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Abstract: Most diabetes patients develop a condition known as diabetic retinopathy after having
diabetes for a prolonged period. Due to this ailment, damaged blood vessels may occur behind the
retina, which can even progress to a stage of losing vision. Hence, doctors advise diabetes patients
to screen their retinas regularly. Examining the fundus for this requires a long time and there are
few ophthalmologists available to check the ever-increasing number of diabetes patients. To address
this issue, several computer-aided automated systems are being developed with the help of many
techniques like deep learning. Extracting the retinal vasculature is a significant step that aids in
developing such systems. This paper presents a GAN-based model to perform retinal vasculature
segmentation. The model achieves good results on the ARIA, DRIVE, and HRF datasets.
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1. Introduction

Diabetes is a global health concern found among individuals of different age groups.
Diabetic retinopathy (DR) is a condition of the eyes that might occur in persons who suffer
from diabetes for a very long period. DR patients will have certain DR lesions behind
their retinas. Fundus photographs of patients which are taken with the help of fundus
cameras are used by ophthalmologists to diagnose DR. Manually examining these fundus
images requires a lot of time and is also error-prone. Moreover, there has been an alarming
increase recently in the number of diabetes patients. Due to this, the limited number of
ophthalmologists available to carry out this procedure is becoming a barrier to the timely
diagnosis of DR [1]. Early detection of DR is of great importance since this will help give
timely treatment to patients to avoid any undesirable consequences that may occur as a
result of DR progressing to a severe stage. Several computer-aided automated systems are
being developed to address this issue using techniques like deep learning.

Retinal vasculature segmentation has a significant role in developing such systems.
It is usable as a pre-processing/feature extraction step to develop DR detection or DR
grading systems [2]. Also, it is useful for treating and detecting the risk of many diseases
like diabetes mellitus, hypertension, cardiovascular disease, etc. [3]. Due to this importance,
many new methods are used to perform this task. But, there are several challenges in
achieving this efficiently and accurately. One major problem is the unavailability of sizeable
datasets. The state-of-the-art datasets used for retinal vasculature extraction are small in
size. This forces some studies to use a combination of multiple datasets collected under
different settings and taken using different cameras [4]. Another major challenge is the
wide disparity in the thickness of the retinal blood vessels. Hence, the utilized retinal vessel
extraction methods should be capable of efficiently segmenting both thick and thin vessels.
Yet another challenge is that retinal features differ from patient to patient. Finally, other
structures in the retina, like the Optic Disc, Fovea, and DR lesions, may be wrongly detected
as retinal blood vessels. Hence, in this study, we put forward a Pix2Pix GAN model, which
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can overcome all these challenges and segment retinal blood vessels efficiently on multiple
datasets, including ARIA, DRIVE, and HRF datasets. An example of manually extracted
retinal vasculature from an image of the DRIVE dataset is presented in Figure 1.

(a) Fundus image. (b) Retinal vasculature.

Figure 1. Retinal vasculature segmentation sample [5].

2. Related Works

Retinal vasculature extraction is a challenging task of extracting retinal blood vessels
of varying thicknesses from fundus images effectively. This resulting vasculature should
be free from other structures present in the retina. Also, the method used should be able
to perform the same on fundus images collected under different settings. Over the years,
researchers have used several traditional and artificial intelligence-based techniques to
achieve this [6–8]. Artificial intelligence practices like machine learning and deep learning
are the most highly preferred techniques for this task.

Diabetic Retinopathy Retinal Vasculature Segmentation

Several authors have explored the use of both traditional and machine-learning tech-
niques for retinal vasculature extraction. For instance, the researchers in [9] made use of
contrast-limited adaptive histogram equalization for enhancing the retinal images’ contrast,
followed by mathematical morphology to reduce noise. The fuzzy c-means method was
used for blood vessel extraction, and further refinement was achieved through an integrated
level set approach. Fan et al. [10] used the image matting technique for retinal vasculature
extraction. They automatically generated a trimap using the region features of the vessels.
Later, hierarchical image matting was used for extracting the pixels of blood vessels present
in unfamiliar regions. A three-stage algorithm for retinal vasculature extraction was intro-
duced by the authors in [11]. Initially, binary images were extracted by preprocessing the
green plane of the input images, and larger vessels were identified from these. After this, a
Gaussian mixture model classifier was used for classification, and, in the third stage, the
classified output from the previous stage was combined with significant portions of the
blood vessels. Hossain and Reza [12] proposed a model for detecting blood vessels using the
Markov Random Field method. They found the energy of clique sets using Markov–Gibbs
equivalence. Finally, they utilized the Bayesian rule to determine the joint distribution.

Researchers have effectively utilized deep learning architectures. For instance, the
authors in [13] employed a Convolutional Neural Network (CNN) for generating a vessels
probability map, which helped to distinguish vessels as well as background pixels in low-
contrast regions. Further, a fully connected Conditional Random Field (CRF) was used
with the vessel probability map to achieve better segmentation accuracy. In a different
study, the authors in [14] introduced a segmentation technique using a fully connected
CNN with pre/post-processing. The final steps helped with noise removal and to obtain
fine segmentation results.

A two-stage approach for vessel extraction was introduced by the authors in [15]. The
first one utilized a CNN to correlate the image patch and the ground truth. In the next one,
a visual codebook was formed by propagating the training patches in the CNN, allowing
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feature vectors to query this search space. Additionally, Sine-Net, a deep CNN-based
architecture, was used for blood vessel segmentation [16]. It made use of up-sampling and
down-sampling for capturing features of vessels with different thicknesses.

The U-Net++ architecture was utilized for retinal vasculature extraction in a study by
the authors in [17]. Extracted features were then used to predict diabetic retinopathy in the
subsequent stage. The same task was achieved using an encoder enhanced atrous U-Net by
the researchers in [18]. An enhanced U-Net was employed for retinal vasculature extraction
by the researchers in [19]. For the same task, three deep learning models, including SegNet,
U-Net, and Convolutional Neural Network, were utilized by the researchers in [20]. Among
these, SegNet was found to be the most effective. A deformable convolutional network was
joined with U-Net architecture to perform retinal vasculature extraction by the researchers
in [21]. Another context-involved U-Net approach was employed for retinal vasculature
extraction by the researchers in [22]. The extraction of thinner vessels was improved by
using patch-based loss weight mapping.

Aujih et al. [23] conducted a study using the U-Net model for retinal vasculature
extraction. They used dropout and batch normalization with different settings, finding
that batch normalization accelerated learning up to the thirtieth epoch. Additionally, the
same study used Inception-V1 to understand the impact of retinal vasculature extraction
on diabetic retinopathy classification. The U-Net architecture with region merging was
used by the researchers in [24] for retinal vasculature extraction.

In another study by the authors in [25], a backpropagation neural network was em-
ployed to achieve retinal blood vessel segmentation, resulting in reduced operation time
and improved accuracy. Deng and Ye [26] used a new model called D-MNet, having multi-
scale attention and a residual mechanism along with a pulse-coupled neural network for
achieving the same task.

Retinal blood vessel segmentation using a multi-encoder decoder architecture hav-
ing two encoders was performed by the researchers in [27]. Yadav [28] used a dual-tree
discrete Ridgelet transform (DT-DRT) to extract features within the Region of Interest in
fundus images. Subsequently, a U-Net was utilized to achieve retinal vasculature extrac-
tion. Samuel and Veeramulai [29] achieved the same task using a multilevel deep neural
network. Feature extraction was performed with VGG-16.

Wu et al. [30], used a new network called NFN+ for retinal vasculature extraction.
This NFN+ model was characterized by a special cascaded architecture that included
connections between networks. These connections facilitated the accurate segmentation
of thick and thin retinal blood vessels. Yan et al. [31] used a three-phase deep learning
model. This model sequentially extracted thick vessels, followed by thin vessels, and
ultimately combined them. This approach yielded the successful extraction of vessels with
varying thicknesses. In the work by the authors of [32], a multi-scale Convolutional Neural
Network featuring attention mechanisms (MSCNN-AM) was utilized for retinal vasculature
extraction. This technique involved utilizing various dimensions for segmentation. To
enhance the effectiveness of capturing global and multi-scale vessel data, atrous separable
convolutions with different dilation rates were employed. In the same context, some authors
used a Generative Adversarial Network (GAN) to segment retinal vasculature. For example,
the authors in [33] proposed a conditional pix2pix GAN for segmenting retinal vessels,
while in [34] the authors proposed a GAN-based model with an adapted UNet to segment
retinal data. In [35], the authors proposed a GAN-based model named M-GAN with an
M-generator while two encoder-decoder networks were exploited.

Table 1 summarizes some of the methods that were reviewed in this section.
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Table 1. Previous methods for diabetic retinopathy retinal vasculature segmentation.

Study Method Dataset(s) Year

Gargari et al. [17] U-Net++ DRIVE, MESSIDOR 2022
Roychowdhury et al. [11] Gaussian mixture model classifier DRIVE, CHASEDB1, STARE 2014
Fan et al. [10] Image matting DRIVE, CHASEDB1, STARE 2018
Memari et al. [9] Fuzzy c means clustering DRIVE, CHASEDB1, STARE 2019
Zhang et al. [22] U-Net DRIVE, CHASE-DB1, STARE, HRF 2022
Atli and Gedik [16] Sine-Net DRIVE, CHASEDB1, STARE 2021
Sathananthavathi et al. [18] U-Net CHASE DB1, DRIVE, STARE, HRF 2021
Deng and Ye [26] D-MNet CHASE DB1, DRIVE, STARE, HRF 2022
Elaouaber et al. [20] Multiple DL models DRIVE, CHASE-DB1, HRF 2022

3. Proposed Method
3.1. Data Augmentation

All three datasets were small and hence were subjected to various data augmentation
techniques. These techniques included Horizontal Flipping, Vertical Flipping, Elastic Trans-
form, Grid Distortion, and Optical Distortion. Horizontal flipping involved flipping the
image along the Y-axis, while vertical flipping flipped along the X-axis. Elastic Transforma-
tions, Grid Distortion, and Optical Distortion were each applied with two different sets of
parameters. Albumentations, an open-source library, was utilized for performing the data
augmentation. Among the augmentation methods used, Elastic Transformation and Grid
Distortion are particularly renowned for medical images.

3.2. GAN-Based Retinal Vasculature Segmentation

In this study, a new type of Pix2Pix Generative Adversarial Network (GAN) was
employed. Initially introduced by Ian J Goodfellow in 2014, this architecture comprises
two sub-models, the Generator as well as the Discriminator. These models compete against
each other, with the Generator generating data samples and the Discriminator attempting
to differentiate between real and generated data. Training continues until the Discriminator
is unable to differentiate between the two. Figure 2 shows the Pix2Pix GAN architecture
used in this study.

Figure 2. Flowchart of the GAN model.

The Generator network receives a fixed-length random seed noise or latent vector, which
it uses to produce an image. This latent vector serves as the foundation of the generative
process. The resulting image and real images are fed into the Discriminator for discrimination.
After training, a multi-dimensional vector space called latent space is created, representing
latent variables that cannot be directly observed but are crucial for the problem domain,
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resembling points in it. The latent space captures high-level concepts of the unprocessed
data, and the Generator interprets points in this space to produce new outputs.

The Discriminator functions as a classification model, distinguishing between real
(from the training data) and generated samples. The Generator and Discriminator losses are
monitored during training, with the goal of minimizing the Discriminator loss. As training
progresses, the Discriminator becomes better at distinguishing real from fake, and the
Generator becomes more proficient at generating realistic data. When convergence is
reached, the Generator can produce nearly realistic data, and the Discriminator outputs ½
for all inputs, rendering it dispensable after training.

GANs find applications in various domains, such as generating 3D objects, image
processing, traffic monitoring, texture transfer, and more [36]. One crucial application is
Image Translation, which involves transforming an input image into an output image.

Different types of GANs exist, including DCGAN, cGAN, Cycle GAN, and Info
GAN. DCGAN uses deep convolutional nets and transposed convolutional networks for
upsampling images. cGANs allow the use of class labels to condition the GAN, which
makes it suitable for image-to-image translation. Cycle GAN can perform similar tasks but
with the ability to learn mappings between images using unpaired datasets. Info GANs can
learn interpretable and meaningful representations. In this study, a Pix2Pix GAN was used,
which is a special case of cGAN, widely used for image-to-image translation experiments.

Out of a perceived image x as well as a random noise vector z, a cGAN can understand
a mapping to an output image y represented as G : x, z→ y [37].

The following denotes the loss function of a cGAN [37]:

LcGAN(G, D) = E(x,y)[log D(x, y)]+

E(x,z)[log(1− D(x, G(x, z))]
(1)

In this, the generator G tends to reduce the aforementioned function in contradiction of
the discriminator D, which tends to increase it. To calculate the implication of conditioning
D, an unconditional variant is used in the loss for GAN as seen below [37]:

LGAN(G, D) = E(y)[log D(y)]+

E(x,z)[log(1− D(G(x, z))]
(2)

The Generator in the Pix2Pix GAN uses a Resnet between upsampling and down-
sampling operations, forming a UNet architecture. Additionally, an L1 loss function is
introduced in G to minimize blurring as follows [37]:

LL1(G) = E((x,y,z))[||y− G(x, z))||1] (3)

The Discriminator is a patchGAN with a 70 × 70 patch size. The final loss function of
the Pix2Pix GAN is denoted by a formula involving the cGAN loss and the L1 loss, with a
hyperparameter λ determining the weight of the L1 loss function [37] as below:

G∗ = arg minG maxDLcGAN(G, D) + λLL1(G) (4)

4. Experimental Results

In this section, we present the experimental results using the proposed method on three
datasets. In the experiment using the ARIA dataset, a total of 1287 images were used which
is quite large, leading to a high number of trainable parameters. To handle this, a laptop
with GPU capabilities was used, featuring an Intel Core i7 processor as well as an NVIDIA
GEFORCE graphics card.

We trained our Pix2Pix GAN using the PyTorch framework in a Python 3.9 environ-
ment. The Adam optimizer, having an initial learning rate set at 0.0002 along with L1 loss
(λ) set to ten, was used. We trained the model for 100 epochs.
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4.1. Datasets

The segmentation evaluation was performed on the following three datasets including
ARIA, DRIVE, and HRF.

The ARIA (Automated Retinal Image Analysis) dataset comprises 143 fundus images
annotated for blood vessel segmentation [38]. Each image has dimensions of 768 × 576 pixels
and includes images of both left and right eyes. The dataset was gathered during the period
2004 to 2006 by St. Paul’s Eye Unit, Liverpool, UK, from male as well as female adults. It
consists of three groups: the control group with 61 images, the diabetic retinopathy group
with 59 images, and the age-related macular degeneration (AMD) group with 23 images.
Two different graders, denoted as “SS” and “BD”, annotated the images, and the labels
from grader “BD” were used in this experiment. Eighty percent of the data was used to
train and the rest to test the model.

The DRIVE dataset (Digital Retinal Images for Vessel Extraction) contains fundus
images acquired through a DR diagnosis initiative in the Netherlands [39]. It comprises
forty images, separated equally into train and test sets. A Canon camera at forty-five degrees
field of view was utilized to capture these images, having a resolution of 584 × 565 pixels.
In the training set, each image is annotated by a single expert. In contrast, the testing set
contains two annotations for each image, performed by two different graders. To assess the
proposed method on this dataset, we use the annotations provided by the first grader. The
same training and testing sets provided in the dataset were used in this experiment.

The High-Resolution Fundus or HRF dataset consists of forty-five high-resolution
color fundus images having a size of 3504 × 2366 pixels [40]. The images present in it are
separated into three categories consisting of healthy, DR, and glaucomatous with 15 images
each. All images are provided with binary gold standard vessel segmentation. Eighty
percent of the data was used to train and the rest to test the model.

4.2. Evaluation Metrics

To evaluate the model’s performance, seven metrics were employed, which include
Accuracy, Sensitivity, Specificity, Dice Coefficient, Jaccard’s Coefficient, Precision, as well
as Matthews Correlation Coefficient (MCC). All of the metrics chosen in this study are
commonly used in segmentation tasks. To understand the formulas used for calculating
these metrics, some terms need to be defined including TP or “True Positives” which
denotes the correctly generated retinal blood vessel pixels. TN or “True Negatives” denotes
the rightly generated background pixels. FP or “False Positives” denotes the background
pixels falsely acknowledged as retinal blood vessel pixels. FN or “False Negatives” denotes
the retinal blood vessel pixels falsely identified as background pixels.

The following formulas were used to calculate the mentioned metrics in this study:
Accuracy: Pixel-wise accuracy measures how many pixels the model classifies correctly.

Accuracy = (TP + TN)/(TP + FP + FN + TN) (5)

Sensitivity: This metric measures the rate of actual pixels generated as retinal blood
vessels among all generated pixels that are actually retinal blood vessel pixels.

Sensitivity = TP/(TP + FN) (6)

Dice Coefficient(Sorenson Index/FMeasure): An important metric used in image
segmentation, representing a special overlap index.

Dice = 2 ∗ TP/(2 ∗ TP + FP + FN) (7)

Specificity: This metric measures the rate of actual pixels generated as background
pixels among all generated pixels that are actually background pixels.

Specificity = TN/(TN + FP) (8)
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Jaccard’s Coefficient: This metric indicates the similarity between two images.

Jaccard = Dice/(2−Dice) (9)

Precision: This metric denotes the rate of actual pixels generated as retinal blood
vessels to the entire count of pixels projected as retinal blood vessels.

Precision = TP/(TP + FP) (10)

MCC: MCC estimates the distance between the actual values and projected values.

MCC = (TP ∗ TN− FP ∗ FN)/sqrt((TP + FP)∗
(TP + FN) ∗ (TN + FP) ∗ (TN + FN))

(11)

4.3. Evaluation and Discussion

The values attained for the different metrics presented in the preceding sub-section
are shown in Table 2. We also present some visual results in Figures 3–5. Table 2 presents
a contrast of the results attained by our model with previous techniques that utilized the
ARIA, DRIVE, and HRF datasets for retinal vasculature segmentation.

Table 2 reveals that the GAN applied to all three datasets achieved values above 0.942
for all seven metrics calculated in this study. Higher values closer to one indicate better
results. Thus, these metrics demonstrate the GAN model’s strong performance on all three
datasets, particularly for retinal vasculature extraction. Furthermore, visually comparing
the results with the ground truth presented compelling and appealing outcomes. The
highest values for all metrics were obtained on the HRF dataset except the one obtained for
Sensitivity. The highest value for Sensitivity was obtained on the DRIVE dataset.

Table 2. Performance comparison of results with previous methods on the ARIA, DRIVE, and HRF
datasets. The bold font represents first place.

Dataset Method Accuracy Sensitivity Specificity Dice Jaccard MCC Precision

DRIVE

Kar et al. [41] 0.974 0.894 0.988 - - - 0.875

Elaouaber et al. [20] 0.977 0.967 0.996 0.957 - - -

Zhang et al. [22] 0.957 0.785 0.982 0.82 - 0.798 0.864

Popescu et al. [33] 0.921 0.834 0.960 - - - 0.948

Yue et al. [34] 0.970 0.833 0.985 - - - -

Park et al. [35] 0.970 0.834 0.983 - - 0.826 0.834

Proposed 0.978 0.975 0.981 0.978 0.956 0.956 0.98

HRF

Kar et al. [41] 0.977 0.889 0.985 - - - 0.8

Elaouaber et al. [20] 0.98 0.98 0.995 0.969 - - -

Zhang et al. [22] 0.96 0.85 0.971 0.82 - - -

Park et al. [35] 0.967 - - - - 0.784 -

Proposed 0.983 0.973 0.992 0.982 0.965 0.966 0.992

ARIA

Kar et al. [41] 0.963 0.718 0.984 - - - 0.795

Vostatek et al. [42] 0.94 - - - - - -

Prajna and Nath [43] 0.925 0.566 0.961 0.649 0.48 - -

Proposed 0.971 0.974 0.969 0.97 0.942 0.943 0.966
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Figure 3. Results of Pix2Pix GAN on the ARIA dataset (first row: fundus images; second row:
groundtruth; and third row: results).

Figure 4. Results of Pix2Pix GAN on the HRF dataset (first row: fundus images; second row:
groundtruth; and third row: results).
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Figure 5. Results of Pix2Pix GAN on the DRIVE dataset (first row: fundus images; second row:
groundtruth; and third row: results).

Table 2 shows that our model performed better than other methods used in the com-
parison. Specifically, we compared our results on the ARIA dataset with three methods
that utilized the same dataset: Azzopardi’s method [44], Kar’s method [41], and Prajna’s
method [43]. Vostatek et al. [42] evaluated Azzopardi’s traditional method [44] using the
ARIA dataset. Kar et al. [41] employed a Deep Neural Network (DNN) for retinal vascu-
lature segmentation. Similarly, Prajna and Nath [43] tackled the same task by combining
a Multi-Scale Residual CNN with GAN. Compared with three other studies chosen for
comparison, the GAN model yielded superior results regarding Accuracy, Sensitivity,
Dice, Jaccard, and Precision metrics on this dataset. Additionally, the model obtained the
second-highest value for Specificity.

The results obtained on the DRIVE and HRF datasets were compared alongside three
studies by the researchers in [20,22,41]. As mentioned earlier, the researchers in [41] employed
a DNN for retinal vasculature segmentation. Elaouaber [20] used three deep learning models,
which included SegNet, U-Net, and CNN, to achieve the same. They obtained the best results
using SegNet, whereas the researchers in [22] used a context-involved U-Net approach for
retinal vasculature extraction. Table 2 shows that on the DRIVE dataset, we achieved the
highest values for Accuracy, Sensitivity, Dice, MCC, and Precision when compared with
the other three studies. Regarding the HRF dataset, we could obtain the highest values for
Accuracy, Dice, and Precision in the comparison. Moreover, we could attain the second-best
values for Sensitivity and Specificity.

5. Conclusions and Future Work

We could successfully use the GAN model on the HRF dataset with an accuracy of
0.983, a sensitivity of 0.973, as well as a specificity of 0.992 for retinal vasculature extraction.
The results achieved on the DRIVE and ARIA datasets were also appealing. Notably, these
favorable outcomes were attained despite using smaller datasets. In future work, we will
perform diabetic retinopathy lesion segmentation using similar deep-learning methods.
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