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Abstract: Diabetic retinopathy affects more than 100 million people worldwide and is projected to
increase by 50% within 20 years. Increased blood glucose leads to the formation of advanced glycation
end products (AGEs), which cause cellular and molecular dysfunction across neurovascular systems.
These molecules initiate the slow breakdown of the retinal vasculature and the inner blood retinal
barrier (iBRB), resulting in ischemia and abnormal angiogenesis. This project examined the impact
of AGEs in altering the morphology of healthy cells that comprise the iBRB, as well as the effects
of AGEs on thrombi formation, in vitro. Our results illustrate that AGEs significantly alter cellular
areas and increase the formation of blood clots via elevated levels of tissue factor. Likewise, AGEs
upregulate the expression of cell receptors (RAGE) on both endothelial and glial cells, a hallmark
biomarker of inflammation in diabetic cells. Examining the effects of AGEs stimulation on cellular
functions that work to diminish iBRB integrity will greatly help to advance therapies that target
vision loss in adults.

Keywords: advanced glycation end products; diabetic retinopathy; vascular disease; RAGE; inner
blood retinal barrier

1. Introduction

Diabetes mellitus is a growing metabolic disorder that impacts a staggering 10% of the
global population, with medical costs over USD $500 billion per year [1]. Over one third
of adult diabetics will suffer vision loss through diabetic retinopathy, where chronically
elevated blood glucose, or hyperglycemia, causes abnormal blood vessel growth inside and
around layers of photosensitive retinal neurons. Chronic and uncontrolled hyperglycemia
is also known to increase the production of advanced glycation end products (AGEs),
which are harmful pro-inflammatory compounds that irreversibly change protein struc-
ture/function and are strongly implicated in neurodegeneration [2]. AGEs can naturally
form in the blood as a result of non-enzymatic glycosylation of proteins and lipids vastly
found in contemporary diets.

Diabetic retinopathy is a progressive disease that becomes proliferative diabetic
retinopathy (PDR) in its most severe stage and produces alarming health disparities in the
vision loss of mature adults [3]. Retinal hemorrhage and thrombosis are a consequence of
diabetes and a hallmark of progression to PDR [4]. Hyperglycemia and AGEs stimulate
abnormal angiogenesis that primarily disrupts the inner blood–retinal barrier (iBRB), a
selective neurovascular tissue that regulates the transport of molecules across microcapil-
laries and the neural retina. A healthy iBRB comprises endothelial cells, pericytes, Müller
glia, and astrocytes, as shown in Figure 1A. By contrast, pathological tissue is represented
by Figure 1B, where chronic environments of AGEs cause overwhelming pericyte death,
activation of microglia, and severe astrogliosis [5]. As shown, molecular transport in PDR
can be strongly regulated through endothelial cell and Müller glia communication, whose
cell to cell signaling remains vastly understudied. Moreover, pathogenic iBRB is likely
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further compromised by the presence of retinal thrombi [6] that can impact both barrier
integrity and molecular transport across it. The influences of chronic AGEs on pathological
responses are incompletely understood, despite the potential to advance the development
of therapies for adult tissue.
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Figure 1. Schematic of the inner blood–retinal barrier (iBRB) that regulates the flux of nutrients and 
oxygen between circulating blood and the neural retina. (A) Healthy iBRB comprises endothelial 
cells, pericytes, astrocytes, and Müller glia. (B) Pathogenic iBRB exhibits aberrant angiogenesis and 
chronic advanced glycation end products (AGEs) that cause loss of pericytes and astrocytes. The 
detrimental effects of AGEs in cell communication, vessel structure, and pro-inflammation are 
shown in the circular inset. Communication across the barrier tissue can be strongly regulated by 
surviving endothelial cells and Müller glia. 

This project examined relative relationships between endothelial cells and the two 
retinal neuroglia cell types, Müller glia and astrocytes, in chronic environments of high 
glucose and AGEs used to model PDR, in vitro. Experiments studied phenotypic changes 
across cells when cultured in the conditioned medium of neighboring cells as well as rel-
ative expression of the receptor for AGEs, called RAGE. Results illustrate that Müller glia 
respond to endothelial cells with significant changes in cell area, which dramatically in-
creases when cultured within AGEs medium. RAGE expression was also seen to increase 
by similar amounts in both cell types upon AGEs stimulation. Further, AGEs were shown 
to increase tissue factor (TF), a primary cellular initiator of blood coagulation known to 
initiate the clotting cascade [6]. Biotechnologies to evaluate and mitigate the impacts of 
AGEs across pathogenic iBRB will greatly improve treatments for neurovascular eye dis-
eases and reduce adult vision loss.  

2. Materials and Methods 
2.1. Cell Culture 

Primary Müller glia were isolated from the retina of adult female wild-type Sprague-
Dawley rats using a Papain dissociation kit (Worthington, Lakewood, NJ, USA), as per 
established protocols [7]. Primary rat retinal endothelial cells were commercially pur-
chased (CellBiologics, RA6065, Chicago, IL, USA) as were rat retinal astrocytes (ScienCell, 
R1870, Carlsbad, CA, USA). All cells were cultured in T-75 polystyrene flasks with 88% 5 
mM low glucose (ThermoFisher, 12320032, Carlsbad, CA, USA), 10% fetal bovine serum 
(FBS) (ThermoFisher, 26140, Carlsbad, CA, USA), and 2% penicillin/streptomycin (VWR, 
K952, Philadelphia, PA, USA). Astrocytes and Müller glia used Dulbecco’s modified Eagle 

Figure 1. Schematic of the inner blood–retinal barrier (iBRB) that regulates the flux of nutrients and
oxygen between circulating blood and the neural retina. (A) Healthy iBRB comprises endothelial
cells, pericytes, astrocytes, and Müller glia. (B) Pathogenic iBRB exhibits aberrant angiogenesis and
chronic advanced glycation end products (AGEs) that cause loss of pericytes and astrocytes. The
detrimental effects of AGEs in cell communication, vessel structure, and pro-inflammation are shown
in the circular inset. Communication across the barrier tissue can be strongly regulated by surviving
endothelial cells and Müller glia.

This project examined relative relationships between endothelial cells and the two
retinal neuroglia cell types, Müller glia and astrocytes, in chronic environments of high
glucose and AGEs used to model PDR, in vitro. Experiments studied phenotypic changes
across cells when cultured in the conditioned medium of neighboring cells as well as
relative expression of the receptor for AGEs, called RAGE. Results illustrate that Müller
glia respond to endothelial cells with significant changes in cell area, which dramatically
increases when cultured within AGEs medium. RAGE expression was also seen to increase
by similar amounts in both cell types upon AGEs stimulation. Further, AGEs were shown to
increase tissue factor (TF), a primary cellular initiator of blood coagulation known to initiate
the clotting cascade [6]. Biotechnologies to evaluate and mitigate the impacts of AGEs
across pathogenic iBRB will greatly improve treatments for neurovascular eye diseases and
reduce adult vision loss.

2. Materials and Methods
2.1. Cell Culture

Primary Müller glia were isolated from the retina of adult female wild-type Sprague-
Dawley rats using a Papain dissociation kit (Worthington, Lakewood, NJ, USA), as per
established protocols [7]. Primary rat retinal endothelial cells were commercially pur-
chased (CellBiologics, RA6065, Chicago, IL, USA) as were rat retinal astrocytes (ScienCell,
R1870, Carlsbad, CA, USA). All cells were cultured in T-75 polystyrene flasks with 88%
5 mM low glucose (ThermoFisher, 12320032, Carlsbad, CA, USA), 10% fetal bovine serum
(FBS) (ThermoFisher, 26140, Carlsbad, CA, USA), and 2% penicillin/streptomycin (VWR,
K952, Philadelphia, PA, USA). Astrocytes and Müller glia used Dulbecco’s modified Eagle
medium (ThermoFisher, 12320032, Carlsbad, CA, USA) as the base medium, while en-
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dothelial cells were grown in endothelial complete medium (CellBiologics, M1266, Chicago,
IL, USA), supplemented with 2% FBS, 0.1% epidermal growth factor, 0.1% vascular en-
dothelial growth factor, and 1% antibiotic/antimycotic solution. Cells exposed to AGEs
were cultured in high-glucose medium (25 mM) (VWR, 76470-182, Philadelphia, PA, USA)
with advanced glycation end products (AGEs) (MilliPore Sigma, 121800-M, St. Louis, MO,
USA) at a concentration of 0.01 mg/mL for 15 days prior to performing any study. Cell
cultures were maintained in a tissue culture incubator at 5% CO2 and 37 ◦C, and media
were replaced every 2–3 days.

2.2. Conditioned Media

Endothelial cells were cultured in 24-well plates at a concentration of 250,000 cells/mL
in basal low-glucose DMEM for 3 days. Tests collected the medium from endothelial cells
and filtered the solutions through 0.2 µm pore filters prior to testing, as per the literature [8].

2.3. AGEs/RAGE

Advanced glycation end products (AGEs) were purchased (MilliPore Sigma, 121800-M,
St. Louis, MO, USA) and used at a concentration of 0.01 mg/mL in high-glucose medium
(25 mM) (VWR, 76470-182, Philadelphia, PA, USA) for all tests. The RAGE receptor was
imaged using immunocytochemistry (ICC). Primary antibody (ThermoFisher, PA524787,
Carlsbad, CA, USA) and secondary antibody (ThermoFisher, R37118, Carlsbad, CA, USA).

2.4. Cell Morphology

Cell morphology was evaluated based on changes in cell area over time. Cells seeded
in 24-well plates at a concentration of 250,000 cells/mL were imaged at 6 h, 12 h, 24 h,
and 48 h post-seeding. ImageJ was used to quantify the total area occupied by the cells at
respective timepoints.

2.5. Immunocytochemistry

Briefly, cells were seeded in 24-well plates (VWR, 29442-044, Philadelphia, PA, USA)
at a concentration of 2.5 × 105 cells/mL and allowed to attach for 24 h. Media from each
well were removed, and wells were washed 3 times with Dulbecco’s phosphate-buffered
saline (DPBS) (Sigma-Aldrich, Cat No. D8537, Allentown, PA, USA), and cells were fixed
with cold paraformaldehyde (4%) for 5 min. Then, wells were washed with DPBS for
5 min twice at room temperature. Blocking buffer solution (0.05% Triton X-100, 2% donkey
serum, and 3% BSA in DPBS) was added to each well for 15 min at room temperature.
Following that, wells were washed twice with DPBS for 2 min, then a primary antibody
for the receptor of Advanced glycation end products (ThermoFisher, PA524787, Carlsbad,
CA, USA) was added to each well and incubated overnight. The next day, each well was
washed 3 times with DPBS for 2 min, followed by the addition of the secondary antibody
solution (ThermoFisher, R37118, Carlsbad, CA, USA) for 1 h at room temperature. Wells
were washed with DPBS for 2 min 3 times, before adding DAPI (1:1000) (ThermoFisher,
D1306, Carlsbad, CA, USA) into each well for 5 min at room temperature. Each well was
washed with DPBS 3 times for 2 min. Receptor expression was evaluated via fluorescence
microscopy (Leica Microsystems, DMi8, Chicago, IL, USA).

2.6. Turbidity

Commercially available human-pooled plasma (Cone Bioproducts, 5781, Seguin, TX,
USA) starting fibrinogen concentration 2.9 mg/mL) was warmed to 37 ◦C before all experi-
ments. Clots for turbidity assays were formed with plasma, 25 mM CaCl2, and tissue factor
(TF) at their respective concentrations (30, 75, and 600 pM). Then, 100 µL of plasma mix was
added to 96-well plates and transferred to a SpectraMax plate reader. The optical density
was recorded until a plateau was reached at a wavelength of 405 nm and a temperature
of 37 ◦C. Data were normalized to the first point. Rate of formation was measured as the
slope of the linear region. At least three replicates per condition were tested.
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2.7. Imaging Analysis

An inverted epifluorescence microscope (Leica DMi8) was used to observe cell behav-
ior over time and to perform optical analyses with a cooled CCD camera (Leica Microsys-
tems, DFC7000 GT, Chicago, IL, USA) via a 10× objective. Images were evaluated using
ImageJ with 12-bit data, as carried out previously by our group [9].

To perform scanning electron microscopy (SEM) (Hitachi S-4800 FE-STEM-EDS with
20 kV at 10 k×), clots were performed with the conditions reflected in turbidity in etched
Delrin molds. All samples were washed with sodium cacodylate for 1 h, fixed with 2%
glutaraldehyde overnight, and washed again with 50 mM cacodylate buffer containing
150 mM NaCl (pH 7.4). Clots were dehydrated with increasing concentrations of ethanol
(30–100% v/v) and hexamethyldisilazane. Samples were sputter coated with 10 nm of
gold/palladium (Quorum Technologies, EMS 150T ES, Sacramento, CA, USA).

2.8. Statistical Analysis

All experiments were performed with a minimum of n = 3 (triplicate); for cell experi-
ments, each used approximately 50 cells per condition. Normal data were evaluated using
a one-way-ANOVA test, with a Tukey post-hoc test. Symbols: ** = p < 0.01, *** = p < 0.01,
**** = p < 0.001.

3. Results and Discussion

The experiments first measured changes in adhered surface area when cells were
exposed to the secretome of other cells in their medium. Figure 2A illustrates the per-
centage change in surface area for Müller glia (MG) and astrocytes (AC) when cultured
in endothelial cell (EC)-conditioned medium. MG were seen to increase in surface area
by up to 50% when cultured in EC-conditioned medium. By contrast, AC responded to
EC-conditioned medium with a decreasing cell area, which became smaller than the control
over the experimental time period. These different phenotypical changes of retinal glia,
in vitro, are consistent with their respective functions, in vivo. MG span the neural retina
to provide trophic support between retinal neurons, regulate uptake of neurotransmitters,
control the volume and water content of the retinal extracellular space, and remove waste
to maintain the pH (rev in [10,11]). Significantly, MG also regulate the redox signaling
needed for phototransduction, which leads to the exceptionally high metabolic rate of
retina and its elevated consumption of glucose. In this role, MG manage the production of
reactive oxygen species that can damage cell structures and work intimately with the retinal
vasculature to safeguard the retinal supply of oxygen and nutrients [9,12]. In complement,
AC are the predominant neuroglia of the blood–brain barrier (BBB), where the cells control
the ionic and water balance, as well as regulate the composition of extracellular brain fluid,
interactions with immune cells, and synaptic functions (Rev in [13]). However, while MG
reside within the neural retina, AC cell bodies are located upon the nerve fiber layer of
healthy retina and extend only their cell processes within the neural retina [13]. Surprisingly,
many barrier models include only AC to study the role of glia in different neurovascular
barriers [14,15]. However, PDR patients often undergo vitrectomy to remove scarred tissue
made of reactive astrocytes upon the nerve fiber layer [16], leaving pathogenic iBRB with
strongly diminished numbers of AC and, consequently, stronger reliance on interactions
between MG and EC. These differences in glial phenotypic observations in vitro echo sig-
nificant differences in AC and MG functions in healthy and degenerated retina. Further
studies will identify the cytokine composition of conditioned media to establish a more
direct relationship between cell area changes and cytokine expression. The data highlight
the benefits of controlled in vitro study to aid the development of therapies by examining
cell–cell relationships in chronic pathogenic states.
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Figure 2. The composition of different extracellular media produces changes in the average area of
endothelial cells (ECs), astrocytes (AC), and Müller glia (MG). (A) The percentage change in average
area of MG becomes larger in response to endothelial cell-conditioned medium (EC-CM). While
the area of AC transiently increases and then returns to basal levels. Percentage change of cell area
was normalized to each cell type control. (B) Medium of high glucose (HG: 25 mM) and advanced
glycation end products (AGEs) cause decreases in average area of endothelial cells (n = 20) and
increases in Müller glia (n = 20) cell area. Significance shown as *** p < 0.001 and **** p < 0.0001.

Experiments next examined cell changes in EC and MG within microenvironments of
high glucose and AGEs stimulation, known to be a hallmark of PDR. Figure 2B illustrates
substantial increases in MG surface area over 6 days compared to its control (medium only).
By contrast, EC decreases in size within AGEs environments, which is consistent with the
in vivo literature [6]. ECs line the retinal vasculature and rely upon junctional complexes for
selective permeability of molecules via para- and trans-cellular pathways [17]. Decreases in
EC size have been shown to diminish cell connectivity and increase barrier permeability [18].
Further, RAGE expression leads to altered F-actin organization and impaired membrane
re-sealing in EC that decreases cell size and increases transcellular transport [19]. These
responses are significant to PDR because tight junctions between EC produce surfaces that
discourage the attachment of cells and associated clotting proteins to prevent thrombosis.
The AGEs-decreased size of EC observed in vitro may point to increased potential for the
formation of blood clots, which are the primary clinical indicators of PDR2. Moreover,
diabetic patients are prothrombotic with an increased risk of clot formation linked to
the excessive generation of tissue factor (TF) [6], which initiates the clotting cascade. In
particular, AGEs bind to transmembrane RAGE proteins and activate endothelial cells,
monocytes, and/or macrophages to over synthesize TF [20–22]. Figure 3 illustrates that
increasing TF yields an accelerated rate of clot formation and altered clot structures. A
decrease in fiber diameter (137 to 64 nm, p < 0.0001) was observed when TF concentration
was increased from 30 to 600 pM (Figure 3B). Thus, AGEs may have a dual effect on iBRB
integrity via clotting processes, where retinal thrombosis offers an additional therapeutic
target for modulating transport in PDR.

The final experiments measured the expression of RAGE, the receptor for AGEs, within
EC and MG, in both the control medium and medium spiked with AGEs and high glucose.
Rising levels of AGEs are significant biomedical markers that change very slowly in vivo [2].
These dynamics render in vitro systems as highly suitable platforms to study the effects of
AGEs and model chronic conditions of PDR over time. Figure 4A depicts representative
fluorescent images that illustrate minimal RAGE expression upon EC cultured in control
medium, but significantly increased expression in EC cultured with AGEs. Interestingly,
EC cultured with AGEs seemed to cluster, while EC in the control medium did not. The
changes are denoted by differences in the average fluorescence intensity per cell, which
increase by over 50% to illustrate significant changes (p < 0.01), as quantified in Figure 4C.
Similarly, MG cultured in the control medium expressed lower RAGE expression than when
cultured in AGEs conditions, with significant changes in average fluorescence intensity
per cell that increase by over 33% (p < 0.01), as shown in Figure 4B,D. RAGE expression in
the control and AGEs groups of endothelial cells and Muller glia cells was ubiquitously



Bioengineering 2024, 11, 63 6 of 9

expressed in the cell cytoplasm. The seemingly higher cell density in the endothelial cell
group exposed to AGEs is a result of cell clustering in this group. The majority of cells in
the endothelial cell group exposed to AGEs tended to cluster, which was not observed in
the control group. Concurrent RAGE activation on EC and MG is especially significant
in PDR because the binding activates signaling to promote intracellular generation of
reactive oxygen species (ROS), activation of the pro-inflammatory transcription factor
NF-κB, and expression of multiple inflammation-related markers [23,24]. Further, RAGE
activation of EC causes overexpression of RAGE in a feedforward loop that leads to the
expression of intercellular adhesion molecule-1 (ICAM) and a disruption of tight junctions
needed to maintain iBRB integrity [25]. Similarly, RAGE activation on MG cells leads to the
production of pro-inflammatory cytokines and elevated vascular endothelial growth factor
(VEGF) [26], both of which can diffuse to nearby EC and add to RAGE-mediated signals
that promote disruption of the iBRB. Furthermore, future studies can apply Western blot
assays, high-performance liquid chromatography, and/or mass spectrometry to measure
quantitative levels of RAGE expression in diabetic cells. These data underscore the need
for detailed examination of AGEs impacts on neurovascular communication in pathogenic
barrier tissues.
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(A) Increasing TF concentration yields a faster rate of clot formation in human donor blood plasma as
determined with turbidity measurements over time. (B) Altered structure of blood clots is visualized
with scanning electron microscopy (SEM) images (Scale bar = 5 µm). Significance shown as ** p < 0.01
and *** p < 0.001, ns = no significance.
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Figure 4. Stimulation with medium containing high glucose (25 mM) and advanced glycation end
products (AGEs) results in altered expression of the transmembrane receptor, RAGE, in endothelial
cells and Müller glia. Representative images of (A) endothelial cells stained for the nucleus (blue) and
RAGE (orange), and (B) Müller glia against controls (respective mediums only). Measured differences
of average fluorescence expression per cell were normalized to each control (C) endothelial cells and
(D) Müller glia (Scale bar = 100 µm). Significance shown as ** p < 0.01 and **** p < 0.0001.

4. Conclusions

The integrity of pathogenic blood–retinal barriers relies upon complex cell to cell
communication between endothelial cells and Müller glia, whose impact from chronic
AGEs is underexplored. Cognate relationships between these two cell types are becoming
increasingly elucidated through evidence of significant Müller glia functions in retinal
regeneration and repair [10], as well as newfound roles of endothelial cells in blood clotting.
Studies to examine the effects of AGEs on the changing integrity and altered transport
mechanisms across pathogenic barriers of PDR would greatly advance the development of
novel treatments to prevent vision loss in adults.
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