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Abstract: Lung lobe segmentation in chest CT is relevant to a wide range of clinical applications.
However, existing segmentation pipelines often exhibit vulnerabilities and performance degradations
when applied to external datasets. This is usually attributed to the size of the available dataset or
model. We show that it is possible to enhance generalizability without huge resources by carefully
curating the dataset and combining machine learning with medical expertise. Multiple machine
learning techniques (self-supervision (SSL), attention (A), and data augmentation (DA)) are used
to train a fast and fully-automated lung lobe segmentation model based on 2D U-Net. Our study
involved evaluating these techniques on a diverse dataset collected under the RACOON project,
encompassing 100 CT chest scans from patients with bacterial, viral, or SARS-CoV2 infections. We
compare our model to a baseline U-Net trained on the same dataset. Our approach significantly
improved segmentation accuracy (Dice score of 92.8% vs. 82.3%, p < 0.001). Moreover, our model
achieved state-of-the-art performance (Dice score of 92.8% vs. 90.8% for the literature’s state-of-the-
art, p = 0.102) with reduced training examples (69 vs. 231 CT Scans). Among the techniques, data
augmentation with expert knowledge displayed the most significant impact, enhancing the Dice score
by +0.056. Notably, these enhancements are not limited to lobe segmentation but can be seamlessly
integrated into various medical imaging segmentation tasks, demonstrating their versatility and
potential for broader applications.

Keywords: artificial intelligence; lung thorax; CT; segmentation; deep learning; computer vision;
self-supervised learning; attention

1. Introduction

Segmenting lesions is a mandatory step for quantifying medical imaging data and
enables the development of quantitative imaging biomarkers [1]. Quantification allows
extending the diagnostic tools in research and clinical settings beyond subjective image
interpretation. A range of measurement and classification tasks can be based on segmenta-
tion masks, leading to a much more comprehensive characterization of patient collectives
using imaging biomarkers [2]. This also applies to lung anatomy. It contains fundamental
information that can be leveraged by a wide range of clinical applications. Chest CT is
the primary diagnostic imaging modality for the classification of most pulmonary disease
entities. Information about localization, volume, or shape of each lobe structure is a pre-
requisite to providing a precise diagnosis of pulmonary diseases and planning treatments.
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The lung is typically composed of five lobes, separated by the lobar fissures with some
anatomic variety. Fissures can be visualized as thin structures on high-resolution CTs.
However, this visualization is often incomplete or even missing due to spatial resolution or
artifacts. Additionally, even under ideal imaging conditions, underlying thoracic pathology
or previous surgical interventions can substantially change morphology as well as the
location of lobe structures. These include pleural effusions, pulmonary consolidations,
malignant lesions, and incomplete or complete lung lobe resections.

Unfortunately, segmenting huge amounts of data manually is very labor-intensive
and not feasible in most cases. Automating the segmentation step is, therefore, crucial
for further processing. Earlier approaches for lobe segmentation incorporated image
processing and leveraged domain information to solve the task. Anatomical relations
between lobes and nearby airways, vessels, and the lung borders were exploited to account
for incomplete fissures and damaged lung [3–6]. For instance, ref. [7] proposed a method
to model sheet-like, tubular, and blob-like structures by the eigenvalues of the Hessian
matrix. This method worked well in normal cases but was sensitive to imaging parameters
such as CT scan protocols/parameters, image noise, and the presence of underlying lung
diseases (e.g., chronic obstructive pulmonary disease). Other approaches for automatic
lung segmentation include thresholding, surface fitting [8], water-shedding [9], and graph
searching with shape constraints [10]. These model-driven approaches fail to generalize
and are sensitive to small changes in the quality of input images, which hinders their
application in a clinical setting.

Data-driven designs have seen a resurgence in recent years, thanks in particular to
recent advances in computational optimization methods. Architectures like deep con-
volutional neural networks (CNNs) have the advantage of being more scalable. These
approaches build on the assumption that invariances can be learned with enough data.
Coupled with extensive testing based on rigorous engineering principles, they provide
state-of-the-art performance for many tasks.

Many works have successfully adopted 3D or 2D CNNs in a lobe segmentation
framework. These approaches yielded good results without the need for domain exper-
tise and modeling. Various ideas were explored to improve performance such as multi-
tasking [11,12], dense networks [13], leveraging global geometric features as additional
inputs [14], cascaded networks for global and local features [15], holistically nested net-
work [16,17] and advanced loss functions to tackle class imbalance issue [18]. However,
these techniques offer only minor improvements, mainly due to limitations in the datasets
used for training, which have been shown to be the main source of errors [19]. For example,
Park et al. performed pulmonary lobe segmentation using a 3D convolutional neural
network to develop a robust algorithm without lobar fissure detection and outperformed
image processing–based segmentation in terms of accuracy and execution time [20]. Valida-
tion using internal and external datasets demonstrated that their method could be applied
to clinical radiology. However, their study only considered mild-to-moderate COPD pa-
tients. Thus, the presented method fails when the lung disease becomes severe, and the
lung structures change considerably.

Automatic CT segmentation pipelines, especially on the lung, are vulnerable to many
types of possible perturbations. Healthy and normal lungs can be segmented accurately,
but CT segmentation pipelines cannot handle cases that deviate from the norm. Anatomical
variabilities concerning the shape, size, or even number of lobes, as well as pathologies,
such as fibrosis or consolidations can result in an insufficient delineation of interlobar
fissures [21]. During the data acquisition process, various factors, such as the type and
manufacturer of the scanning device or the contrast materials administered to the patient,
impact the appearance of the lungs. For a safe deployment in clinical settings, an automatic
segmentation pipeline should exhibit robustness to these perturbations and should work
on different data-capturing protocols.

In this study, we follow on from the work of Hofmanninger et al. [19] to show that
instead of heavy engineering and huge datasets, the focus should be on data quality and
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exchange between computer scientists and domain experts. We curated a diverse dataset,
an in-house dataset that covers a wide range of challenging cases. These are then carefully
segmented by medical experts to obtain the ground truth. Subsequently, we present a
neural network system that combines novel self-supervised pre-training (SSL), attention
gates (A), and data augmentation with expert knowledge (DA) to get the most out of our
data. We analyze the three techniques (SSL, DA, A) to train a fast and fully-automated
lung lobe segmentation model based on U-Net and contrast the performance on publicly
available datasets. Our results highlight the soundness of our proposed design choices,
outperforming other baselines.

2. Materials and Methods

In this section, we outline the process undertaken for data collection, as well as
the design and implementation of our deep learning model. Figure 1 illustrates the full
methodology followed in this work.
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Figure 1. Diagram to illustrate the methodology adopted in this work. Data collection involves
meticulous acquisition from local PAC servers, guided by medical experts’ insights. The selected
data undergoes multiple rounds of annotation by radiology experts. Subsequently, the CT scan data
are utilized for self-supervised training, enhancing the encoder network’s representation extraction
abilities. Finally, the pre-trained encoder is used in the encoder-decoder architecture for end-to-
end training.

2.1. Data Acquisition

Following the findings of Hofmanninger et al. [19], we designed a dataset that covers
a wide range of variations for lobe segmentation (Table 1). We selected 100 CT scans from
the local PACs, resembling different degrees of disease severity, distributed among three
categories of pneumonia. These were COVID-19 (50%), bacterial (25%), or viral (25%).
Parameters, such as slice thickness and the convolution kernel, which are used to create
reconstructions from raw CT data, vary from case to case and may influence the accuracy.
Therefore, we also picked cases of up to 5 mm thickness per slice and different kernels.
Contrast media are commonly given to the patient to improve the contrast resolution and,
therefore, change the visual appearance of the image. We picked a portion of our data such
that this parameter is covered in every class of disease. The image series were subsequently
manually segmented by six medical experts and underwent iterative control rounds by
a senior radiologist with 8 years of experience in reading chest CTs. In order to prevent
quality issues in experiments [22] we followed an established reporting guideline to keep
track of the imaging setting [1].

For the evaluation of our model, we rely on public datasets (LUNA: [23], IEE: [24]).
These were excluded from the training procedure to investigate the generalization proper-
ties of our model.
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Table 1. Table highlighting the main properties of the collected data and the acquisition protocol.

Property Value

Dataset size 100
Comorbidity COVID-19: 50, Bacterial: 25, Viral: 25

Segmented Labels Upper Lung Left, Lower Lung Left, Upper Lung Right, Middle Lung Right, Lower Lung Right
Region of Interest Thorax: 88, Thorax + Abdomen: 12
Imaging Modality CT

In-Plane Resolution 512 × 512
Slice Thickness 1 mm: 81, 2 mm: 2, 3 mm: 3, 5 mm: 14

Convolution Kernel I70f: 30, Bl64d: 28, B60f: 12, Other: 30
Contrast Medium used viral: 44%, bacterial: 64%, COVID-19: 24%

CTDI Medium 7.29
KVP 100 kvp: 35, 120 kvp: 54,Other (90–150): 11

Manufacturer Siemens: 98, General Electric:2
Partition Train/Test: 91, Validation: 9

2.2. Data Pre-Processing

In the preprocessing phase, we applied several essential transformations to optimize
the input data for subsequent analysis. The initial step involved resampling the images to
achieve a uniform spacing of 2 mm between slices. For this purpose, we employed the basis
spline function [25] from the SimpleITK (SITK) library, utilizing its interpolation capabilities
to ensure the preservation of relevant details during the resampling process. Following
resampling, a crucial normalization step was undertaken, scaling the pixel intensity values
to a standardized range between 0 and 1. This normalization facilitates consistent data rep-
resentation across the dataset, contributing to the stability and effectiveness of subsequent
computational processes. Moreover, to streamline the computational load and enhance
computational efficiency, each CT slice was downsized to a resolution of 256 × 256 pixels.
This downsizing not only expedites computational analyses but also ensures that the model
effectively captures salient features while mitigating unnecessary computational burdens.
Together, these preprocessing steps lay the foundation for robust and standardized input
data, optimizing the subsequent stages of our analysis pipeline.

2.3. Models

For many medical segmentation tasks, deep learning has led to a leap in performance.
The U-Net Architecture [26] in particular has shown good results for segmentation of
biomedical data due to its ability to preserve information along different levels of abstrac-
tion using to skip connections (Table 2).

We apply a state-of-the-art version of it to our lobe segmentation task as a baseline for
our analysis. In every down- and up-sampling step, we apply two convolutions, together
with BatchNorm and ReLu activations. Our output results in 6 channels, which encode the
5 lobes and a background class. We optimize the U-net network for each of the tasks by
applying the multi-class Dice loss.

Although the appearance and textures of CT scans are dependent on the approxima-
tions of the chosen CT scanning device, shapes tend to be invariant and more generalizable
across different data-capturing protocols. We hypothesize that encouraging the deep learn-
ing model to learn geometric contextual features can help address the issue of domain shift
and improve the lung segmentation capabilities of our model on out-of-distribution data.

To this end, we consider three modeling choices to improve the robustness of our
models.

• Self-Attention
• Self-Supervised pre-training
• Expert Guided Data Augmentation

All our code is written in Python 3.7 using PyTorch 1.8 and trained on a local computer
using Nvdia GA102 GPUs.
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Table 2. Description of the U-Net Architecture. The encoder-decoder architecture is U-shaped
and consists of a contracting path to capture context and a symmetric expanding path to achieve
precise localization. It combines high-level semantic information with low-level details using skip
connections (+) to the expanding path.

Operation Block Channels, Size of Filter, Padding Value Size of Output

Input −, −, − (1, 256, 256)
Conv-BatchNorm-Relu (2×) 1, 3 × 3, 1 (64, 128, 128)
Conv-BatchNorm-Relu (2×) 64, 3 × 3, 1 (128, 64, 64)
Conv-BatchNorm-Relu (2×) 128, 3 × 3, 1 (256, 32, 32)
Conv-BatchNorm-Relu (2×) 256, 3 × 3, 1 (512, 16, 16)
Conv-BatchNorm-Relu (2×) 512, 3 × 3, 1 (512, 8, 8)
Conv-BatchNorm-Relu (2×) 1024, 3 × 3, 1 (256, 16, 16)
Conv-BatchNorm-Relu (2×) 512, 3 × 3, 1 (128, 32, 32)
Conv-BatchNorm-Relu (2×) 256, 3 × 3, 1 (64, 64, 64)
Conv-BatchNorm-Relu (2×) 128, 3 × 3, 1 (32, 128, 128)
Conv-BatchNorm-Relu (2×) 64, 3 × 3, 1 (6, 256, 256)

Final Ouptut −, −, − (6, 256, 256)

2.4. Self-Supervised Pre-Training

Self-supervised learning (SSL) provides effective representations for downstream tasks
without requiring human labeling. Ref. [27] improve classification accuracy by employing a
self-supervised auxiliary learning task in which they predict image rotations (Figure 1). The
experimental results show that this type of SSL increases the robustness against different
kinds of perturbations, ranging from adversarial attacks to motion blur and Gaussian noise.
Additionally, self-supervision greatly benefits from out-of-distribution detection on difficult,
near-distribution outliers. The work of [28] further demonstrated robust improvements in
the context of multi-organ segmentation.

Therefore, we considered self-supervised pre-training to improve the robustness of
our lobe segmentation approach.

As a self-supervision task, we choose to solve jigsaw puzzles, which requires no
manual labeling. Jigsaw puzzle training is a technique used to enhance a model’s ability
to understand spatial relationships and context within images. The input image is broken
into smaller pieces, and the goal is to reconstruct the original image by rearranging these
pieces. The input images are divided into smaller patches or tiles. These patches are
shuffled or rearranged to create a jigsaw puzzle. Our model is then trained to predict the
correct arrangement of these shuffled patches to reconstruct the original image. Instead
of predicting traditional labels or categories, the model learns to arrange these patches
spatially. The loss function, the cross-entropy loss, quantifies the difference between the
predicted permutation of patches and the actual permutation. These are represented as
a distance metric between the predicted permutation and the ground truth permutation.
Table 3 details the jigsaw puzzle classification module. After training the model to predict
the permutation of patches, the encoder is fine-tuned for lobe segmentation tasks with
labeled data.

2.5. Attention U-Net

Attention mechanisms play a pivotal role in enhancing image classification perfor-
mance by enabling class-specific pooling, thereby fostering greater accuracy and robustness.
The utility of attention maps lies in their ability to amplify pertinent regions within an
image, showcasing superior generalizability across multiple benchmark datasets [29]. A
noteworthy contribution to the field is presented by [30], introducing a novel attention
gate (AG) model specifically tailored for medical imaging segmentation. This AG model
autonomously learns to focus on target structures, seamlessly integrated into a U-Net frame-
work. The U-Net model, trained in conjunction with attention gates, inherently acquires
the capability to suppress irrelevant regions within an input image while accentuating
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salient features critical for the specific segmentation task. This unique attribute eliminates
the need for explicit algorithms dedicated to lung localization, enabling the end-to-end
learning of pulmonary lobe structures. Consequently, the incorporation of attention gates
into the U-Net architecture not only enhances model sensitivity and accuracy in identifying
foreground pixels but also achieves this without imposing significant computation over-
head. Moreover, attention gates exhibit a progressive ability to suppress feature responses
in irrelevant background regions, further contributing to the model’s efficiency in focusing
on diagnostically relevant areas during medical image segmentation.

Table 3. Description of the Jigsaw Puzzle Classifier. This classifier is used to pre-train our encoder
before fine-tuning for the semantic segmentation task.

Operation Block Channels, Size of Filter, Padding Value Size of Output

Input Latent Representation −, −, − (512, 16, 16)
Conv-BatchNorm-Relu (2×) 256, 3 × 3 , 1 (256, 16, 16)
Conv-BatchNorm-Relu (2×) 128, 3 × 3 , 1 (128, 16, 16)
Conv-BatchNorm-Relu (2×) 64, 3 × 3 , 1 (64, 16, 16)
Conv-BatchNorm-Relu (2×) 32, 3 × 3 , 1 (32, 16, 16)
Conv-BatchNorm-Relu (2×) 16, 3 × 3 , 1 (16, 16, 16)

Fully Connected-Dropout p = (0.25) −, −, − (512)
Fully Connected-Dropout p = (0.25) −, −, − (128)

Fully Connected Layer −, −, − (256)
Final Ouptut −, −, − (16, 16)

2.6. Data Augmentation

Data augmentation, a commonly used technique in enhancing generalizability and
accuracy, proves especially invaluable in scenarios where data availability is limited, a
common challenge in medical imaging. Given the substantial data requirements of deep
learning models and the inherent difficulty in obtaining sizable medical datasets, data
augmentation emerges as a crucial strategy. This technique involves applying a diverse
range of transformations to existing data, thereby introducing variations that mimic real-
world scenarios encountered in clinical scans, such as tissue deformations or scanning
artifacts. The rationale behind these transformations is to simulate plausible variations,
aligning with the intricacies observed in actual medical imaging. In our experimental
approach, we collaborated closely with medical professionals, allowing us to qualitatively
define parameters within expert-defined limits. This collaborative effort ensures that the
resulting augmentations maintain clinical plausibility, aligning with the nuanced variations
present in authentic medical scans. To implement these transformations, we utilized the
Albumentation library [31], a versatile tool that facilitates the application of modifications to
medical images, contributing to the robustness and realism of our augmented dataset.

Collaborating closely with medical experts, we engaged in comprehensive discussions
to discern the myriad facets of variability inherent in medical imaging and intuitively se-
lected parameters to simulate these aspects. The inherent diversity in CT scans, stemming
from variations in patient anatomy and imperfect settings, necessitates the incorporation
of realistic simulations. To capture anatomical variations or pathological lung anoma-
lies, we explored geometric deformations [32], such as elastic deformation [33] and grid
distortion [31]. Notably, grid distortion proved especially pertinent in mimicking anoma-
lies arising from variations in lung geometry due to diverse anatomies or pathologically
expanded lungs. In addition to geometric deformations, we introduced Gaussian noise
and blur to replicate movements and inhalation dynamics during the scanning procedure.
Recognizing that scanner and reconstruction errors contribute to the creation of noisy im-
ages, we strategically simulated these imperfections. Further, adjustments to contrast and
brightness were implemented to approximate the diverse settings across different scanner
types and reconstruction parameters. The results can be seen in Figure 2. A meticulous
observation of the resulting images guided us in identifying the settings that yielded the
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most realistic simulations, ensuring that our augmented dataset encapsulates the intricate
variability present in authentic medical scans.

Figure 2. Figure illustrating the data transformations used in the training phase to improve the
capabilities of our proposed model to perform on different anatomies or acquisition settings. From
left to right: Original image, Grid distortion, Elastic transformation, Motion blur. The visible effect of
these transformations varies due to random values during training.

The meaning of the parameters in Table 4 are described in the referred papers or
the albumentation documentation (see https://albumentations.ai/docs/api_reference/
augmentations/transforms/, accessed on 15 November 2022). They may vary depending
on the preprocessing and normalization steps performed.

Table 4. Augmentation Parameters used for Data Augmentations in the Albumentation library. The
probability of the augmentation applies to its usage during training.

Transformation Probability Parameter

ElasticTransform 0.6 alpha = 1, sigma = 25, alpha_affine = 25, border_mode = 0, value = 0

GridDistortion 0.8 num_steps = 5, distort_limit = 0.3, interpolation = 1, border_mode = 4

MotionBlur 0.3 blur_limit = (15, 15)

GaussNoise 0.5 var_limit = (0, 0.0005), mean = 0.001

Random Brightness Contrast 1 brightness_limit = (−0.2, 0.2), contrast_limit = 0.2

2.7. Training Specifications

The models were trained and validated using the Pytorch framework. To initialize
our models, we used Xavier initialization [34]. In the Xavier procedure, the weights are
initialized so that the variance of the activation layers is the same across every layer. This
helps to prevent the gradient from exploding or vanishing. Additionally, we used Adam
as a method for stochastic optimization with an initial learning rate of 10−4 and weight
decay of 10−5. The learning rate was multiplied by 0.96 after 2 epochs. As a stopping
criterion, we trained all models for 50 epochs and saved the best-performing model on
the validation set. A mini-batch of 16 images was used. The training set was composed
of around 9800 CT slices in total, stemming from 69 3D CT scans. For the cost function,
we employed a multi-class Dice as suggested in [12]. This loss properly handles the class
imbalance problem prevalent in lung lobe segmentation: lung lobes have different sizes,
and background regions can constitute a large part of the image. For each lobe class k, we
computed a Dice score Dk as such:

Dk =
2 · ∑N

i pk
i gk

i

∑N
i (pk

i )
2 + ∑N

i (gk
i )

2
(1)

where N is the number of pixels, pk the binary segmentation map for class k and gk the
ground truth for class k. The final loss value is the average of Dice scores for all the classes.

https://albumentations.ai/docs/api_reference/augmentations/transforms/
https://albumentations.ai/docs/api_reference/augmentations/transforms/


Bioengineering 2024, 11, 21 8 of 13

2.8. Evaluation Measure

The performance of our model was rigorously assessed using the widely adopted
Dice coefficient for semantic segmentation, encompassing a comprehensive evaluation of
218 instances. The Dice coefficient serves as a robust metric, quantifying the similarity
between the predicted segmentation map (P) and the corresponding ground truth (G). This
metric provides valuable insights into the accuracy and efficacy of our model’s segmenta-
tion predictions, offering a quantitative measure of the overlap between the predicted and
actual segmentations. A higher Dice coefficient signifies greater concordance, indicating the
model’s proficiency in capturing the nuances of the target structures within the images. The
meticulous evaluation across different datasets ensures a comprehensive understanding of
the model’s performance across a diverse range of scenarios, reinforcing the reliability and
versatility of our segmentation approach. Dice is defined as:

DSC(P, G) =
2 · TP

2 · TP + FP + FN
(2)

where TP, FP, and FN are true positive, false positive, and false negative rates, respectively.

3. Results

In this section, we present the results of our study. We start by investigating the impact
of the different design choices and then present our results for the full model and contrast
it with the other chosen baselines.

3.1. Impact of Self-Supervised Pre-Training

We considered the impact of self-supervised pre-training in the context of lobe seg-
mentation (see Figure 3 for an example). We report the performance comparison between
(i) a U-Net fined-tuned on the target task after using the encoder module in learning the
self-supervised task (SSL U-Net) and (ii) the baseline U-Net trained in a fully-supervised
manner. Table 5 shows the average Dice score along with its standard deviation on differ-
ent datasets.

Figure 3. Example of a segmented lung from the evaluation set. The five lobes are delineated with
different colors in this axial view.
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Table 5. Dice scores [%] of the impact of self-supervised pre-training on semantic segmentation
performance on in-house data, LUNA, and IEEE datasets. The best-performing model on each
dataset is highlighted in bold. The addition of self-supervised pre-training is particularly helpful in
improving the performance on out-of-distribution datasets (LUNA and IEEE).

In-House LUNA IEEE AVG

Baseline U-Net 83.3% 78.62% 93.21% 81.34%
SSL U-Net 83.3% 88.91% 94.31% 84.12%

SSL + DA U-Net 85.39% 91.87% 95.14% 90.9%

Self-supervised pre-training results in a consistent improvement compared to fully-
supervised training. The improvements are marginal in the case of in-distribution data.
However, when we consider the external datasets, we observe a clear improvement in the
performance. This indicates that there is an increased robustness and generalizability to
out-of-distribution datasets. The results obtained here further confirm/support the results
obtained by [27,28], where they observed that self-supervision contributes to the robustness
of networks in segmentation and classification tasks.

3.2. Impact of Attention Gates

Table 6 compares the performance of the baseline U-Net and the Attention U-Net
model. The Attention U-Net model outperforms the baseline U-Net on all test sets. The ad-
dition of Attention Gates can improve model sensitivity and accuracy without an important
additional computational overhead. Since attention gates generate soft region proposals
implicitly and highlight salient features useful for a specific task, the network learns to
focus on target structures without additional supervision. Therefore, it is not necessary to
add an external network to detect the region of interest.

Table 6. Dice scores [%] of the impact of attention gates on semantic segmentation performance on
in-house data, LUNA, and IEEE datasets. The best-performing model is highlighted in bold.

In-House LUNA IEEE AVG

Baseline U-Net 83.3% 78.62% 93.21% 81.34%
Attn U-Net 83.54% 83.05% 93.85% 84.31%

SSL Attn U-Net 83.48% 84.96% 94.34% 85.6%
DA Attn U-Net 84.56% 90.91% 94.99% 89.84%

SSL + DA Attn U-Net 85.93% 93.88% 95.88% 92.9%

3.3. Impact of Data Augmentations

Next, we analyzed various augmentation techniques and their impact on performance.
We defined two classes of augmentations: patient-related augmentation, which slightly
modifies the shape of the lungs, and scanner augmentation, which modifies the contrast
and brightness of the images.

As demonstrated in Table 7, we report performance improvements for both classes
of data augmentation compared to baseline. Moreover, combining both classes of data
augmentations improves the performance even further. Generally, data augmentation is
particularly advantageous in scenarios where insufficient training data are available, but it
also helps to increase the robustness of features towards unseen data. This seems to be the
case for the Luna dataset, which profits the most from these augmentations. Interestingly,
the accuracy drops by three percent for the in-house dataset on which the training was
performed. So, there seems to be a tradeoff in this case, which might be attributed to the
introduced variance in the data that makes it harder for the model to learn specific features
for the training dataset.
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Table 7. Dice scores [%] of the impact of different data augmentations on semantic segmentation
performance on in-house data, LUNA, and IEEE datasets. The best-performing model is highlighted
in bold.

In-House LUNA IEEE AVG

Baseline U-Net 83.3% 78.62% 93.21% 81.34%
Patient-DA U-Net 78.56% 88.34% 93.04% 86.85%
Scanner-DA U-Net 79.61% 87.27% 91.62% 86.01%

DA U-Net 80.32% 89.44% 93.21% 87.73%

3.4. Model Comparison

Finally, we combined these design choices in a single end-to-end model. Table 8
compares our results with the state-of-the-art model by [19]. The combination of these
techniques improves the segmentation performance compared to the standard U-Net. Our
model achieves similar results to the module presented on external datasets by [19] even
though we used only a single end-to-end neural network model, and we used fewer CT
scans for training.

Table 8. Dice scores [%] of the performance of U-Net baseline, an STOA model, and our proposed
model using all techniques (SSL, A, DA) on in-house data, LUNA, and IEEE datasets. The best-
performing model on each dataset is highlighted in bold.

In-House LUNA IEEE AVG

Baseline U-Net 83.3% 78.62% 93.21% 81.34%
Johoff-Net 78.91% 94.04% 96.02% 90.3%

(SSL + DA + Attn) U-Net 85.93% 93.88% 95.88% 92.9%

4. Discussion

We observed that data augmentation, even when the simulated scenarios are not
strictly realistic, plays an essential role in extracting robust features. However, this aug-
mentation strategy comes with a trade-off, as it leads to a slight reduction in accuracy on
our in-house dataset.

To address this challenge and strike a balance between feature richness and precision,
we introduced attention gates and self-supervision into our model. These additions not
only mitigate the impact of data augmentations on our in-house dataset but also guide
the neural network to expand its feature applicability while focusing on more precise and
clinically relevant features. The synergy of these elements, data augmentation, attention
gates, and self-supervision, emerges as an effective combination for our specific case, each
contributing in a complementary manner to bolster overall robustness and generalizability
across diverse acquisition sites.

None of the techniques used require heavy computations and apply especially well to
our use case. The model generalizes to external datasets, even on hard cases. This ability
can be attributed to the inclusion of visualization errors, anatomical differences, or patholo-
gies in the training procedures. By exposing the model to a diverse range of scenarios
during training, it becomes adept at handling complex cases, ensuring that its accuracy
does not waver during inference. This resilience is observed consistently across different
diseases, including chronic obstructive pulmonary disease (COPD) and the distinctive
challenges posed by COVID-19. The model’s ability to maintain accuracy across diverse
conditions underscores its reliability and applicability in real-world medical scenarios,
where variations in imaging quality, anatomy, and disease manifestations are prevalent.
The interdisciplinary engineering approach opens new directions toward finding novel
self-supervision tasks and data augmentations specifically tailored for robustness and
generalizability in medical imaging. It is important to note that the augmentation param-
eters that were used depend to some degree on the data on which they were performed.
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It is advised to manually investigate the resulting images before applying them to the
training procedure. How they change with respect to acquisition parameters could be a
viable question for research. Moreover, further investigations of the relationship between
dataset size and training accuracy could bear potential for efficient resource allocation in
research. Our experiments show that a more diverse and selected choice of scans and the
interdisciplinary work of medical experts and computer scientists have led to significant
improvements. It is open for discussion if this paradigm is beneficial to pure data-driven
approaches in every case.

5. Conclusions

In this study, we have built a model tailored for lung lobe segmentation, strategically
incorporating lightweight techniques gleaned from existing literature. Our findings show-
case that these integrated extensions contribute significantly to enhancing both performance
and robustness, all achieved without the need for additional annotation or task-specific
modules. Figuring out with medical experts which challenges have to be addressed was
essential to the engineering process. It made us concentrate on generating robust features,
which focus more on shapes, and create data augmentations guided by generalizable
findings. Remarkably, our model performed well, despite working with a relatively small
dataset of 100 CTs (69 train). The strength of our approach lies in the careful curation
of a diverse dataset and an exhaustive exploration of the feature space. This meticulous
strategy resulted in achieving state-of-the-art accuracy, challenging the conventional no-
tion that large datasets or computationally intensive architectures are indispensable for
successful training algorithms. By exploiting the diversity inherent in our dataset, our
model demonstrates a capability to excel without an overreliance on extensive data or
resource-intensive architectures, emphasizing the potential efficiency of our approach in
medical imaging applications.
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