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Abstract: Cough-based diagnosis for respiratory diseases (RDs) using artificial intelligence (AI) has
attracted considerable attention, yet many existing studies overlook confounding variables in their
predictive models. These variables can distort the relationship between cough recordings (input data)
and RD status (output variable), leading to biased associations and unrealistic model performance. To
address this gap, we propose the Bias-Free Network (RBF-Net), an end-to-end solution that effectively
mitigates the impact of confounders in the training data distribution. RBF-Net ensures accurate and
unbiased RD diagnosis features, emphasizing its relevance by incorporating a COVID-19 dataset
in this study. This approach aims to enhance the reliability of AI-based RD diagnosis models by
navigating the challenges posed by confounding variables. A hybrid of a Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM) networks is proposed for the feature encoder
module of RBF-Net. An additional bias predictor is incorporated in the classification scheme to
formulate a conditional Generative Adversarial Network (c-GAN) that helps in decorrelating the
impact of confounding variables from RD prediction. The merit of RBF-Net is demonstrated by
comparing classification performance with a State-of-The-Art (SoTA) Deep Learning (DL) model
(CNN-LSTM) after training on different unbalanced COVID-19 data sets, created by using a large-
scale proprietary cough data set. RBF-Net proved its robustness against extremely biased training
scenarios by achieving test set accuracies of 84.1%, 84.6%, and 80.5% for the following confounding
variables—gender, age, and smoking status, respectively. RBF-Net outperforms the CNN-LSTM
model test set accuracies by 5.5%, 7.7%, and 8.2%, respectively.

Keywords: cough; COVID-19; confounding variables; spectrograms; diagnosis; deep-learning; c-GAN;
respiratory diseases

1. Introduction

Respiratory diseases (RDs) are among the most common chronic diseases and a
primary cause of morbidity and mortality, imposing an immense burden on health world-
wide [1]. COPD, acute lower tract infections, asthma, lung cancer, tuberculosis, and the
recent COVID-19 infection are considered the most common acute respiratory diseases [2].
Millions die due to chronic RDs every year because of the lack of timely and accurate diag-
nosis [3]. The reliable diagnostic tests that are available for the detection of RDs are mostly
laboratory-based, expensive, and time-consuming. For instance, a reverse transcriptase
polymerase chain reaction (RT–PCR) test specific to SARS-CoV-2 virus is routinely used
for reliable detection. This test cannot be used for continuous monitoring, since it can take
up to 2 days for determining the diagnosis [4]. Additionally, to rule out the possibility of
false negative results, repetitive testing may be required. This underscores the pivotal need
for devising alternative methods for rapid, cost-effective, and accurate diagnosis of RDs.
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Moreover, there exists a dearth of reliable instantaneous screening tools that can detect the
RDs at their onset [5]. Such tools are necessary for curbing the spread of the contagious
RDs and averting the deterioration of public health.

As a pragmatic solution to this momentous problem, cough acoustic signals can play a
crucial role in monitoring and detecting RD more effectively. Recent surveys [5,6] indicate
that individuals with respiratory illness exhibit distinct features in their acoustic signals,
representative of the vocal tracts, which can be extracted. Hence, features extracted from
cough can help to continuously monitor and establish the health status of individuals at
risk of RDs such as tuberculosis, asthma, COPD, and COVID-19 [2,5,7]. Therefore, a smart,
accessible, and cost-effective self-monitoring framework for continuous cough monitoring
and quick disease diagnosis [7] can be devised by incorporating the recording of cough
sounds and implementing AI-based cough processing solutions [8,9].

Our seminal work on AI-enabled cough-based disease diagnosis has further triggered
this interest, where RDs such as COVID-19 can be accurately diagnosed using cough. We
demonstrated that it is possible to design advanced machine learning (ML) models to
(1) discern cough from non-cough sounds recorded via a smartphone app, and (2) detect
RDs such as COVID-19 infection, bronchitis, bronchiolitis, and pertussis from cough sounds
recorded via the same app [10,11]. In recent years, a large number of independent studies
have proposed solutions for digital cough monitoring and collection for timely diagnosis
of RDs [12–17]. The current literature on SoTA cough-based RD detection leverages several
ML and deep learning (DL) algorithms that can classify various temporal, spectral, and
statistical cough features, including those that are perceptually indistinguishable to the
human ear [5]. The cough-acoustic AI-based RD diagnosis models include traditional
methods like support vector machines [18] for the classification of croup from pneumonia,
asthma, bronchiolitis; random forest model used for COVID-19 diagnosis [19]; logistic
regression model for the classification of croup and pneumonia [12]; and gradient boost-
ing for COVID-19 classification [20,21]. Several DL models have also been leveraged for
cough-based RD diagnosis including CNNs [8] for COVID-19 diagnosis and for croup,
pertussis, bronchitis, and asthma classification [22]. Deep neural networks and spiking
neural networks have also been used for the classification of COVID-19, asthma, bron-
chitis, and pertussis with remarkable accuracy [16,23]. Hybrid, e.g., CNN-LSTM, and
ensemble models are also implemented in recent studies for RD diagnosis, achieving high
accuracy [17,24–31].

In the rapidly advancing field of AI-enabled automated cough sound monitoring
and digital disease diagnosis, remarkable performance metrics have been achieved, as
evidenced by several notable studies [8,10,14,32–36]. However, a critical concern remains
unaddressed in the majority of these studies: the potential impact of confounding variables
and data biases on the performance of the AI models they employ. These models tend
to overestimate their classification performance and overfit to the training data biases,
while falling short in terms of proper validation and generalization to unseen data. A
recent investigation by the University of Cambridge in the UK underscored this glaring
deficiency within a substantial body of research dedicated to accurately detecting and
diagnosing COVID-19, highlighting the oversight of confounders in the evaluation of AI
frameworks [35]. The root issue is that confounding variables can distort the apparent
relationship between input features and diagnostic outcomes, leading to erroneous pre-
dictions [37,38]. For instance, studies aiming to distinguish individuals with a disease
from healthy controls often face the challenge of dealing with a substantial age difference
between the two groups. In such cases, the AI model may inadvertently learn associations
primarily influenced by age disparities rather than the genuine disease-related biomarkers
and features, thus severely hindering its ability to generalize its findings. Importantly, these
confounding factors can include a range of biases, such as those related to age, gender, race,
and medical history, all of which can introduce systemic inaccuracies and pose potential
threats to equitable healthcare assessment outcomes. Addressing these challenges is crucial
for improving the reliability and fairness of AI models in the context of disease diagnosis
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and monitoring. The findings of our study highlight the importance for future studies to
consider accounting for the effects of the confounding variables, similarly to RBF-Net, so
that the reported results will be a realistic representation of classification expected in a
real-world scenario.

To address this limitation in the existing studies on cough-based diagnosis, we propose
an end-to-end generalized RD Bias-Free Network (RBF-Net) and evaluate its efficacy
on a COVID-19 dataset. To the best of the authors’ knowledge, this is the first study
that proposes a framework that is robust to the confounding variables for COVID-19
diagnosis, thus providing realistic and generalized performance. The proposed RBF-
Net framework contains a bias predictor module that helps in identifying features from
the cough recordings that are statistically invariant to confounding effects and mainly
characterized by the effects of COVID-19, using an adversarial learning technique [39].

The contributions of this work are summarized as follows:

• In contrast to the majority of previous studies that rely on crowd-sourced cough audio
databases for training AI models, this study curated a cough data set containing
COVID-19 infection status. For each participant, the curated data set includes cough
recordings tagged with reliable RT-PCR information and collected in a clinical setting.
Hence, the data set used has extremely reliable ground truth labels, resulting in the
accurate training of RBF-Net.

• To demonstrate the impact of confounding variables, we train a SoTA DL model on
different splits of biased training scenarios from the cough data set based on gender,
age, and smoking status. Moreover, we present an insightful analysis on how model
performances are often overestimated due to the underlying biased distribution of the
training data and the use of cross-validation technique.

• To overcome the impact of biases, we present an RBF-Net that learns features
from cough recordings that are impacted by COVID-19. We perform a compara-
tive analysis of the existing SoTA CNN-LSTM model with RBF-Net and demon-
strate the improvement achieved by the proposed RBF-Net in terms of different
performance metrics.

The remaining contents of this paper are organized as follows: Section 2 discusses the
details of the cough data acquisition and its pre-processing. Section 3 presents the proposed
RBF-Net architecture, and Section 4 describes the methodology adopted for the study. The
results for classification on data with various biases using the proposed RBF-Net and the
existing SoTA CNN-LSTM are explained in Section 5. Section 6 discusses the impact of
our work and future clinical deployment, and acknowledges some limitations of this work.
Finally, the conclusions of the study are given in Section 7.

2. Cough Data Acquisition and Pre-Processing

We have collected a corpus of high-fidelity audio data containing cough acoustics of
normal and COVID-19 diagnosed patients. The notable feature about the data set is that
rather than being collected through crowd-sourcing, it was curated to have a valid tagged
RT-PCR test result for each sample. The audio data sample acquisition was performed
during the time period of April–October 2020, in collaboration with Dow Medical College,
Pakistan. For this research, the cough data samples were recorded from the subjects through
our in-house developed AI4COVID app [40], under the supervision of trained nurses, using
one smartphone model to avoid the impact of device variability. Each participant recorded
multiple coughs in a recording sample, with each recording duration varying from 3 to
12 s. An informed consent was obtained from each participant prior to acquiring the cough
data. The guidelines to interact with the potential COVID-19 patients recommended by
the WHO were strictly followed at all stages of the cough data collection. For instance,
the healthcare professionals wore personal protective equipment (PPE) and followed a
protocol for the smartphone disinfection before and after the sample was recorded. In total,
the data were collected from 1094 participants with positive RT-PCR test results, labelled
as COVID-19 positive, and 3761 participants with negative RT-PCR test results, labelled
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as normal. In addition, the anonymity of the users was preserved at all stages during the
data collection.

Once the data acquisition process was complete, we performed the cough sound
pre-processing steps, including noise removal, using the Audacity software package [41].
The mono-channel cough data were sampled at 44.10 kHz before being stored as pulse-code
modulation (PCM) WAV files. Silent periods at the beginning and at the end of each cough
recording were clipped out. After the initial pre-processing, only the cough recordings
that were longer than 2 s in duration were considered for further analysis. Thus, at the
completion of the pre-processing step, we had a total of 1022 COVID-19 positive samples
and 2656 normal samples. Figure 1 provides a summary of the demographics for the
individuals constituting the cough audio data set. It illustrates the number of COVID-19
and normal participants with respect to their demographics, including gender, age, and
smoking status. It can be observed from Figure 1 that both normal samples and COVID-19
positive samples were skewed towards the male gender, i.e., the male cough samples were
almost twice as numerous compared to the female samples. Similarly the age of the subjects
in the data set fell in a broad age range from 10 to 85 years, with a significant number of
the cough samples belonging to the younger and middle-aged population, 18–50 years
old. A small fraction of the participants were smokers, 865 subjects who tested COVID-19
positive, and 2355 normal participants were non-smokers. On the other hand, there were a
total of 156 COVID-19 positive smoking participants and 301 normal smoking participants.
Figure 2 demonstrates the sample waveforms from the COVID-19 and normal classes.
Respiratory disease affects the lungs and results in changes in the acoustic signature of the
cough sound. These changes are not always clearly identifiable on inspection. Deep neural
networks trained on audio data comprising coughs from respiratory disease can learn
to identify cough acoustic features characterizing the respiratory disease [5]. In addition
to disease status, the cough waveforms have information like gender, age and smoking
habits encoded within them that can lead the classifier to learn inaccurate representations
for the disease labels. By incorporating the bias-free mechanism, the RBF-Net learns to
disassociate the effects of the confounding factors like gender, age and smoking status
from the disease status when classifying the cough recording. Further details are given
in Section 4.
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selected participants after the process of data cleaning. A total of 1022 COVID-19 positive participants
and 2656 normal participants were finalized.
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Figure 2. Sample waveforms for each target class, i.e., COVID-19 and normal. The waveforms
contain information regarding the gender, age and smoking status that can cause a classifier to learn
inaccurate representation for a cough recording with respect to a target disease label.

3. RBF-Net Architecture

In this section, we present the detailed architecture of the proposed RBF-Net with a
focus on COVID-19 classification. The CNN-LSTM model forms the main skeleton of the
proposed framework architecture. The CNN-LSTM has proved to be the SoTA spectrogram-
based COVID-19 classification DL model and has been widely used for classification tasks
by the research community [17,24–31]. We used this SoTA DL technique as both the
benchmark for our framework and also the building block for the feature encoder module
of the proposed RBF-Net. The architectural details of the implemented CNN-LSTM model
are shown in Figure 3a.

The CNN-LSTM architecture can primarily be divided into two blocks. The first
block (feature encoder) uses a CNN architecture that receives grayscale spectrograms
constructed from cough recordings as an input of shape 224 × 224. Then, the most relevant
and informative features are extracted by the convolutional layers. These features are
converted to the feature maps, which are passed on to the LSTM block, where the deep
features that have high temporal correlation are selected to capture the more useful patterns.
In the second block (COVID-19 classifier), a simple fully connected layer is used for the
feature learning and COVID-19 classification. Both of these blocks are trained through the
COVID-19 classification loss (Lc), which is chosen to be the binary cross-entropy loss. The
Lc is backpropagated in a manner that the model parameters of the feature encoder (∂E)
and COVID-19 classifier (∂C) are tuned to minimize.

Although this model works extremely well in learning the differences between the two
classes in the target variable (COVID-19 or normal), as shown in Section 5, it can not nullify
the impact of the confounding variables. This model is prone to be affected by the impact of
biases in its learned features; thus, the model cannot be truly representative of COVID-19’s
impact on the cough sounds. To address the underlying biases and confounding variables
in the data distribution, we made modifications to the CNN- LSTM inspired by the recent
work in the machine learning fairness schemes [39]. An additional bias predictor component
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is attached to the network architecture that helps the encoder module to decorrelate the
extracted feature vector from the effects of confounding variables, as evidenced by the
classification results for the RBF-Net framework in Section 5. This decorrelation process is
based on training the feature encoder through an adversarial learning technique similar to
that of the conditional GAN (c-GAN). In this iterative training process, the bias predictor
aims to predict the bias value from the feature vector created from a conditioned subset of
normal samples from the input and then have an adversarial impact on the encoder to learn
the features that are bias- free. In this manner, the RBF-Net framework learned features
conditionally independent of the biases and carrying useful information for COVID-19
classification. Thus, the overall goal to create a bias-free and generalizable RD classifier for
large-scale clinical deployment can be realized.

The RBF-Net architecture is composed of three key blocks, depicted in Figure 3b,
each undergoing distinct training phases. Initially, the COVID-19 classifier block focuses
on precise dis ease classification, dynamically updating its model parameters ∂C. The
gradient, propagated with respect to the COVID-19 classification loss LC, refines the encoder
parameters ∂E, ensuring feature extraction that minimizes LC. In the subsequent phase,
with frozen encoder parameters ∂E, the bias predictor module is trained. This involves
updating parameters ∂B to minimize bias prediction loss LB, determined by either inverse
mean squared error or inverse binary cross-entropy based on the bias variable. In the final
training step, with ∂B frozen, the feature encoder undergoes training. Adversarial back-
propagation of gradients from LB fortifies ∂E to extract features maximizing LB, establishing
a min-max game that cultivates bias-invariant features crucial for COVID-19 classification.
This strategic training paradigm equips RBF-Net to accurately classify COVID-19 without
succumbing to the influence of underlying biased data distributions.
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Figure 3. Overview of the architecture of the RBF-Net framework. (a) CNN-LSTM model architecture
is shown, consisting of feature encoder (convolutional and LSTM blocks) and a COVID-19 classifier
(fully connected layers with ReLU activation). (b) In the RBF-Net, we have an additional bias
predictor module (fully connected layers with ReLU activation) that predicts bias from the feature
vector. The losses, LC and LB, are back-propagated to train the encoder through a min-max game
similarly to c-GAN, so that the extracted features are invariant to the confounding variables.
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4. Methodology
4.1. Creation of Cough Spectrograms

In this first stage of the RBF-Net framework, the cough recordings are mapped onto the
spectrograms, which depict the spectro-temporal correlations in the audio signal as images.
The motivation to use the spectrograms stems from the fact that the spatio-temporal features
have the ability to provide comprehensive descriptions of the respiratory sounds (lungs,
wheeze, crackles, cough, etc.) [42,43] and to train the deep neural networks [44,45]. The
spectrogram is a two dimensional time–frequency representation of the one dimensional
cough acoustic samples. The COVID-19 coughs and normal coughs are transformed into
the respective time–frequency representations. A spectrogram divides the time domain
into several regions. The x-axis characterizes the time domain, while the y-axis represents
the frequency domain of the signal. The spectrogram is constructed by a short-time Fourier
transform (STFT) with short frame size of 25 ms and stride of 10 ms [46]. Then, a Hamming
window of length 2048 is employed that divides the acoustic signal into the frames. To
obtain the spectrogram, a 128-point fast Fourier transform (FFT) is implemented on each
respective frame. In order to derive the spectrogram final representation, we used the
magnitude square of the STFT coefficients. Finally, for achieving computational efficiency,
the spectrogram coefficients are log transformed to introduce the compressive nonlinearity
and linearly down-sampled onto a 224 × 224 matrix for the cough audio signal.

4.2. Biased Training Data Generation

To demonstrate how the biases impact the performance of SoTA DL models and to
best evaluate the robustness of the RBF-Net framework, we created multiple training data
sets with various biases. In these training data sets, different bias factors were induced
pertaining to the following confounding variables: gender, age, and smoking status. In
each of these sets of training data, the number of COVID-19 positive and normal class
participants were kept equal, to properly address the class imbalance problem. An eminent
aspect of this work is that after training models using these sets of biased training data, we
also created sets of unseen testing data for their evaluation. The unseen testing data sets
were created such that they had a balanced number of participants with respect to each of
the confounding variables.

(1) Gender Bias:

We created a gender-biased training scenario where the COVID-19 positive rate greatly
differs in both male and female gender groups. In this training data set, we have 925 partici-
pants in each of the classes, i.e., COVID-19 positive and normal. Although, the total number
of participants is balanced in both of the classes, the difference lies in the number of male
and female participants in each class (gender bias). As shown in Figure 4, the COVID-19
training class comprises a greater number of male participants compared to the female
participants. On the other hand, the normal training class has a greater percentage of female
participants. Thus, there exists a bias pertaining to the gender variable in the training data
set. Simultaneously, we kept the impact of age and smoking status confounding variables
balanced in both of the classes, as shown in Figure 4. We have roughly the same number
of COVID-19 and normal participants in each age bracket. Moreover, we only kept the
participants with non- smoking status in both classes. Therefore, the bias in the training
data set is only induced through gender and not through age and smoking status.

We also created a corresponding gender-based unseen balanced testing data set using
the total collected data. In this testing data set, we have 100 participants in each class. We
have a balanced number of males and females in both classes, i.e., 50 males and 50 females
in both COVID-19 and normal classes. Additionally, we kept the distribution in this testing
data set similar to that in the gender-biased training data set in terms of age and smoking
status variables.
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(2) Age Bias:

To further study the impact of another unique confounding variable on the perfor-
mance of DL models, we created age-biased training data sets. For a more generalized
evaluation, we created two age-biased training data sets, i.e., age-biased group 1 and age-
biased group 2. In both groups, we have 765 participants in each COVID-19 and normal
class. The demographics of both age-biased training data sets are shown in Figure 5. In
group 1, the normal participants were chosen to be from a relatively younger population i.e.,
aged under 40 years. At the same time, the COVID-19 class in group 1 included participants
from a relatively older population. On the contrary, group 2 has different age distributions
in both classes compared to group 1. In group 2, normal class participants were chosen from
an older population, i.e., aged above 40 years. Simultaneously, COVID-19 class participants
were chosen from a relatively younger population, as shown in Figure 5. In both of these
groups, the entire bias is induced only through the age groups. There is no additional bias
induced through gender, as the number of male and female participants is approximately
equal in each of the classes across both groups. Moreover, only non-smoking participants
were chosen in these data sets to nullify the impact of smoking status. Apart from these
two training data sets, we also created a corresponding age-based unseen balanced testing
data set that includes 100 participants in each of the classes. Both of these classes in the
testing data set have an identical age distribution, thus no underlying age bias. Moreover,
the testing data set has the same gender and smoking status distribution as the training
data sets. Therefore, overall, there is no underlying bias in the unseen balanced testing
data set.

(3) Smoking Status Bias:

For further evaluation of the impact of another distinctive bias on the DL models,
smoking status-biased training data sets were also created. Smoking status-biased training
data sets contain 350 participants in both the COVID-19 and normal class. However, the
total number of participants is balanced in both classes; the difference lies in the number of
smoking and non-smoking participants in each class. As shown in Figure 6, the COVID-19
training class comprises a greater number of non-smoking participants compared to the
smoking participants. On the other hand, the normal training class has a greater percentage
of smoking participants. Thus, there exists a bias pertaining to the smoking status variable
in the training data set. Simultaneously, we kept the impact of the other two confounding
variables balanced in both classes, as shown in Figure 6. We have approximately the same
age distribution in both classes (COVID-19 and normal). Another important aspect of
this smoking-biased data set is that as the original cough database comprises more male
participants compared to female participants, we only kept the male participants in both
classes of smoking-biased training data. Therefore, the bias in the training data set is only
induced through smoking status and not through gender and age. Similarly to the other
gender and age confounding variables, we created an unseen balanced testing data set
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for the smoking status as well. In this data set, the number of non-smoking and smoking
participants are balanced across both classes. At the same time, this testing data set had
the same demographic distribution as the smoking status-biased training data set, which
means that there is no innate bias in the smoking status-based unseen balanced testing
data set.

Bioengineering 2024, 11, x FOR PEER REVIEW 9 of 18 
 

 
(a) Age Biased (Group 1) Training Data. 

 
(b) Age-biased (Group 2) Training Data 

Figure 5. Distribution of the Age- biased Training Data Groups. (a )  In age-biased group 1, there 
is an over-representation of relatively younger population (aged under 40) in the normal class com-
pared to the COVID-19 class. (b) In age biased group 2, there is over-representation of relatively 
older population in the normal class (aged above 40) compared to the COVID-19 class. The 
gender distribution for both classes is identical in these two age-biased groups. Only non-smoking 
participants were chosen for the creation of both of the training data sets. 

(3) Smoking Status Bias: 
For further evaluation of the impact of another distinctive bias on the DL models, 

smoking status-biased training data sets were also created. Smoking status-biased train-
ing data sets contain 350 participants in both the COVID-19 and normal class. However, 
the total number of participants is balanced in both classes; the difference lies in the num-
ber of smoking and non-smoking participants in each class. As shown in Figure 6, the 
COVID-19 training class comprises a greater number of non-smoking participants com-
pared to the smoking participants. On the other hand, the normal training class has a 
greater percentage of smoking participants. Thus, there exists a bias pertaining to the 
smoking status variable in the training data set. Simultaneously, we kept the impact of the 
other two confounding variables balanced in both classes, as shown in Figure 6. We have 
approximately the same age distribution in both classes (COVID-19 and normal). Another 
important aspect of this smoking-biased data set is that as the original cough database 
comprises more male participants compared to female participants, we only kept the male 
participants in both classes of smoking-biased training data. Therefore, the bias in the 
training data set is only induced through smoking status and not through gender and age. 
Similarly to the other gender and age confounding variables, we created an unseen bal-
anced testing data set for the smoking status as well. In this data set, the number of non-
smoking and smoking participants are balanced across both classes. At the same time, this 
testing data set had the same demographic distribution as the smoking status-biased train-
ing data set, which means that there is no innate bias in the smoking status-based unseen 
balanced testing data set. 

Figure 5. Distribution of the Age-biased Training Data Groups. (a) In age-biased group 1, there is an
over-representation of relatively younger population (aged under 40) in the normal class compared
to the COVID-19 class. (b) In age biased group 2, there is over-representation of relatively older pop-
ulation in the normal class (aged above 40) compared to the COVID-19 class. The gender distribution
for both classes is identical in these two age-biased groups. Only non-smoking participants were
chosen for the creation of both of the training data sets.

Bioengineering 2024, 11, x FOR PEER REVIEW 10 of 18 
 

 
Figure 6. Distribution of Smoking Status-biased Training Data. In this data set, there is an over-
representation of non-smoking participants in the COVID-19 class, and there is over-representation 
of smoking participants in the normal class. The age distribution for both the classes is identical. 
Only male participants were chosen for the creation of this training data set. 

4.3. Model Training 
We trained the CNN-LSTM and the RBF-Net models on the data distributions 

described in Section 4.2, to analyze the impact of bias in the data distribution on model 
performance. Both models were implemented in Python 3.6 and Tensorflow 1.21. The 
training process was accelerated through a high-performance computing cluster inte-
grated with Nvidia V100 Tensor Core GPUs. 

To achieve maximum possible accuracy and generalization, we performed extensive 
hyperparameter tuning on both models. The main purpose was to optimize the values 
of model parameters that were not learned during training, but rather set before the train-
ing process. In the case of CNN-LSTM and the RBF-Net, the hyperparameters that were 
searched included the learning rate, epochs, batch size, optimizer, and the number of 
layers/nodes. Hyperparameter optimization was performed by creating small validation 
data sets having the same data distribution as the biased training data sets. We used these 
validation sets and the AutoML optimization tool [47] for tuning each model individually. 
The sensitivity and specificity metrics of the validation sets after the 100th epoch of train-
ing were used to identify the optimal hyperparameter configuration. Once these hyperpa-
rameters were set, we initiated the training process for both models. The best combination 
of parameters is listed in Table 1. These CNN-LSTM and RBF-Net models were individu-
ally trained using the optimal hyperparameter configuration on each of the biased train-
ing sets, followed by their performance being evaluated on the respective unseen testing 
sets for a fair comparison. 

Table 1. Optimal Training Parameters for RBF-Net. 

Hyperparameters Best Value 
Number of Convolutional Blocks 4 

LSTM Units 256 
LSTM Activation tanh 
CNN Activation ReLU 

Epochs 1000 
Optimizer ADAM 
Batch Size 256 

Learning Rate 0.0001 

Another crucial aspect of training RBF-Net lies in its convergence and stability. Since 
RBF-Net fundamentally mimics the c-GAN training scheme for classification of COVID-
19 and normal cough sounds, the convergence and stability of the model had to be en-
sured. The feature encoder of RBF-Net was trained through a min-max game where it 
aimed to accurately predict COVID-19 while being invariant to the underlying biases. For 
this reason, the optimal learning rate was very small to avoid fluctuations in the objective 

Figure 6. Distribution of Smoking Status-biased Training Data. In this data set, there is an over-
representation of non-smoking participants in the COVID-19 class, and there is over-representation
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4.3. Model Training

We trained the CNN-LSTM and the RBF-Net models on the data distributions de-
scribed in Section 4.2, to analyze the impact of bias in the data distribution on model
performance. Both models were implemented in Python 3.6 and Tensorflow 1.21. The
training process was accelerated through a high-performance computing cluster integrated
with Nvidia V100 Tensor Core GPUs.
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To achieve maximum possible accuracy and generalization, we performed extensive
hyperparameter tuning on both models. The main purpose was to optimize the values of
model parameters that were not learned during training, but rather set before the train-
ing process. In the case of CNN-LSTM and the RBF-Net, the hyperparameters that were
searched included the learning rate, epochs, batch size, optimizer, and the number of
layers/nodes. Hyperparameter optimization was performed by creating small validation
data sets having the same data distribution as the biased training data sets. We used these
validation sets and the AutoML optimization tool [47] for tuning each model individually.
The sensitivity and specificity metrics of the validation sets after the 100th epoch of training
were used to identify the optimal hyperparameter configuration. Once these hyperparame-
ters were set, we initiated the training process for both models. The best combination of
parameters is listed in Table 1. These CNN-LSTM and RBF-Net models were individually
trained using the optimal hyperparameter configuration on each of the biased training sets,
followed by their performance being evaluated on the respective unseen testing sets for a
fair comparison.

Table 1. Optimal Training Parameters for RBF-Net.

Hyperparameters Best Value

Number of Convolutional Blocks 4

LSTM Units 256

LSTM Activation tanh

CNN Activation ReLU

Epochs 1000

Optimizer ADAM

Batch Size 256

Learning Rate 0.0001

Another crucial aspect of training RBF-Net lies in its convergence and stability. Since
RBF-Net fundamentally mimics the c-GAN training scheme for classification of COVID-19
and normal cough sounds, the convergence and stability of the model had to be ensured.
The feature encoder of RBF-Net was trained through a min-max game where it aimed
to accurately predict COVID-19 while being invariant to the underlying biases. For this
reason, the optimal learning rate was very small to avoid fluctuations in the objective loss
functions or accuracy metric while training. Moreover, RBF-Net was trained for 1000 epochs,
during which the performance metrics during the training and validation process started
to stabilize with minimal fluctuations. Once these metrics reached a consistent steady state
after approximately 650 epochs, the RBF-Net effectively converged. While training on
all training scenarios, the RBF-Net training reached stability and converged for effective
COVID-19 prediction without being impacted by confounding variables.

5. Results

We trained the CNN-LSTM model on all of the biased training data sets to analyze the
impact of confounding effects in the data distribution on this particular SoTA DL model. We
utilized 10-fold cross-validation (CV) on the CNN-LSTM model; the data sets were divided
into 10 equal folds. In each iteration of CV, one of these folds was used as a validation set,
while the other nine folds were used for the training. This process was repeated 10 times,
with each fold being used as the validation set once. During each iteration of the CV,
we measured the accuracy, specificity, sensitivity, F1-score, and ROC-AUC for the model
performance on the validation set. After all iterations were completed, the average of
each performance metric across all iterations was calculated and reported. After this CV
technique, the CNN-LSTM model architecture was trained on the biased data sets, and its
performance was evaluated on the respective unseen balanced testing data sets to gauge if
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the unrealistic experiment design led to an inaccurate inflation of the model performance.
Furthermore, in order to evaluate the efficacy of the RBF-Net framework in learning the
features that were purely extracted through difference in cough spectrograms caused by the
impact of COVID-19 respiratory disease, we trained it on the biased training data sets as
well. We evaluated the performance of RBF-Net on the same unseen balanced testing data
sets and performed a comparative analysis with the CNN-LSTM model. In the subsequent
subsections, we evaluate the performance of both CNN-LSTM and RBF-Net on each of the
biased training data sets individually.

5.1. Performance in Gender-Biased Training Scenario

The performance of the CNN-LSTM model in COVID-19 detection was inaccurately
inflated under the influence of innate gender bias in the training scenario. From the results
obtained through the CNN-LSTM model using the CV technique to the results obtained
through the CNN-LSTM on the unseen testing data set, a major decline in performance
metrics was observed, as reported in the Table 2. The obtained accuracy dropped from 0.890
to 0.787. This clearly indicated that the CV technique led the CNN-LSTM model to learn
the features impacted by the gender bias. Thus, the performance of the CNN- LSTM model
in accurately diagnosing COVID-19 was highly overestimated. Another vital observation
was the difference in the obtained specificity (0.860) and sensitivity (0.715) of the CNN-
LSTM model on the testing data set. Since the samples from the normal class participants
were over-represented by the female participants in the training data, the model tended
to treat female participants as normal participants. On the other hand, the results of the
RBF-Net model, when evaluated on the unseen testing data set, demonstrated a significant
improvement over the CNN-LSTM, as measured by the five different performance metrics.
We obtained an overall accuracy improvement of more than 5% through the RBF-Net
model. The difference between the obtained specificity (0.887) and sensitivity (0.796) was
also diminished in the RBF-Net model; thus, it is better suited to mitigate the effect of
gender bias in the training scenario.

Table 2. Performance comparison on the gender-biased training data: Performance evaluation of
CNN-LSTM and RBF-Net model in terms of accuracy, specificity, sensitivity, F-1 score, and ROC-AUC.

Model Accuracy Specificity Sensitivity F-1 Score ROC-AUC

Cross-Validation CNN-LSTM 0.890 0.913 0.866 0.892 0.893

Gender Bias Unseen Testing Data CNN-LSTM 0.787 0.860 0.715 0.785 0.787

RBF-Net 0.841 0.887 0.796 0.845 0.846

5.2. Performance in the Age-Biased Training Scenarios

Similarly to the gender-biased data, the performance of the CNN- LSTM model in
COVID-19 detection was overestimated in the presence of the underlying age distribution
in the training scenario. Using 10-fold CV, the CNN-LSTM model obtained an average
accuracy of 0.887 and 0.884 in the age-biased groups, respectively, as shown in Table 3.
On the other hand, when the CNN-LSTM model was trained on the same training data
sets and evaluated on the unseen balanced testing data set, a substantial decline in the
performance metrics, such as accuracy, specificity, sensitivity, F1-score, and ROC-AUC, was
observed. It achieved an unseen testing accuracy of 0.774 and 0.756 when trained on both
groups, respectively. As shown in the previous section (Section 4.2), age-biased group 1
had an over-representation of a relatively younger population (aged under 40 years) in the
normal participants. This led the model to treat younger participants as normal samples.
This accounted for the significant difference between specificity (0.843) and sensitivity
(0.706) obtained through the CNN-LSTM model on the testing data set. Similarly, in
age-biased group 2, the normal participants were over-represented by a relatively older
population (aged above 40 years). This led the model to treat elderly participants as normal
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participants, which was again shown by the difference in the obtained specificity (0.825)
and sensitivity (0.687). This clearly indicated that CNN-LSTM is prone to learning features
directly associated with the underlying age bias, which led to the overestimation of the
COVID-19 detection performance. Unlike CNN-LSTM, RBF-Net is immune to the impact
of biases in the training data sets. The results for the RBF-Net model demonstrated a major
improvement over the CNN-LSTM model in all of the performance metrics when evaluated
on the unseen testing data set. An accuracy of 0.845 and 0.818 was achieved across both
training groups, respectively, and at the same time, the difference between sensitivity and
specificity was also diminished. Thus, it demonstrates that the RBF-Net is also suitable for
alleviating the age bias in real-world COVID-19 detection applications.

Table 3. Performance comparison on both of the age-biased training data sets (Group 1 and Group 2):
Performance evaluation of CNN-LSTM and RBF-Net model in terms of accuracy, specificity, sensitivity,
F-1 score, and ROC-AUC.

Model Accuracy Specificity Sensitivity F-1 Score ROC-AUC

Cross-Validation CNN-LSTM 0.887 0.908 0.867 0.894 0.892

Age-biased
Group 1 Unseen Testing Data CNN-LSTM 0.774 0.843 0.706 0.775 0.776

RBF-Net 0.845 0.888 0.801 0.845 0.846

Cross-Validation CNN-LSTM 0.884 0.901 0.867 0.884 0.881

Age-biased
Group 2 Unseen Testing Data CNN-LSTM 0.756 0.825 0.687 0.757 0.756

RBF-Net 0.818 0.863 0.774 0.819 0.821

5.3. Performance in the Smoking Status-Biased Training Scenario

The impact of underlying bias in the smoking status distribution on the CNN-LSTM
model, causing the inaccurately inflating COVID-19 detection performance, was analyzed.
Using a 10-fold CV technique, the CNN-LSTM model obtained an average accuracy of
0.862, as shown in Table 4, whereas, when evaluated on unseen testing data, its accuracy
drops to 0.723, which was almost 14% less than that obtained with the CV technique. This
clearly shows that the CNN-LSTM model learned features directly associated with the
smoking status bias and its COVID-19 detection performance was again overestimated. On
the contrary, RBF-Net showed its ability to eliminate the underlying impact of smoking
status bias in the training scenario when it was evaluated on the unseen smoking status
testing data set. The results for the RBF-Net model showed a major improvement over
the CNN-LSTM model in all performance metrics. The obtained accuracy, F1-score, and
ROC-AUC were almost 8% higher compared to the CNN-LSTM model.

Table 4. Performance comparison on the smoking status-biased training data: Performance evaluation
of CNN-LSTM and RBF-Net in terms of accuracy, specificity, sensitivity, F-1 score, and ROC-AUC.

Model Accuracy Specificity Sensitivity F-1 Score ROC-AUC

Cross-Validation CNN-LSTM 0.862 0.881 0.844 0.867 0.862

Smoking Bias Unseen Testing Data CNN-LSTM 0.723 0.750 0.694 0.727 0.723

RBF-Net 0.805 0.836 0.774 0.811 0.805

5.4. Ablation Study

To further elucidate the novelty of our proposed approach, which involves integrating
the bias predictor module (B) into the CNN-LSTM framework (module A) to address
confounding variables, we conducted an additional experiment. In preceding sections,
we methodically demonstrated how our RBF-Net (A + B) consistently outperformed the
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standalone CNN-LSTM model when trained on diverse sets of biased data. In this ablation
study, we aimed to assess the specific influence of the bias predictor module (B) within the
RBF-Net in comparison to the CNN and CNN-LSTM framework (A) under both unbiased
and biased training conditions. The architecture used for constructing the CNN model
is illustrated in [27]. To achieve this, we created a new training dataset devoid of any
inherent bias related to the confounding variables of age, gender, and smoking status. This
dataset consisted of 900 samples for each target class, i.e., COVID-19 and normal. The
gender distribution, age distribution, and smoking status distribution were kept roughly
the same across both of these classes, thus eliminating any form of bias. Furthermore,
we curated an additional balanced unseen testing dataset having 100 samples in both of
the classes for evaluating the RBF-Net, CNN, and CNN-LSTM on the unbiased training
data. In Table 5 below, we present the testing performance metrics for the CNN model,
CNN-LSTM model (Module A) and the RBF-Net (A + B) when trained on the unbiased,
gender-biased, age-biased (group 1), and smoking status-biased training datasets and
evaluated on their respective unseen testing datasets. This presentation was designed
to highlight the discernible impact of the bias predictor (Module B) on the performance
of RBF-Net.

Table 5. Results of Ablation Studies on RBF-Net.

Model
Unbiased Gender-Biased Age-Biased Smoking Status-Biased

Acc F1-Score ROC-AUC Acc F1-Score ROC-AUC Acc F1-Score ROC-AUC Acc F1-Score F1-Score

CNN
(baseline) 0.821 0.822 0.822 0.751 0.751 0.751 0.746 0.741 0.746 0.683 0.679 0.684

CNN-LSTM
(A) 0.874 0.877 0.874 0.787 0.785 0.787 0.774 0.775 0.776 0.723 0.727 0.723

RBF-Net
(A + B) 0.879 0.883 0.878 0.841 0.845 0.846 0.845 0.845 0.846 0.805 0.811 0.805

The feature encoder module is a shared component in both CNN-LSTM and RBF-
Net that plays a fundamental role in learning the distinctive features influenced by the
presence of COVID-19. For this reason, the performance achieved by CNN-LSTM and
RBF-Net was similar in the unbiased training setting. However, the vitality of the bias
predictor (module B) in the RBF-Net was established when both models were trained
and evaluated under biased training conditions. In these scenarios, the performance of
the CNN-LSTM model experienced a significant decline, whereas the RBF-Net remained
resilient, consistently maintaining its accuracy, as highlighted in the preceding sections.
Consequently, the incorporation of the bias predictor module (module B) within the c-GAN
framework significantly bolstered the RBF-Net’s capability to learn the nuanced impact of
COVID-19 features. This enhancement not only contributed to its effectiveness but also
rendered it more practical for deployment as a digital testing tool.

6. Discussion and Limitations

As discussed in the preceding sections, our investigation delved into the influence
of three pivotal confounding variables: gender, age, and smoking status. These variables
were meticulously considered to assess their impact on the CNN-LSTM model’s ability to
detect COVID-19. Notably, the substantial performance degradation observed in the CNN-
LSTM model—from the performance achieved during cross-validation to its subsequent
evaluation on the balanced testing data—clearly demonstrated the adverse effects of data
selection bias on the features learned by the model. Thus, the underlying demographic
bias, that often exists in the distributions of real-world clinical data [34,35,39], has to
be addressed in future machine learning schemes, thereby making them practical and
effective tools for validation by healthcare practitioners and clinicians in the realm of digital
healthcare solutions.
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The RBF-Net model effectively mitigated the influence of inherent biases present
in training data distributions by extracting meaningful features from them. This was
vividly illustrated by the significant performance improvements exhibited by the RBF-Net
framework when compared to the CNN-LSTM model across all confounding variables.
The differences in performance metrics, including accuracy, specificity, sensitivity, F1-
score, and ROC-AUC, across various biased training groups are depicted in Figure 7. A
noteworthy insight from the results is that the RBF-Net model achieved the most substantial
improvement when dealing with the smoking status-biased training group. It achieved an
approximately 8% increase in accuracy, F1-score, and ROC-AUC in this specific scenario.
The architecture of the feature encoder module within the RBF-Net sheds light on the
reason behind this remarkable improvement. The encoder comprises convolutional blocks
and an additional LSTM block, which collectively identify features that hold spatial and
temporal significance. This feature extraction capability enabled the RBF-Net model to
effectively discern the impact of COVID-19 on cough spectrogram images, as COVID-19
often manifests respiratory symptoms that, in turn, influence the spatiotemporal features of
these cough spectrograms, as observed in previous studies [10]. Simultaneously, smoking
also induces changes in human cough spectrograms in the spatiotemporal domain. This
implies that the effect of smoking on the spectrograms bears some resemblance to the
impact of COVID-19, especially when contrasted with the effects of gender and age on the
spectrograms. Consequently, the RBF-Net framework yielded the maximum performance
increase when mitigating the impact of the bias related to smoking status.
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Another standout aspect of our study lies in the high-quality data used for training and
testing the DL model, enhancing the credibility of our results and conclusions. Unlike many
existing cough-acoustic datasets [27,29,35,48,49], which often rely on crowd-sourced data,
the data used in this paper were meticulously collected within a reputable medical facility
under the supervision of trained healthcare professionals. Furthermore, the cough audio
samples were obtained on the same day as the COVID-19 labels were assigned through
standardized RT-PCR tests. This meticulous approach minimized the potential errors
stemming from misreporting or participants’ lack of awareness regarding their COVID-19
status at the time of cough recording.

One limitation of our current scope of work is that the efficacy of the RBF-Net frame-
work has thus far been validated solely on the COVID-19 cough dataset and has not yet
been extended to other RDs such as tuberculosis, asthma, and COPD. The data collection
process for these additional conditions is currently underway within a medical facility,
a process that demands a considerable amount of time and resources while adhering to
strict Institutional Review Board (IRB) protocols. Additionally, ensuring patient privacy,
obtaining ground-truth diagnosis information via gold standard tests at the precise mo-
ment of cough sound collection, and maintaining consistency in the cough sound sample
collection by minimizing device variability, background noise, and other environmental
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factors are integral to this endeavor. Our immediate future agenda revolves around evalu-
ating RBF-Net’s capability to identify respiratory diseases akin to COVID-19 based on the
acoustic signatures present in cough sounds. This assessment will be conducted once the
data collection efforts are successfully concluded.

Our upcoming research will have a bi-fold objective. Firstly, we intend to broaden
the spectrum of confounding variables by incorporating the common influenza virus,
a respiratory tract ailment. This addition will allow us to explore how the presence of
the influenza virus might impact the performance of our RBF-Net in the detection of
COVID-19 and other RDs. By doing so, we can unravel potential interactions between
these respiratory conditions, thus improving the accuracy of our models. Secondly, we
plan to delve into the influence of other common confounding factors, such as race and
geographical location. These factors can play a pivotal role in shaping the prevalence of
various diseases and introduce biases in data distributions. Examining and accounting
for these variables will not only bolster the resilience of the RBF-Net framework but will
also make it adaptable for global-scale screening efforts. This comprehensive approach
will enhance our understanding of the interplay between various confounding factors and
the performance of our model, ultimately facilitating more accurate and globally relevant
disease detection and screening.

7. Conclusions

This paper addresses the challenge of mitigating underlying bias in training data
distributions, which often leads to inflated respiratory disease (RD) diagnosis results.
We introduced modifications to the CNN-LSTM architecture to formulate the RBF-Net
framework, incorporating an additional bias predictor module. This module assesses the
statistical association between the feature vector and biases, aiming to reduce correlations
between confounding variables and RD classification outcomes. To illustrate the impact
of underlying biases on DL model performance and evaluate the RBF-Net’s effectiveness,
we utilized multiple training datasets with various biases (gender, age, smoking status),
along with balanced unseen testing datasets. Both the state-of-the-art CNN-LSTM and the
proposed RBF-Net models underwent training and evaluation on these datasets. Notably,
the RBF-Net framework demonstrated promising and realistic results, even in challenging
biased training scenarios, and without relying on cross-validation techniques. These
findings suggest the potential of the proposed framework as an effective non-invasive tool
for RD testing and screening.
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