, IgA, IgM), IgG subclasses,
and complement levels (C3, C4). Exclusion criteria involved patients with evidence of
active disease (SLEDAI >= 4) or significant residual proteinuria (>500 mg). Following this
selection strategy, 31 patients were excluded from the study.

Flow cytometry was performed to identify cell populations. Serum levels of im-
munoglobulin isotypes and IgG subclasses and complement were determined by neph-
elometry. Standardized reference ranges from the immunology laboratory of our in-
stitution were used to define control patients. Laboratory levels below the reference
ranges were considered as possible immunodeficiency status: leucocytes < 4000 cL/µL,
neutrophils < 1800 cL/µL, lymphocytes < 1500 cL/µL, CD3 T-cell < 700 cL/µL, CD19
B-cell < 100 cL/µL, CD4 T-cell < 300 cL/µL, CD8 T-cell < 200 cL/µL, NK cell < 90 cL/µL,
IgG < 870 mg/dL, IgG1 < 383 mg/dL, IgG2 < 242 mg/dL, IgG3 < 22 mg/dL,
IgG4 < 4 mg/dL, IgA < 117 mg/dL, IgM < 60 mg/dL, C3 < 90 mg/dL, C4 < 10 mg/dL;
special data for patients between 14 and 18 years old were: IgG1 < 315 mg/dL,
IgG2 < 242 mg/dL, IgG3 < 23 mg/dL, IgG4 < 11 mg/dL. Severe infection was defined as
infection which required hospitalization of seriousness, treatment needed or recommended
monitoring.

2.2. Method

This study introduces an ML method centered on the Random Forest (RF) algorithm.
RF, a widely adopted ML algorithm within supervised learning, is applied for both clas-
sification and regression challenges in ML. Renowned for its simplicity, versatility, and
robustness, RF embodies a potent ML algorithm with several noteworthy attributes: (1) op-
erative as an ensemble learning approach, it combines decisions from multiple models to
improve overall performance; (2) employing decision trees as base-level models; (3) miti-
gating overfitting by averaging results across several trees, thereby diminishing the risk
of developing complex models performing well on training data but poorly on new data;
(4) adeptly handling missing values by learning the optimal imputation value based on the
reduction in the utilized criterion; (5) furnishing a reliable estimate of the importance of
variables in the classification process; (6) demonstrating flexibility in its applicability to both
regression and classification tasks; and (7) executing swiftly with minimal preprocessing
requirements compared to alternative algorithms, capable of handling categorical variables
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without necessitating the creation of dummy variables. Consequently, RF is the chosen
algorithm for crafting the model aimed at detecting immunodeficiency patterns within the
SLE population [24,25].

Given a dataset S = {xj, yj}, where xj represents feature vectors and yj corresponds
to labels, the RF algorithm proceeds as follows:

For each of the n trees in the forest:

1. Draw a bootstrap sample Z∗ of size N from the training data.
2. Grow a decision tree Tb to the bootstrapped data by recursively repeating the following

steps for each terminal node of the tree, until the minimum node size nmin is reached:

(a) Select m variables at random from the p variables.
(b) Pick the best variable/split-point among the m variables.
(c) Split the node into two daughter nodes.

The prediction of the RF then aggregates the predictions of the n trees.
For regression, it is typically the average over all trees:

f̂r f (x) =
1
n

n

∑
b=1

Tb(x) (1)

For classification, it is determined by the majority vote:

Ĉr f (x) = majority{Ĉb(x)}n
1 (2)

Here, Tb(x) and Ĉb(x) represent the prediction of the b-th decision tree for regression
and classification, respectively.

The algorithm was designed and developed using Matlab software (MatLab 2023a, The
Mathworks Inc., Natick, MA, USA). Furthermore, the proposed system underwent analysis
alongside other ML systems prevalent in the scientific community. These included Support
Vector Machine (SVM) [14], Binary Linear Discriminant Analysis (BLDA) [26], Decision
Trees (DT) [15], Linear Regression (LR) [27,28], and k-Nearest Neighbor (KNN) [16] to
assess its performance. Within the ML system’s learning process, it is imperative to control
overtraining. To address this, the k-fold cross-validation technique was employed in
our case.

As depicted in Figure 1, each iteration involves the random classification of 70% of
the patients for training and 30% for testing and validation. Notably, patient data are not
shared between the training and validation subsets to prevent the algorithm from being
validated with data from the same patients used in the training phase.

Figure 1. The figure shows the processes followed in this study for the classification of patients
with SLE.
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Additionally, techniques for hyperparameter optimization have been applied to fine-
tune the hyperparameters of the methods. These hyperparameter values are adjusted
during the training phase to maximize the accuracy of the ML method. The hyperparame-
ters subjected to optimization encompass variables such as apprentices, neighbors, distance
metric, distance weight, kernel, box constraint level, and multiclass method, each tailored
to the specific requirements of the method in use. Bayesian optimization was chosen as the
technique to enhance the performance of the various methods by optimizing the selection
of diverse hyperparameters. Recall value and AUC were utilized as performance metrics.
The entire study was iterated 100 times to obtain mean values and standard deviations for
the process. Importantly, it should be emphasized that data used in each iteration were
randomized, mitigating noise in the samples and ensuring the acquisition of results with
statistically valid values [29].

2.3. Performance Evaluation

For this study, the most well-known metrics in artificial intelligence were implemented
to test the performance of the methods [29]: balanced accuracy (BA), recall, precision,
specificity (SP), degenerated Younden’s index (DYI) [29], receiver operating characteristic
(ROC) and area under the curve (AUC). The F1 score is established as:

F1score = 2
Precision · Recall

Precision + Recall
(3)

To test the classification performance of the model, the Matthew correlation coefficient
(MCC) has been used, which is described as follows:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where TP is the number of true positives, FP the number of false positives, TN the number
of true negatives and FN the number of false negatives. And finally, Cohen’s Kappa (CK),
CK is another metric that estimates the performance of the model [29].

3. Results

The study was conducted on a group of 125 patients diagnosed with SLE. Out of these,
94 patients met the specific criteria of having a SLEDAI-2K score of less than four points,
and were thus included in the study. Further analysis revealed that 77 of these 94 patients
showed signs of immunodeficiency. This means that approximately 81.9% of the patients
with a SLEDAI-2K score less than four exhibited signs of immunodeficiency.

The cohort of patients had a median age of 52 years, whilst the median age at diagnosis
was 38 years. The group was predominantly female, with 68 female patients compared to
9 male patients. The median duration of the disease among these patients was 14 years.
At the time of data collection (see Table 1), 50 patients (64.9%) were being treated with
corticosteroids at an average daily dose of 2.57 mg. In addition, 25 patients (34.9%) were
receiving immunosuppressants such as azathioprine, methotrexate, and mycophenolate.
Two patients were on belimumab treatment. Notably, none of the patients were undergoing
treatment with rituximab.

In turn, 41 patients (53.2%) exhibited patterns of immunodeficiency. Among these
patients, there were a total of 51 episodes of severe infections. The breakdown of these
infections is as follows:

• 17 patients were hospitalized due to lower respiratory infections.
• 4 patients were hospitalized for upper respiratory infections.
• 9 patients were treated for urinary infections.
• 10 patients had soft tissue infections.
• 4 patients suffered from digestive infections.
• 1 patient was diagnosed with tuberculous lymphadenitis.
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Table 1 provides an overview of the characteristics of patients exhibiting immunodefi-
ciency patterns. The patients under study demonstrated a decline in the count of several
immune cells. This was particularly evident in the case of NK cells, a component of the
innate immune system, and CD19 B-cells, a part of the adaptive immune system. The latter
includes IgG subclasses and IgM, both of which also showed a decrease. These patients
exhibited reduced levels of various immune cells, as illustrated in Table 1, with notable
decreases observed in NK cells within the innate immune system and CD19 B-cells within
the adaptive immune system, including IgG subclasses and IgM.

Table 1. Characteristics of patients with immunodeficiency patterns.

Characteristics of Patients with Immunodeficiency Patterns

N 77
Median age (years) 52

Female/Male 68/9
SLE evolution time (years) 14

Corticosteroids (n) 50 (64.9%)
Immunosuppressants (n) 25 (32.4%)
Hydroxychloroquine (n) 37 (48%)

Severe infections (n) 51

Immunodeficiency patterns (n)

Leucocytes (<4000 cL/µL ) 9
Lymphocytes (<1500 cL/µL) 28
Neutrophils (<1800 cL/µL) 9

CD3 (<700 cL/µL) 10
CD4 (<300 cL/µL) 6
CD8 (<200 cL/µL) 3

CD19 (<100 cL/µL) 23
NK (<90 cL/µL) 13

IgG (<870 mg/dL) 17
IgG1 (<383 mg/dL) 3
IgG2 (<242 mg/dL) 36
IgG3 (<22 mg/dL) 16
IgG4 (<4 mg/dL) 7
IgA (117 mg/dL) 8
IgM (<60 mg/dL) 20
C3 (<90 mg/dL) 13
C4 (<10 mg/dL) 6

The study employed a range of ML techniques to discern patterns of innate and
adaptive immunodeficiency within the SLE population. The findings derived from these
techniques, coupled with several ML algorithms for identifying immunodeficiency, are
detailed below. Performance metrics such as BA, recall, specificity, precision, and AUC
for the investigated ML methods are exhibited in Tables 2 and 3. Both tables provide a
detailed summary of performance metrics for different ML methods applied to variables
IgG, IgG2, IgG3, IgG4 (Table 2), and IgM, NK, CD19, CD3 (Table 3). These variables are
associated with immunoglobulins and immune cell populations, whilst the ML methods
evaluated include SVM, BLDA, DT, KNN, and the RF proposed method. The results offer
insights into how well each ML method performs in predicting or classifying the specified
immunological variables, providing a comparative analysis of their strengths in terms
of these metrics. The comprehensive nature of the data facilitates an informed selection
of the most suitable method for each variable based on the desired performance criteria.
Of particular note is the RF proposed method, which consistently outperforms across all
variables, achieving the highest accuracy. KNN also demonstrates strong performance,
particularly in IgM and CD3. LR were the lowest results obtained, whilst SVM, BLDA,
and DT generally exhibit competitive results but with slightly lower accuracy than RF and
KNN. In summary, the evaluation underscores the robust performance of the proposed
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method across the variables related to immunoglobulins and immune cell types, being the
preferred model for classifying SLE patients due to its consistently high accuracy, balanced
performance metrics, ensemble learning strengths, and robustness to noisy data observed.

Table 2. The table summarises the values of BA, recall, specificity, precision and AUC for variables
IgG, IgG2, IgG3 and IgG4.

IgG.

Methods BA Recall Specificity Precision AUC

SVM 80.85 80.95 80.76 80.28 80.00
BLDA 78.11 78.20 78.02 77.55 78.00
DT 83.85 83.95 83.75 83.25 83.00
LR 70.02 69.75 68.84 68.95 68.42
RF 93.96 94.07 93.85 93.29 94.00
KNN 86.38 86.48 86.28 85.76 86.00

IgG2.

Methods BA Recall Specificity Precision AUC

SVM 81.85 81.95 81.76 81.27 81.00
BLDA 77.37 77.46 77.28 76.82 77.00
DT 83.16 83.26 83.06 82.57 83.00
LR 69.51 69.24 68.33 68.44 68.42
RF 94.58 94.69 94.47 93.90 94.00
KNN 85.99 86.09 85.89 85.38 86.00

IgG3.

Methods BA Recall Specificity Precision AUC

SVM 81.56 81.66 81.47 80.98 81.00
BLDA 79.16 79.25 79.06 78.59 79.00
DT 83.82 83.92 83.72 83.22 83.00
LR 69.44 69.17 68.27 68.38 68.42
RF 94.42 94.53 94.31 93.75 94.00
KNN 86.57 86.67 86.47 85.95 86.00

IgG4.

Methods BA Recall Specificity Precision AUC

SVM 81.35 81.45 81.26 80.77 81.00
BLDA 78.93 79.02 78.83 78.36 78.00
DT 83.26 83.36 83.16 82.67 83.00
LR 70.15 69.88 68.97 69.08 68.42
RF 94.50 94.61 94.39 93.83 94.00
KNN 86.07 86.17 85.97 85.46 86.00

Table 3. The table summarises the values of BA, recall, specificity, precision and AUC for variables
IgM, NK, CD19 and CD3.

IgM.

Methods BA Recall Specificity Precision AUC

SVM 81.24 81.34 81.15 80.67 81.00
BLDA 78.11 78.20 78.02 77.55 78.00
DT 83.35 83.45 83.25 82.76 83.00
LR 69.86 69.59 68.68 68.79 68.42
RF 94.80 94.91 94.69 94.12 94.00
KNN 86.38 86.48 86.28 85.76 86.00
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Table 3. Cont.

NK.

Methods BA Recall Specificity Precision AUC

SVM 81.06 81.16 80.97 80.49 81.00
BLDA 77.52 77.61 77.43 76.97 77.00
DT 84.84 84.94 84.74 84.24 84.00
LR 69.51 69.24 68.33 68.44 68.42
RF 94.75 94.86 94.64 94.07 94.00
KNN 86.51 86.61 86.41 85.89 86.00

CD19.

Methods BA Recall Specificity Precision AUC

SVM 82.21 82.31 82.12 81.63 82.00
BLDA 76.89 76.98 76.80 76.34 76.00
DT 84.04 84.14 83.94 83.44 84.00
LR 69.65 69.38 68.47 68.58 68.42
RF 94.34 94.45 94.23 93.67 94.00
KNN 85.24 85.34 85.14 84.63 85.00

CD3.

Methods BA Recall Specificity Precision AUC

SVM 81.46 81.56 81.37 80.88 81.00
BLDA 77.21 77.30 77.12 76.66 77.00
DT 84.16 84.26 84.06 83.56 84.00
LR 70.41 70.14 69.22 69.33 68.42
RF 95.12 95.23 95.01 94.44 95.00
KNN 86.38 86.48 86.28 85.76 86.00

Moreover, Tables 4 and 5 present performance metrics, including F1 score, MCC, DYI,
and Kappa values, for the ML methods applied. The observed values provide insights
into the models’ effectiveness in classifying SLE patients. Thus, in Table 4 (variables
IgG, IgG2, IgG3, and IgG4), RF consistently outperforms again other methods across
all metrics, exhibiting high F1 score, MCC, DYI, and Kappa values. This suggests RF’s
robustness in achieving a balanced trade-off between precision and recall, capturing the
model’s ability to handle both positive and negative instances effectively. Again, KNN also
shows competitive performance, while SVM, BLDA, and DT demonstrate slightly lower
performance across these metrics, being LR the one which obtained the lowest performance
values. Similar trends are observed in the variables related to immune cell types in Table 5
(IgM, NK, CD19, and CD3), where RF again demonstrates superior performance, especially
notable in achieving high F1 score and DYI values. This reinforces RF’s suitability for
SLE classification, indicating its ability to maintain a balance between true positives, true
negatives, false positives, and false negatives. KNN also perform well, but RF consistently
stands out as the top-performing model across the diverse set of variables.

For a comprehensive view of the trade-off between the true/false positive rates be-
tween the proposed system and other ML methods, the Receiver Operating Characteristic
(ROC) curves were also generated. With this purpose in mind, the ROC curve is employed
to quantify sensitivity and 1-specificity at various threshold levels. As illustrated in Figure 2,
which shows the ROC curve for CD19 variable as example, the system that utilizes RF
generates the largest area under the curve, indicating a superior level of predictive accuracy.
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Table 4. The table presents the F1 score, MCC, DYI and Kappa values for variables IgG, IgG2, IgG3
and IgG4.

IgG.

Methods F1 score MCC DYI Kappa

SVM 80.61 71.74 80.85 71.98
BLDA 77.87 69.31 78.11 69.54
DT 83.60 74.40 83.85 74.65
LR 70.06 64.59 69.83 64.23
RF 93.68 83.37 93.96 83.65
KNN 86.12 76.65 86.38 76.90

IgG2.

Methods F1 score MCC DYI Kappa

SVM 81.61 72.63 81.85 72.87
BLDA 77.14 68.65 77.37 68.88
DT 82.91 73.79 83.16 74.04
LR 69.54 64.12 69.32 63.76
RF 94.30 83.92 94.58 84.20
KNN 85.73 76.30 85.99 76.55

IgG3.

Methods F1 score MCC DYI Kappa

SVM 81.32 72.37 81.56 72.61
BLDA 78.92 70.24 79.16 70.47
DT 83.57 74.38 83.82 74.62
LR 69.48 64.06 69.25 63.70
RF 94.14 83.78 94.42 84.06
KNN 86.31 76.81 86.57 77.07

IgG4.

Methods F1 score MCC DYI Kappa

SVM 81.11 72.19 81.35 72.43
BLDA 78.69 70.03 78.93 70.27
DT 83.01 73.88 83.26 74.13
LR 70.19 64.72 69.96 64.35
RF 94.22 83.85 94.50 84.13
KNN 85.81 76.37 86.07 76.62

Table 5. The table presents the F1 score, MCC, DYI and Kappa values for variables IgM, NK, CD19
and CD3.

IgM.

Methods F1 score MCC DYI Kappa

SVM 81.00 72.09 81.24 72.33
BLDA 77.87 69.31 78.11 69.54
DT 83.10 73.96 83.35 74.21
LR 69.90 64.45 69.67 64.08
RF 94.51 84.12 94.80 84.40
KNN 86.12 76.65 86.38 76.90

NK.

Methods F1 score MCC DYI Kappa

SVM 80.82 71.93 81.06 72.17
BLDA 77.29 68.78 77.52 69.01
DT 84.59 75.28 84.84 75.53
LR 69.54 64.12 69.32 63.76
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Table 5. Cont.

NK.

Methods F1 score MCC DYI Kappa

RF 94.46 84.07 94.75 84.35
KNN 86.25 76.76 86.51 77.02

CD19.

Methods F1 score MCC DYI Kappa

SVM 81.97 72.95 82.21 73.19
BLDA 76.66 68.23 76.89 68.45
DT 83.79 74.57 84.04 74.82
LR 69.68 64.25 69.45 63.89
RF 94.06 83.71 94.34 83.99
KNN 84.98 75.63 85.24 75.89

CD3.

Methods F1 score MCC DYI Kappa

SVM 81.22 72.28 81.46 72.52
BLDA 76.98 68.51 77.21 68.74
DT 83.91 74.68 84.16 74.93
LR 70.45 64.96 70.22 64.59
RF 94.83 84.40 95.12 84.68
KNN 86.12 76.65 86.38 76.90

Figure 2. Example of ROC curve for the five assessed ML predictors for variable CD19.
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In the study conducted, it was also observed that the subsets used for training the
model exhibited high scores in the training metrics. When these models were tested, they
showed a noticeable decrease in their scores. Nonetheless, as depicted in Figures 3 and 4,
the RF system emerges as a well-calibrated model, attaining an optimal point in training
without succumbing to overfitting or underfitting. This approach consistently delivers
accurate predictions for novel inputs. The RF system’s superior performance is evident,
where it surpasses other methods by covering a larger area in the radar plots in both the
training and testing phases.

Figure 3. The figure shows the radar plots of the variables IgG, IgG2, IgG3 and IgG4, respectively.
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Figure 4. The figure shows the radar plots of the variables IgM, NK, CD19 and CD3, respectively.

4. Discussion

The task of managing patients with SLE is crucial in order to reduce the risk of irre-
versible organ damage [30,31]. This is not only vital for maintaining the health-related
quality of life of the patients [32,33], but also for managing the direct costs associated with
the treatment of SLE [34,35]. However, this task presents significant challenges due to
the heterogeneous nature of SLE, which is characterized by variations in disease progres-
sion [36,37]. There is therefore an urgent need to improve the accuracy and classification
of SLE flares, taking into account that the trigger of activity may be an infection in a
situation of immunodeficiency. Numerous studies have been conducted to address this
need, including recent research that has emerged over the last few years [31,33]. These
studies have emphasized potential treatments for severe lupus manifestations such as
lupus nephritis [31]. Despite the existence of several therapeutic agents in SLE, the disease
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continues to cause significant morbidity [31]. It is encouraging that a variety of therapeutic
options are currently under investigation [31].

In clinical practice, the manifestation of a malar rash, coupled with the detection of
anti-DNA autoantibodies in patients, often guides healthcare professionals towards the
diagnosis of SLE [38,39]. It is noteworthy that SLE is characterized by a significant degree
of phenotypic diversity, which includes both systemic and localized forms. The evolution
of immunological and clinical features over time underscores the dynamic nature of this
disease [33,40].

A multitude of models have been established to estimate the probability of SLE
occurrence, providing a degree of confidence in differentiating it from other rheumatolog-
ical disorders. These models leverage unsupervised clustering based on the nature and
abundance of features, mirroring diagnostic reasoning, especially during initial patient
consultations [41,42]. Certain models incorporate gene analysis techniques to improve
the classification of SLE patients [19]. Recent research has delved into the utilization of
machine learning techniques for SLE analysis, customizing their methodologies to the
specific dataset under investigation [22,43,44]. For example, Jorge et al. [20] utilized ML
techniques to predict the hospitalization of SLE patients.

In the present study, the RF method, among all the ML classifiers employed, exhib-
ited the most robust classification performance. It demonstrated superior accuracy levels
and facilitated the identification of immunodeficiency patterns within the SLE popula-
tion. This method offers scalability, rapid execution, and other beneficial features that
enhance its classification capabilities [45]. ML models possess the capability to evaluate
multiple variables and their interrelationships concurrently, accommodating non-linear
patterns in the development of predictive systems [45]. Furthermore, we conducted a
comparative analysis of our proposed system’s performance against various ML algorithms
documented in Tables 2–5. Notably, the RF method exhibited a substantial improvement,
outperforming DT, BLDA and SVM, which demonstrated lower performance. Whilst the
KNN method closely approached our proposed method, achieving AUC = 86% and Recall
= 86%, RF demonstrated superior performance, surpassing both metrics with remarkable
values of AUC and Recall, reaching around 94%. This notable improvement highlights
the efficacy of the RF method in capturing complex patterns and enhancing the overall
predictive capabilities.

Additionally, Figures 3 and 4 illustrate a well-balanced performance graph for our
proposed system, indicating minimal disparities between training and testing phases
and no signs of overfitting. This establishes the system as a dependable tool, facilitating
automated analysis to aid in the classification of SLE patients. Our results affirm the efficacy
of the RF system in precisely predicting SLE patients, establishing it as a valuable tool for
supporting SLE diagnosis.

5. Conclusions

In conclusion, due to the complexity of this elusive autoimmune disease, the use of ML
algorithms such as RF is critical for the classification and rapid detection of patients with
SLE flares. SLE presents with a range of challenging symptoms that are particularly difficult
to diagnose accurately in its early stages. The intricate relationship between infections and
autoimmunity in SLE underscores the critical need for preventative measures and the early
detection of infections in SLE patients exhibiting heightened susceptibility. This integrated
approach aims to address the multifaceted challenges of SLE, providing a more holistic
understanding for improved patient care.

RF’s proficiency in handling diverse datasets and extracting intricate patterns makes
it well-suited for identifying subtle indicators of SLE. The algorithm’s swift information
processing enables quick detection, allowing for timely intervention and personalized
treatment plans for SLE patients. Given the rarity and importance of SLE, the use of RF
and similar ML approaches not only improves the diagnostic accuracy of SLE activity, but
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also contributes to improved patient outcomes, long-term monitoring, and a more effective
healthcare management strategy for this devastating disease.

Thus, this investigation delves into the optimal ML technique for identifying patterns
of immunodeficiency within the SLE population. It establishes that an ML system serves
as a highly accurate tool for identifying diminished levels of immune parameters in indi-
viduals at a significantly elevated risk of experiencing both infections and, consequently,
SLE flares. Moreover, the RF-based system proposed surpasses the performance of other
studies, evident in a larger AUC, thereby affirming its superior predictive accuracy.
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