
Citation: Sauter, D.; Lodde, G.; Nensa,

F.; Schadendorf, D.; Livingstone, E.;

Kukuk, M. A Systematic Comparison

of Task Adaptation Techniques for

Digital Histopathology. Bioengineering

2024, 11, 19. https://doi.org/

10.3390/bioengineering11010019

Academic Editors: Andrea Cataldo

and Giuseppe Baselli

Received: 20 November 2023

Revised: 20 December 2023

Accepted: 21 December 2023

Published: 24 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

A Systematic Comparison of Task Adaptation Techniques for
Digital Histopathology
Daniel Sauter 1,* , Georg Lodde 2, Felix Nensa 3,4 , Dirk Schadendorf 2, Elisabeth Livingstone 2 and
Markus Kukuk 1

1 Department of Computer Science, Fachhochschule Dortmund, 44227 Dortmund, Germany;
markus.kukuk@fh-dortmund.de

2 Department of Dermatology, University Hospital Essen, 45147 Essen, Germany;
georg.lodde@uk-essen.de (G.L.); dirk.schadendorf@uk-essen.de (D.S.);
elisabeth.livingstone@uk-essen.de (E.L.)

3 Institute for AI in Medicine (IKIM), University Hospital Essen, 45131 Essen, Germany;
felix.nensa@uk-essen.de

4 Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
45147 Essen, Germany

* Correspondence: daniel.sauter@fh-dortmund.de

Abstract: Due to an insufficient amount of image annotation, artificial intelligence in computational
histopathology usually relies on fine-tuning pre-trained neural networks. While vanilla fine-tuning
has shown to be effective, research on computer vision has recently proposed improved algorithms,
promising better accuracy. While initial studies have demonstrated the benefits of these algorithms
for medical AI, in particular for radiology, there is no empirical evidence for improved accuracy in
histopathology. Therefore, based on the ConvNeXt architecture, our study performs a systematic
comparison of nine task adaptation techniques, namely, DELTA, L2-SP, MARS-PGM, Bi-Tuning, BSS,
MultiTune, SpotTune, Co-Tuning, and vanilla fine-tuning, on five histopathological classification
tasks using eight datasets. The results are based on external testing and statistical validation and
reveal a multifaceted picture: some techniques are better suited for histopathology than others, but
depending on the classification task, a significant relative improvement in accuracy was observed for
five advanced task adaptation techniques over the control method, i.e., vanilla fine-tuning (e.g., Co-
Tuning: P(≫) = 0.942, d = 2.623). Furthermore, we studied the classification accuracy for three of the
nine methods with respect to the training set size (e.g., Co-Tuning: P(≫) = 0.951, γ = 0.748). Overall,
our results show that the performance of advanced task adaptation techniques in histopathology is
affected by influencing factors such as the specific classification task or the size of the training dataset.

Keywords: transfer learning; fine-tuning; computer vision; CNN; whole-slide imaging; cancer

1. Introduction

The need for improved tools in clinical histopathology has been repeatedly empha-
sized. Commonly cited arguments include an increasing need for accuracy, a lack of
specialized histopathologists, subjectivity, and a lack of reproducibility [1,2]. Furthermore,
the situation is expected to worsen due to increasing cancer incidence and more screening
campaigns [3]. Fortunately, deep neural networks are expected to significantly change
the study of cancer tissue in histopathology [1]. In fact, deep learning (DL) in compu-
tational histopathology promises various benefits. These include time and cost savings,
lower error rates, better accessibility, and the learning of more accurate representations [2].
Furthermore, it can improve clinical decision making by providing access to high-level
information [4]. It also plays an important role in mining big data [5]. As a result, the yearly
number of research papers on DL-based histopathology is steadily increasing [3,6].

Bioengineering 2024, 11, 19. https://doi.org/10.3390/bioengineering11010019 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering11010019
https://doi.org/10.3390/bioengineering11010019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0002-1595-5155
https://orcid.org/0000-0002-5811-7100
https://orcid.org/0000-0001-8279-9239
https://orcid.org/0000-0001-6358-1824
https://doi.org/10.3390/bioengineering11010019
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering11010019?type=check_update&version=2

Bioengineering 2024, 11, 19 2 of 32

However, DL models must achieve a sufficient level of accuracy to be approved for
clinical practice, while digital histopathology poses several challenges for the application of
DL, including large image size, insufficient data annotation, varying magnification levels
of the microscope, staining artifacts, and color variation [2]. Transfer learning, including
the fine-tuning of pre-trained models, is a standard technical solution for insufficient anno-
tation. Given limited training data, fine-tuning can significantly improve the performance
compared to training from scratch [7]. Kornblith et al. [8] also found that, on average,
fine-tuning achieved a 17-fold increase in the training speed compared to training from
scratch. This was confirmed by He et al. [9]. In histopathology, fine-tuning appears to be
generally superior to using off-the-shelf features [10,11].

The exact procedure for fine-tuning, however, is still an active field of research. Early
studies attempted to systematically evaluate the relationship between model parameters
and transferability in convolutional neural networks (CNNs) [12]. Recently, several studies
have tried to systematically investigate the impact of pre-training [13,14], algorithms [15,16],
and parameters [8,17]. Raghu et al. [18] reported findings on model size in the medical
domain. A recent literature review for computer vision (CV) with further information can
be found in the dissertation by Plested [19], among others.

Especially the technical approach to transfer learning in histopathology leaves room
for improvement. The most straightforward algorithm consists of copying the pre-trained
weights of the initial layers, reinitializing the subsequent layers, and then training them
together. This algorithm dates back to the early 2010s [7,20,21]. At present, researchers
using pre-trained DL models for digital histopathology can choose from various recently
proposed algorithms from CV research [22–24]. Some initially successful applications of
advanced transfer learning techniques in the medical domain can be found with respect
to radiological images [25–28] or lung sound analysis [29]. However, the wider adoption
of these techniques in medicine has not occurred to date. For example, “task adaptation,”
which transfers a pre-trained model into a supervised target domain [30], has not been
widely explored for histopathology. In general, Sauter et al. [31] recently noticed a lack of
transfer of state-of-the-art DL methodology into the histopathology of malignant melanoma.

On the other hand, choosing a transfer learning algorithm for histopathology can be
challenging. It is known that no machine learning (ML) algorithm is generally superior
in every conceivable use case [32]. More specifically, Zhang et al. [33] noted that, in
addition to other factors, the benefit of transfer learning depends on the algorithm due
to assumptions made and specific application scenarios. Accordingly, the question arises
of whether transfer learning algorithms that perform well on datasets like ImageNet
are also suitable for histopathology. In addition, there is the related question of how
much each algorithm benefits from more labeled training data. From a practical point of
view, gaining only a small increase in accuracy would perhaps speak against the labor-
and cost-intensive effort of labeling additional training data by pathology experts [2].
Systematic evaluations of other technical aspects, such as pre-training [34,35] and data
augmentation [36], exist. However, there is—to our knowledge—no systematic comparison
of task adaptation strategies applied to histopathological data.

The present study intends to advance the development of DL models for histopathol-
ogy via improved transfer learning techniques from CV. Based on our findings, follow-up
research can enhance their models addressing specific clinical questions and achieve accu-
racy levels sufficient for clinical approval. This will hopefully help to realize the potential
benefits of DL in clinical patient care. Therefore, in our study, we would like to know which
task adaptation technique(s) should be used when developing DL models for medical
use cases to achieve the best possible accuracy. Consequently, our research question is as
follows: which task adaptation technique achieves the highest accuracy (in terms of AUC)
for classification in digital histopathology tasks?

Our study has several unique contributions, which can be summarized as follows:

• It is the first systematic evaluation of up-to-date task adaptation techniques for classi-
fication tasks in digital histopathology.

Bioengineering 2024, 11, 19 3 of 32

• We comprehensively carried out evaluations based on five histopathological classifi-
cation tasks (mitotic figure detection, tumor metastasis detection, tumor-infiltrating
lymphocytes detection, colorectal cancer tissue-type classification, and skin cancer
tissue-type classification) and eight datasets. Our evaluations include external testing
and statistical validation.

• We show that the standard fine-tuning procedure can be outperformed by more
advanced task adaptation techniques depending on the task at hand.

• Furthermore, the impact of dataset size is investigated. We show that the Co-Tuning
technique can offer further improvements in large-scale settings.

2. Research Background

The following section that presents the research background is divided into two parts.
First, the section introduces some categorization schemas of transfer learning. Second,
techniques from the literature on CV are described and categorized from a technical
perspective.

2.1. Transfer Learning

Transfer learning is a technique in the field of ML that has been studied for some time.
Its goal is to improve ML models by transferring knowledge from a source domain to the
target domain [37]. Jiang et al. [30] recently structured research on transfer learning for
DL from a lifecycle-oriented perspective (see Figure 1). The main training steps are pre-
training a model in the source domain to learn transferable knowledge and then adapting
it in the target domain. In the adaptation step, a further distinction is made between
whether labels are available in the target domain (“task adaptation”) or not (“domain
adaptation”) [30]. Task adaptation is further divided into four subcategories. “Catastrophic
forgetting” refers to the loss of information that was learned from previous tasks when
subsequently learning a new task [38,39]. “Negative transfer” describes a decrease in
performance in the target domain caused by preceding learning processes in the source
domain [33,40]. “Parameter efficiency” reduces the amount of computation in the target
domain [41,42]. “Data efficiency” minimizes the amount of data required for adaptation in
the target domain [30].

Bioengineering 2024, 11, x FOR PEER REVIEW 3 of 34

 It is the first systematic evaluation of up-to-date task adaptation techniques for clas-

sification tasks in digital histopathology.

 We comprehensively carried out evaluations based on five histopathological classifi-

cation tasks (mitotic figure detection, tumor metastasis detection, tumor-infiltrating

lymphocytes detection, colorectal cancer tissue-type classification, and skin cancer

tissue-type classification) and eight datasets. Our evaluations include external testing

and statistical validation.

 We show that the standard fine-tuning procedure can be outperformed by more ad-

vanced task adaptation techniques depending on the task at hand.

 Furthermore, the impact of dataset size is investigated. We show that the Co-Tuning

technique can offer further improvements in large-scale settings.

2. Research Background

The following section that presents the research background is divided into two

parts. First, the section introduces some categorization schemas of transfer learning. Sec-

ond, techniques from the literature on CV are described and categorized from a technical

perspective.

2.1. Transfer Learning

Transfer learning is a technique in the field of ML that has been studied for some

time. Its goal is to improve ML models by transferring knowledge from a source domain

to the target domain [37]. Jiang et al. [30] recently structured research on transfer learning

for DL from a lifecycle-oriented perspective (see Figure 1). The main training steps are

pre-training a model in the source domain to learn transferable knowledge and then

adapting it in the target domain. In the adaptation step, a further distinction is made be-

tween whether labels are available in the target domain (“task adaptation”) or not (“do-

main adaptation”) [30]. Task adaptation is further divided into four subcategories. “Cata-

strophic forgetting” refers to the loss of information that was learned from previous tasks

when subsequently learning a new task [38,39]. “Negative transfer” describes a decrease

in performance in the target domain caused by preceding learning processes in the source

domain [33,40]. “Parameter efficiency” reduces the amount of computation in the target

domain [41,42]. “Data efficiency” minimizes the amount of data required for adaptation

in the target domain [30].

Figure 1. Lifecycle-oriented perspective on transfer learning. Transfer learning includes pre-training

on an upstream task in the source domain and adaptation to a downstream task in the target do-

main. The adaptation process can be divided based on whether labels are available in the target

domain (“task adaptation”) or not (“domain adaptation”). Red dashed lines highlight the subcate-

gories examined in our study. Adapted with permission from Jiang et al. [30].

Figure 1. Lifecycle-oriented perspective on transfer learning. Transfer learning includes pre-training
on an upstream task in the source domain and adaptation to a downstream task in the target domain.
The adaptation process can be divided based on whether labels are available in the target domain
(“task adaptation”) or not (“domain adaptation”). Red dashed lines highlight the subcategories
examined in our study. Adapted with permission from Jiang et al. [30].

Bioengineering 2024, 11, 19 4 of 32

There are several related fields of research. “Domain generalization” tries to learn a
predictor in a set of source domains so that it is invariant relative to distribution shifts. The
predictor thus generalizes well in an unseen target domain [43,44]. “Few-shot learning”
aims to learn ML models using only a small amount of training data for supervised
training [45]. Research on “zero-shot learning” tries to train a model without supervised
labeling in the target domain [46]. Recently, “prompt learning” from the field of natural
language processing has been employed to attempt to reduce or avoid labeled data in
the target domain. For this, it embeds the input into a prompting function and searches
for the highest-scoring solution [47]. Some approaches transfer knowledge from a set of
multiple neural networks in the source domain (“model zoo”) [48]. In “model selection,”
different models are compared with respect to their suitability for a specific transfer learning
problem [49]. “Continual learning” is a technique used for training neural networks with
respect to multiple tasks in succession without unlearning previously learned tasks [50].

2.2. Task Adaptation Techniques

From another perspective, task adaptation strategies can be broadly categorized into
seven categories of technical approaches (see Figure 2) [51]. In the following, we describe
task adaptation techniques from the literature relative to image classification (see Table 1).
In each case, we classify the techniques in a technical scheme.

Bioengineering 2024, 11, x FOR PEER REVIEW 4 of 34

There are several related fields of research. “Domain generalization” tries to learn a

predictor in a set of source domains so that it is invariant relative to distribution shifts.

The predictor thus generalizes well in an unseen target domain [43,44]. “Few-shot learn-

ing” aims to learn ML models using only a small amount of training data for supervised

training [45]. Research on “zero-shot learning” tries to train a model without supervised

labeling in the target domain [46]. Recently, “prompt learning” from the field of natural

language processing has been employed to attempt to reduce or avoid labeled data in the

target domain. For this, it embeds the input into a prompting function and searches for

the highest-scoring solution [47]. Some approaches transfer knowledge from a set of mul-

tiple neural networks in the source domain (“model zoo”) [48]. In “model selection,” dif-

ferent models are compared with respect to their suitability for a specific transfer learning

problem [49]. “Continual learning” is a technique used for training neural networks with

respect to multiple tasks in succession without unlearning previously learned tasks [50].

2.2. Task Adaptation Techniques

From another perspective, task adaptation strategies can be broadly categorized into

seven categories of technical approaches (see Figure 2) [51]. In the following, we describe

task adaptation techniques from the literature relative to image classification (see Table 1).

In each case, we classify the techniques in a technical scheme.

Figure 2. Technical perspective on different forms of task adaptation. Adapted with permission from

Ding et al. [51] and extended by introducing the categories “feature space regularization” and

“shared domains.”.

2.2.1. Vanilla Fine-Tuning

Regular “vanilla” fine-tuning is relatively simple and usually includes three steps

[7,20,21]. First, one trains a neural network on a source task. Second, the last layers of the

network are usually replaced by newly initialized layers. Third, single layers are either

frozen or adapted to a target task using additional supervised training.

Figure 2. Technical perspective on different forms of task adaptation. Adapted with permission
from Ding et al. [51] and extended by introducing the categories “feature space regularization” and
“shared domains”.

2.2.1. Vanilla Fine-Tuning

Regular “vanilla” fine-tuning is relatively simple and usually includes three
steps [7,20,21]. First, one trains a neural network on a source task. Second, the last
layers of the network are usually replaced by newly initialized layers. Third, single layers
are either frozen or adapted to a target task using additional supervised training.

Bioengineering 2024, 11, 19 5 of 32

2.2.2. Distance Regularization

“Distance regularization” attempts to minimize the distance between fine-tuned
weights and pre-trained weights [51]. It thereby preserves knowledge from the source
domain. Most techniques rely on the loss function to regulate the feature space. “Explicit
Inductive Bias” (L2-SP) [24] is based on the standard L2 regularization called “weight
decay”. New layers that are added to the network and that are then reinitialized use this
regularization. The procedure adds a second loss term, which penalizes large distances
between the fine-tuned and pre-trained weights. The strength of both loss components
is controlled using two parameters: α and β. “MARS-SP” [52] penalizes the maximum
absolute row sum (MARS) distance between the weights of the source and the target do-
main. “DEep Learning Transfer using Feature Map with Attention” (DELTA) [53] is similar
to L2-SP. However, it uses the distance between the feature maps of the source and the
target model (instead of the layer weights). The distance is weighted by the performance
reduction caused by turning off filters one at a time.

Instead of limiting the deviations using the loss function, hard constraints can be
used. Gouk et al. [52] studied two variants. “L2-PGM” [52] uses a variant of the projected
stochastic sub-gradient method with a constraint on the Frobenius distance. “MARS-
PGM” [52] uses a constraint on the MARS distance instead.

Table 1. Overview of task adaptation techniques from the literature on image classification and
categorized from a technical perspective.

Technique Reference Category Ranking Source Code

Distance Regularization

DELTA [53] CF A* ✓

L2-PGM [52] CF A* ✓

L2-SP [24] CF A* ✓

MARS-PGM [52] CF A* ✓
MARS-SP [52] CF A* ✓

Feature Space Regularization

Bi-Tuning [54] DE A ✓
BSS [55] NT A* ✓

DTNH [15] NT A* ✗
StochNorm [56] DE A* ✓

Layer Routing

AdaFilter [57] CF A* ✗
DEFT [58] CF Q1 ✗
DKL [59] CF Q2 ✓

Flex-Tuning [60] CF A ✗
MultiTune [61] CF B ✓

PTU [62] CF A ✗
SpotTune [23] CF A* ✓
PathNet [63] CF B ✗

Stepwise PathNet [64] CF Q1 ✗

Shared Domains

Co-Tuning [22] CF A* ✓
LwF [65] CF Q1 ✓

Selective Joint Fine-tuning [66] DE A* ✓

Parameter Pruning

Ticket Transfer [67] PE A* ✓
Winning Lottery Tickets [68] PE B ✓

Category descriptors include: catastrophic forgetting (CF), negative transfer (NT), parameter efficiency (PE), or
data efficiency (DE). Ranking according to SCImago Journal Rank (SJR) indicator (Q1, Q2, Q3, or Q4) or CORE
Conference Ranking score (A*, A, B, or C).

2.2.3. Feature Space Regularization

The “feature space regularization” techniques apply some restrictions on backpropaga-
tion to ensure the desired properties of the fine-tuned feature space. Two techniques belong

Bioengineering 2024, 11, 19 6 of 32

to the category of catastrophic forgetting. “Stochastic Normalization” (StochNorm) [56]
replaces standard batch normalization with a two-branch version. One branch uses means
and mini-batch variances; the other uses moving statistics. The branches are selected
stochastically. In this manner, over-fitting is penalized more, and more knowledge is
also transferred. “Bi-Tuning” [54] adds a newly designed categorical contrastive learning
loss to the loss term to better make use of the intrinsic structure of pre-trained feature
representations.

Two other methods try to reduce negative transfer. “Batch Spectral Shrinkage”
(BSS) [55] applies singular value decomposition (SVD) on feature matrices. It assumes that
spectral components with small singular values are not transferable. In order to suppress
negative transfer, BSS penalizes the smallest singular values by using an additional loss
term. Wan et al. [15] developed “Descent Direction Estimation Strategy” (DTNH), which
evaluates the gradients of empirical loss and regularization separately. In the case of an
obtuse angle between those two, it decomposes the regularization gradient into two or-
thogonal vectors. One of these two vectors, which is parallel to the empirical gradient, is
then truncated. This prevents the empirical loss descent from slowing down.

2.2.4. Layer Routing

For “layer routing,” some of the pre-trained layers are either frozen or disconnected [51].
The selection of layer subsets is carried out using different approaches. Routing can be
performed using modifications of the model architecture itself. “MultiTune” [61] applies
L2-SP on two parallel ResNet models with different parameters each. Then, a single fully
connected layer called “MultiTune layer” is trained to combine the output of these two
models. “Parameter Transfer Unit” (PTU) [62] uses two parallel neural networks. One is
trained in the source domain and then frozen. The other is trained from scratch in the target
domain. Between the layers, two neurons called “fine-tune gate” and “update gate” learn
to combine the activations of both models.

Some methods identify layers for fine-tuning using simple algorithmic approaches:
“Flex-tuning” [60] decomposes a neural network into subcomponents. It identifies one
component that should be fine-tuned (while the others are frozen). The fastest variant,
“even faster flex-tuning,” carries out a single fine-tuning epoch. Then, each fine-tuned
block is copied into a separate network with pre-trained weights to obtain a proxy mea-
surement of accuracy. After selecting the best block, it is fully fine-tuned. “DKL” [59]
uses the Kullback–Leibler divergence on weight correlations to identify the best layers for
fine-tuning.

Some techniques use an additional policy network for routing prediction: “Spot-
Tune” [23] is based on the view that ResNet is an ensemble of shallow networks [69]. The
approach uses two copies of the pre-trained model: a frozen and a trainable one. For
each image, a policy network decides whether a pre-trained or fine-tuned block of ResNet
should be used. As the binary policy vector itself is discrete and thus non-differentiable, the
Gumbel–SoftMax trick is used during the backward pass. “AdaFilter” [57] uses pre-trained
and fine-tuned filters. A binary vector called “fine-tuning policy” decides which filters to
use on a per-image basis. These fine-tuning policies are predicted using a recurrent gated
network. The network is trained using the “straight-through estimator” because of the
binary values during the forward pass. Gated batch normalization replaces standard batch
normalization to handle domain shifts.

Some approaches make use of evolutionary algorithms for routing: “PathNet” [63]
finds binary fine-tuning genotypes (fine-tune/do not fine-tune specific layers) using a
genetic algorithm. The best genotypes are combined into an ensemble. In “Stepwise
PathNet” [64], a tournament selection algorithm based on a microbiological genetic al-
gorithm carries out selections between frozen pre-trained and fine-tunable pre-trained
layers. Similarly to PathNet, “Differential Evolution based Fine-Tuning” (DEFT) [58] uses
an evolutionary algorithm (differential evolution) to select layers for fine-tuning. How-
ever, real-valued genotypes (instead of binary values) are used. For training, phenotypes

Bioengineering 2024, 11, 19 7 of 32

are binarized using a simple threshold. In the end, a final model is fine-tuned based on
the results.

2.2.5. Shared Domains

The category “shared domains” uses information from the source domain for ad-
ditional training supervision during the backpropagation step. “Selective Joint Fine-
tuning” [66] searches for training images with visually similar low-level characteristics.
Two output layers and two cost functions are used to simultaneously train the network
on the source and target datasets. “Learning without Forgetting” (LwF) [65] uses the
pre-trained classifier to predict labels for new images in the source label space. Then, new
output layers are initially trained (warm-up step), while previous layers are kept frozen.
Finally, with all layers unfrozen, the model is jointly trained to predict the pre-computed
source labels and the new layers using a combined loss term. “Co-Tuning” [22] translates
target labels into probability distributions in the source domain. During training, the
translated probability distributions combined with the source classifier layers are used to
add an additional element to the loss function.

2.2.6. Parameter Pruning

“Parameter pruning” leverages the structural information of the pre-trained model
from the source domain [51]. van Soelen and Sheppard [68] carried out training on a source
dataset. Based on the “Winning Lottery Tickets hypothesis” [70], they identified winning
tickets using one-shot pruning. The authors then retrained them on the target dataset. Each
layer was pruned individually, and bias terms were excluded. Mehta [67] also adopted the
procedure by Frankle and Carbin [70] and validated what they called the “Ticket Transfer
Hypothesis”. However, they applied iterative pruning. The weights of the winning ticket
were then transferred to the target domain.

3. Methodology

This section describes the methodology of our study with respect to task adaptation
and its various techniques. As shown in Section 2, task adaptation comprises several closely
related research areas as well as a variety of algorithms. Therefore, in this section, we begin
with a precise delimitation of our object of investigation based on various criteria. Secondly,
we describe an appropriate experimental design to answer our research question for the
previously delimited algorithms. Thirdly, our research question itself does not imply a
specific DL pipeline architecture. To collect empirical results, however, we must restrict
ourselves to a single representative architecture. We therefore define and describe the
exemplary DL CNN pipeline used in this study. Finally, we lay out the details regarding its
hardware and the software implementation.

3.1. Transfer Learning Techniques

Our study defined a specific application scenario regarding the availability of labeled
data: we assumed that there was a small amount of labeled data available. While the
amount was enough for supervised model training, it was not sufficient for “training from
scratch”. Therefore, we subsequently disregarded the application areas of data efficiency,
domain adaptation, and the related areas of few-shot/zero-shot learning. Furthermore, we
were interested in training a model with high performance. Thus, we were not interested
in runtime performance and disregarded parameter efficiency as well. Our focus was,
therefore, on task adaptation, especially catastrophic forgetting and negative transfer. We
further narrowed down the use case scenario. We assumed that there was only one model
in the source domain (no model zoo) and that the time-consuming pre-training was already
carried out (no model selection). The focus was on the target domain; thus, accuracy in the
source domain was irrelevant (no continual learning).

The task adaptation techniques to be included in our study were selected according to
several criteria. One constraint was to keep the total computation time of our experimental

Bioengineering 2024, 11, 19 8 of 32

setup feasible with respect to our available computational resources. Model training in DL
takes significant time and resources. More specifically, we had to train m × n × k models,
where m is the number of techniques to be evaluated, n is the number of tasks, and k is
the number of training repetitions [71]. Another motivation was to restrict the findings to
procedures that are relevant to practical applications.

For the reasons mentioned above, we defined the following theoretical and practical
inclusion criteria:

• We required the code availability of a PyTorch/TensorFlow/Keras implementation.
• The task adaptation technique was designed for/was suitable to image classification

models.
• The task adaptation technique was compatible with the ConvNeXt architecture.
• The task adaptation technique was designed for high accuracy/AUC (catastrophic

forgetting and negative transfer).
• The original publication was published in a peer-reviewed journal/conference and

holds a good ranking in the SJR (Q1) or CORE ranking (A*, A, B).

Furthermore, the following restrictions were used to reduce the computational com-
plexity of our evaluation:

• We dropped L2-PGM and MARS-SP, as MARS-PGM seems to be favored by
Gouk et al. [52].

• We dropped LwF in favor of Co-Tuning as the approaches are similar, and You et al. [22]
found that “Co-Tuning fits better for transfer learning than LwF because Co-Tuning
explicitly models the category relationship” [22].

We finally included DELTA, L2-SP, and MARS-PGM from distance regularization;
Bi-Tuning and BSS from feature space regularization; MultiTune and SpotTune from layer
routing; and Co-Tuning from shared domains. As a baseline, we chose to train a model
using the standard vanilla fine-tuning approach [7].

3.2. Experimental Design

In our experimental design, we limited ourselves to a subset of histopathological
classification tasks and their corresponding public datasets. Then, we distinguished be-
tween two aspects: comparing task adaptation algorithms and comparing training dataset
sizes, each with respect to their achieved accuracy. The respective evaluation procedures
follow the latest best practices for the comparison of ML algorithms to ensure generalizable
findings [71,72].

3.2.1. Classification Tasks and Datasets

The study focused on histopathology in general and therefore addressed exemplary
clinical tasks based on previously published datasets. To cover a wider variety of ap-
plication scenarios in histopathology, we included five classification tasks from multiple
cancer types. We also collected multiple public image datasets for each task. The following
describes the classification tasks and the corresponding datasets in detail.

Mitotic Figure Detection. Our first classification task was partly adopted from Tellez
et al.’s study [36]. In this case, the task was to detect mitotic figures in the center of image
patches from breast cancer. The predicted variable is binary, namely, “mitotic figure present”
vs. “no mitotic figure present” in the center. As our first dataset, we used the “breast cancer
histopathological annotation and diagnosis dataset” (BreCaHAD) [73]. Hematoxylin and
eosin (H&E)-stained images with a size of 1360 × 1024 pixels were collected at the Uni-
versity of Calgary. Our second dataset comes from the “TUmor Proliferation Assessment
Challenge” in 2016 (TUPAC16) [74]. More specifically, the “mitosis detection dataset” con-
sists of H&E-stained square images of different sizes. It was gathered from three pathology
centers in The Netherlands: the University Medical Center in Utrecht, the Symbiant Pathol-
ogy Expert Center in Alkmaar, and the Symbiant Pathology Expert Center in Zaandam.

Bioengineering 2024, 11, 19 9 of 32

The images from the TUPAC16 and the BreCaHAD datasets had a spatial resolution of
0.25 µm/pixel.

Tumor Metastasis Detection. The second classification task was partly adopted from
Tellez et al.’s study [36] as well. The purpose of the classifier was to detect patches contain-
ing metastatic tumor cells of breast cancer. Therefore, the binary classes were “metastatic
tumor cells present” and “others”. Both the training and test data came from the “CAncer
MEtastases in LYmph nOdes challeNge” in 2017 (CAMELYON17) [75]. The annotated data
included H&E-stained whole-slide images (WSIs) from the Radboud University Medical
Center (Radboudumc), the Utrecht University Medical Center, the Rijnstate Hospital, the
Canisius-Wilhelmina Hospital, and the LabPON in The Netherlands. Model training and
external testing were performed on the data from the first, second, third, and fourth cen-
ters. Image data from all centers in the CAMELYON17 dataset had a spatial resolution of
0.23–0.25 µm/pixel.

Tumor-infiltrating Lymphocytes (TIL) Detection. The third task was to classify TIL-
positive/-negative image patches. In this case, TIL-positive meant that at least two TILs
were present in the image [76–78]. The dataset included H&E-stained square images with
100 × 100 pixels from 22 cancer types in “The Cancer Genome Atlas” (TCGA) program.
We excluded four cancer types (CESC, LUSC, READ, and STAD) as they were annotated
using DL. This resulted in a dataset of 18 remaining TCGA projects (ACC, BRCA, COAD,
ESCA, HNSC, KIRC, LIHC, LUAD, MESO, OV, PAAD, PRAD, SARC, SKCM, TGCT, THYM,
UCEC, and UVM). We obtained two independent, non-overlapping mitosis datasets by
randomly dividing cancer types into two splits. The spatial resolution of all image patches
in TCGA-TIL was 0.50 µm/pixel.

Colorectal Cancer Tissue-type Classification. Again, based on the study by Tellez et al. [36],
the goal of colorectal cancer (CRC) tissue type classification was to distinguish among six
different CRC tissue classes. The classes for classification were “tumor epithelium,” “simple
stroma,” “immune cells,” “debris and mucus,” “normal mucosal glands,” and “adipose
tissue”. As the first dataset, CRC-5000 by Kather et al. [79] was used. They provided
5000 patches (625 per class) of archived H&E-stained WSIs from the University Medical
Center Mannheim. Each patch had a resolution of 150 × 150 pixels. As the second dataset,
the colon cancer dataset (DRCO) from the DROID project was used [80]. DRCO provided
H&E-stained WSIs with annotation masks. To align the classes for CRC-5000 and DRCO,
we dropped the “complex stroma” and “background” classes from CRC-5000. The severe
imbalance of some classes made it difficult to divide the classes into training and test splits
without data leakage. Thus, we excluded two “immune cells” and “debris and mucus”
classes for the task “DRCO Small”. The spatial resolution of CRC-5000 was 0.50 µm/pixel,
and DRCO used a resolution of 0.45–0.50 µm/pixel.

Skin Cancer Tissue-type Classification. For skin cancer classification, the goal of the classi-
fier was to distinguish among eight different skin tissue types. The tissue classes were “skin
appendage” (including hair follicles and sweat glands), “inflammation,” “hypodermis,”
“dermis,” “epidermis,” “basal cell carcinoma“ (BCC), “squamous cell carcinoma” (SCC),
and “intraepidermal carcinoma” (IEC). We used a dataset that we subsequently referred to
as “Queensland” as our first dataset. The dataset was published by Thomas et al. [81] and
provided by MyLab Pathology in Australia. It included segmented H&E-stained WSIs of
BCC, SCC, and IEC. As our second dataset, the skin cancer dataset (DRSK) from the DROID
project was used [80]. DRSK provided H&E-stained WSIs with annotation masks. To align
the classes of Queensland and DRSK, we dropped the “keratin” and “background” classes
with respect to Queensland. Furthermore, “reticular dermis” and “papillary dermis” were
combined into “dermis”. The classes “sweat glands” and “hair follicles” were combined
into “skin appendage structure”. The severe imbalance of some classes made dividing
these classes into training and test splits difficult without causing data leakage. Thus,
we dropped three classes, BCC, SCC, and IEC, for the task “DRSK Small”. The spatial
resolution of Queensland was 0.67 µm/pixel, while the images in DRSK had a resolution
of 0.45–0.50 µm/pixel.

Bioengineering 2024, 11, 19 10 of 32

3.2.2. Comparison of the Task Adaptation Techniques

The experimental design for comparing task adaptation techniques was based on the
statistical comparison of multiple ML algorithms across multiple datasets, as described
by Benavoli et al. [71]. Generally, for the comparison of m techniques on n tasks, model
training is repeated k times for each combination of m and n. The mean values of the k
repetitions form the set of observations per algorithm. These means are then statistically
compared. For our case with m = 9 techniques, n = 12 tasks, and k = 5 repetitions, this
resulted in a set of 9 × 12 × 5 = 540 models in total.

Our experimental design was robust. Multiple tasks were used to evaluate the classifier
(see Table 2). We carried out stratified splitting with respect to the training and validation
datasets at the case level to avoid patient-specific data leakage. For a more realistic task
adaptation scenario, only a fraction of all data was randomly sampled for training and
validation. The proportions were chosen so that the smaller class sizes were roughly in
the lower three-digit range, similarly to other experiments on task adaptation [22,24,53].
However, achieving equal dataset sizes among the different tasks was challenging due
to varying class imbalances. Training and subsequent testing were repeated five times.
We kept the stratified random samples constant across the evaluated algorithms [72]. For
every task, we tested them on independent external test datasets. For computational
efficiency, a stratified random subset with a maximum size of 100,000 patches was chosen
for all datasets.

Table 2. Number of image patches per class for the training, validation, and test datasets. Training and
validation data were split at the case level, while an external dataset was used for testing. Training
and validation splits were extracted from the same image dataset.

Task No. Classes Train Validation Test

Mitotic figure
detection

#1

TUPAC16 “ BreCaHAD

no mitosis 14,742 14,726 12,631
mitosis 100 100 115

#2

BreCaHAD “ TUPAC16

no mitosis 5042 6041 99,326
mitosis 46 55 674

Tumor metastasis
detection

#3

Camelyon17, center 1 “ Camelyon17, center 2

no metastasis 5040 5400 99,421
metastasis 100 100 579

#4

Camelyon17, center 2 “ Camelyon17, center 1

no metastasis 17,151 17,152 98,055
metastasis 100 100 1945

#5

Camelyon17, center 3 “ Camelyon17, center 4

no metastasis 9473 9372 96,888
metastasis 100 100 3112

#6

Camelyon17, center 4 “ Camelyon17, center 3

no metastasis 3112 3113 98,945
metastasis 100 100 1055

Tumor-infiltrating
lymphocyte

detection

#7

TCGA TILs, center 1 “ TCGA TILs, center 2

TIL-negative 656 656 73,687
TIL-positive 100 100 18,030

#8

TCGA TILs, center 2 “ TCGA TILs, center 1

TIL-negative 408 408 86,778
TIL-positive 100 100 13,222

Bioengineering 2024, 11, 19 11 of 32

Table 2. Cont.

Task No. Classes Train Validation Test

Colorectal cancer
tissue-type

classification

#9

CRC5000 “ DRCO

tumor 100 100 29,201
stroma 100 100 32,166
lympho 100 100 175
debris 100 100 193

mucosa 100 100 9565
adipose 100 100 28,700

#10

DRCO Small “ CRC5000 Small

tumor 305 305 625
stroma 336 336 625
mucosa 100 100 625
adipose 300 300 625

Skin cancer
tissue-type

classification

#11

Queensland “ DRSK

SAS 56 56 5970
INF 331 331 16,523
HYP 1735 1735 41,060
DER 4011 4010 30,845
EPI 5 5 499
BCC 149 149 3867
SCC 416 416 1097
IEC 100 100 139

#12

DRSK Small “ Queensland Small

SAS 100 100 928
INF 276 276 5403
HYP 687 687 28,264
DER 516 516 65,311
EPI 8 8 94

TIL: tumor-infiltrating lymphocyte; SAS: skin appendage structure; INF: inflammation; HYP: hypodermis;
DER: dermis; EPI: epidermis; BCC: basal cell carcinoma; SCC: squamous cell carcinoma; IEC: intraepidermal
carcinoma.

The experimental design includes solid statistical validation. The area under the
curve (AUC) was chosen as the final measure. It is a standard metric for comparing
classification algorithms [72]. For each combination of tasks and algorithms, the mean and
standard deviation of the AUC values were calculated and reported in the Results Section.
We used statistical tests to verify the generalizability of our results beyond the tasks in
our experimental setup [82]. The classical null hypothesis significance testing (NHST)
procedure was recently criticized for being inappropriate for ML algorithm comparisons.
We therefore used Bayesian hypothesis testing instead [71].

Bayesian testing is preferable because it avoids several shortcomings of classical
NHST [71]. With respect to NHST, decisions are made based on the probability of observing
an effect when the actual mean difference of two classifiers, A and B, is assumed to be
0 (H0 hypothesis). Bayesian testing, instead, can directly estimate the probability of A
being better than B (and vice versa) based on some observations. Furthermore, NHST
is based on the unrealistic assumption that two algorithms can potentially have equal
performance. Thus, trivial effect sizes can become significant by increasing the number of
observations. In Bayesian testing, one can define a region of practical equivalence (ROPE)
to take this problem into account beforehand. NHST does not allow drawing conclusions
from non-significant results. However, Bayesian testing can show the equivalence of two
algorithms based on the ROPE.

In addition to Bayesian testing, we additionally studied effect sizes [83]. Given means
mA and mB and the pooled standard deviation, σpooled, of two normally distributed popula-
tions A and B, Cohen’s d is calculated as follows [84]:

d =
mA − mB

σpooled
(1)

Bioengineering 2024, 11, 19 12 of 32

We omitted effect sizes in the pairwise comparison based on multiple datasets in
Section 4.1. In this case, the denominator in Equation (1) reflects the classification tasks’
difficulty and not the model’s performance dispersion. As a nonparametric variant of
Cohen’s d for populations without a normal distribution, we adopted Akinshin’s gamma
from the Python package “Autorank” [85].

3.2.3. Comparison of Training Dataset Sizes

We were also interested in how the performance of the techniques under investigation
would behave with a larger amount of data. The performance gain of vanilla fine-tuning is
known to become saturated with the increase in the dataset size [8]. Some recent studies on
advanced task adaptation techniques carried out comparisons with respect to the training
datasets’ size. Some techniques performed better in a large-scale setting with more than
1000 images per class, while others did not [22,54,56]. To evaluate the impact of dataset
sizes in histopathology, we chose to re-evaluate some of the task adaptation techniques
using additional experiments.

The experimental design for comparing multiple dataset sizes was based on the statis-
tical comparison of two algorithms using one dataset, as described by Benavoli et al. [71].
In this case, we compared an algorithm trained on a small training split vs. trained on a
larger training split of the same dataset. Therefore, for each combination of m techniques
and n training splits, k repetitions of the model training were performed. We chose three
techniques (L2-SP, fine-tuning, and Co-Tuning) from our set of task adaptation algorithms.
We re-used dataset #10 from the colorectal cancer tissue-type classification (see Table 2).
Three variants of the training split were generated using a varying subsampling factor:
“Base,” “Large,” and “XLarge” (see Table 3). Base is equivalent to the size shown in Table 2.
For every combination of split size and learning technique, we trained k = 20 models. With
m = 3 techniques, n = 3 training split variants, and k = 20 repetitions, this resulted in a set of
3 × 3 × 20 = 180 models in total. Again, the AUC was chosen as our metric for comparisons.
We verified the results using the Bayesian correlated t-test. We further report effect sizes in
the Results Section.

Table 3. Number of image patches per class for three different dataset sizes. The factor of the dataset
size is provided in brackets.

Classes
Base (×1) Large (×2.5) XLarge (×10)

Train Validation Train Validation Train Validation

tumor 305 305 763 763 3052 3052
stroma 336 336 840 840 3362 3362
mucosa 100 100 250 250 1000 1000
adipose 300 300 750 750 3000 3000

3.3. Exemplary Image Classification Pipeline

A DL pipeline for image classification typically includes multiple sequential compo-
nents. Each component comes with its own set of design choices. Here, we limited ourselves
to a single exemplary DL pipeline, used for all experiments in this study. The core building
blocks are typically image preprocessing and the neural network itself. We first started
with the definition of our image preprocessing. We then described the state-of-the-art CNN
architecture. Finally, we addressed the hyperparameters of our pipeline.

3.3.1. Image Preprocessing

Neural networks for image processing typically operate on smaller image patches.
Therefore, we used square image patches with a default edge length of 128 pixels. The
spatial resolution of the training and testing images were identical for all tasks, except for
the skin cancer tissue-type classification. To account for the different spatial resolutions in
the latter case, we used patch sizes with an edge length of 128 × (0.67/0.5) = 171 pixels for

Bioengineering 2024, 11, 19 13 of 32

the DRSK dataset. Subsequently, all patches were scaled uniformly to 224 × 224 pixels, the
default input image size of ConvNeXt.

Inequalities in class distribution must be considered when training representation
learning algorithms. An imbalance of varying magnitudes is present in all datasets, except
for CRC5000. Oversampled minority classes were therefore used during training time. This
prevents the classifier from becoming biased towards one or more specific class(es). For
validation and testing, we kept the original class distribution of the datasets.

When training neural networks for image processing, increasing the training set size
using various image augmentations is common. We used random horizontal flipping.
Following the advice of Tellez et al. [36], we further used HSV color augmentation. As
commonly carried out in PyTorch, the mean and standard deviation were normalized to
[0.485, 0.456, 0.406] and [0.229, 0.224, 0.225] in the RGB color space, respectively.

3.3.2. CNN Architecture

Since the development of AlexNet in 2012 [86], neural networks based on convolution
have been widely used as a standard approach for CV. Research has constantly improved
network architecture around this fundamental principle, including architectural milestones
like VGG [87], ResNet [88], Xception [89], or EfficientNet [90]. Recently, transformer-based
architectures from natural language processing (NLP) challenged the use of convolution
operations [91–94]. Other than CNNs, they are based on multi-head self-attention.

Whether to use convolution- or attention-based architectures for CV remains an open
research question. Liu et al. [95] found that transformers gain importance compared to
CNNs mainly because of their better scaling behavior. However, recent studies showed
that CNNs can still achieve an equivalent or better performance than transformers after
optimizing several design choices. One of these options is larger kernel sizes [95–99]. This
raises the question of whether the recent performance of transformer models is really a
result of multi-head self-attention. At the same time, the established convolution approach
was designed around efficiency [95]. The new design principle of choosing large kernels
also seems to push the networks to shift towards a shape bias [97]. This effect resolves a
previous issue of pre-trained CNNs being biased due to texture [100].

For this study, we chose a state-of-the-art CNN architecture. As described above,
the newest architectures achieved cutting-edge performance for image classification. Fur-
thermore, most task adaptation techniques were explicitly designed for CNNs. Therefore,
we selected ConvNeXt [95] to represent novel CNN architectures. We chose the smallest
one, “ConvNeXt Tiny”, as we assumed it had enough capacity for our tasks while keeping
training time manageable. The building blocks are shown in Figure 3. The pre-trained
ImageNet weights originate from PyTorch [101]. We transferred these weights to all used
models. Furthermore, we ensured that all implementations (both in PyTorch and Keras)
produced the same model results (excluding rounding errors) so that different model
implementations do not distort the results.

3.3.3. Hyperparameters

For our experiments, we preferred the stochastic gradient descent (SGD) optimizer
over Adam, another common choice, based on two reasons. First, SGD generalizes better
for image classification [102]. The performance of Adam seems to depend on the hyperpa-
rameter optimization of decay rates β1 and β2. Second, Adam was only used in the study
performed by Gouk et al. [52]. The authors of the other studies used SGD. From a practical
perspective, this results in less implementation effort when using SGD as well.

Bioengineering 2024, 11, 19 14 of 32

Bioengineering 2024, 11, x FOR PEER REVIEW 14 of 34

produced the same model results (excluding rounding errors) so that different model im-

plementations do not distort the results.

3.3.3. Hyperparameters

For our experiments, we preferred the stochastic gradient descent (SGD) optimizer

over Adam, another common choice, based on two reasons. First, SGD generalizes better

for image classification [102]. The performance of Adam seems to depend on the hyperpa-

rameter optimization of decay rates β1 and β2. Second, Adam was only used in the study

performed by Gouk et al. [52]. The authors of the other studies used SGD. From a practical

perspective, this results in less implementation effort when using SGD as well.

(a) (b)

Figure 3. (a) Overall architecture of ConvNeXt Tiny [95]. The macro-level architecture with a ratio

of 1:1:3:1 was adopted from Swin Transformers [103]. (b) Detailed structure of the ConvNeXt block

[95]. The micro-level architecture is based on the inverted bottleneck design [104]. Inspired by trans-

former architectures, the depthwise convolution uses a kernel size of 7 × 7. For computational effi-

ciency, it is computed before the expansion of channels. The Gaussian error linear unit (GELU) [105]

and layer normalization [106] were also adopted from recent transformer-based architectures [95].

Adapted from Jiang et al. [107], © 2023, Frontiers Media S.A., CC BY 4.0 DEED.

Broadly consistent parameters for SGD were used across the algorithms. In line with

recent recommendations on fine-tuning in dissimilar source and target domains [17], we

used SGD with an initial learning rate of 0.01 and a momentum of 0.9 and activated

Nesterov. We adopted step decay from the majority of the evaluated studies [7,23,24,52–

54,61]. We consistently set a milestone at the 10th epoch with a gamma value of 0.1. We

used a lower learning rate for the pre-trained layers in the fine-tuning setting. We also

adopted lower learning rates for the policy network of SpotTune and the last block in

MultiTune from the original studies [23,61]. To avoid exploding gradients, we applied

gradient value clipping with a value of 1.0. We chose to use a batch size of 64. During

training, iterations per epoch were fixed to 128. Models were trained with early stopping,

patience of 15, and a maximum number of 100 epochs.

Various hyperparameters must be specified for the algorithms under study. How-

ever, conducting hyperparameter optimization to identify optimal parameters for each

task on each dataset was not practical due to the substantial computation time required.

Instead, we utilized the suggested values from the literature. Li et al. [108] recently found

that L2-SP is robust across different parameter ranges. However, α > β is generally prefer-

able. Therefore, we extracted α = 0.1 and β = 0.01 from the original study [24]. For MARS-

PGM, we used the average values of γj = 9.32 and γL = 16.89 [52]. For DELTA, Li et al. [53]

fixed β = 0.01 and generally used it for all conditions [53]. We further set α = 0.04. For Co-

Tuning, You et al. [22] found that λ = 2.3 is robust across all tested datasets and sampling

rates. For BSS, Chen et al. [55] found that η = 0.001 and k = 1 are generally adequate settings

Figure 3. (a) Overall architecture of ConvNeXt Tiny [95]. The macro-level architecture with a ratio of
1:1:3:1 was adopted from Swin Transformers [103]. (b) Detailed structure of the ConvNeXt block [95].
The micro-level architecture is based on the inverted bottleneck design [104]. Inspired by transformer
architectures, the depthwise convolution uses a kernel size of 7 × 7. For computational efficiency, it
is computed before the expansion of channels. The Gaussian error linear unit (GELU) [105] and layer
normalization [106] were also adopted from recent transformer-based architectures [95]. Adapted
from Jiang et al. [107], © 2023, Frontiers Media S.A., CC BY 4.0 DEED.

Broadly consistent parameters for SGD were used across the algorithms. In line with
recent recommendations on fine-tuning in dissimilar source and target domains [17], we used
SGD with an initial learning rate of 0.01 and a momentum of 0.9 and activated Nesterov.
We adopted step decay from the majority of the evaluated studies [7,23,24,52–54,61]. We
consistently set a milestone at the 10th epoch with a gamma value of 0.1. We used a lower
learning rate for the pre-trained layers in the fine-tuning setting. We also adopted lower
learning rates for the policy network of SpotTune and the last block in MultiTune from the
original studies [23,61]. To avoid exploding gradients, we applied gradient value clipping
with a value of 1.0. We chose to use a batch size of 64. During training, iterations per epoch
were fixed to 128. Models were trained with early stopping, patience of 15, and a maximum
number of 100 epochs.

Various hyperparameters must be specified for the algorithms under study. However,
conducting hyperparameter optimization to identify optimal parameters for each task on
each dataset was not practical due to the substantial computation time required. Instead,
we utilized the suggested values from the literature. Li et al. [108] recently found that
L2-SP is robust across different parameter ranges. However, α > β is generally preferable.
Therefore, we extracted α = 0.1 and β = 0.01 from the original study [24]. For MARS-PGM,
we used the average values of γj = 9.32 and γL = 16.89 [52]. For DELTA, Li et al. [53] fixed
β = 0.01 and generally used it for all conditions [53]. We further set α = 0.04. For Co-Tuning,
You et al. [22] found that λ = 2.3 is robust across all tested datasets and sampling rates.
For BSS, Chen et al. [55] found that η = 0.001 and k = 1 are generally adequate settings
under varying conditions. Zhong et al. [54] universally applied τ = 0.07 and m = 0.999 for
Bi-Tuning. For a 100% sampling rate, which is comparable to our class size, they found that
a high number of sampling keys, K, is beneficial. In line with this, we therefore used the
following defaults: K = 40 and L = 128. Wang et al. [61] used α = 0.01 and β = 0.01 for all
their experiments.

For our baseline, vanilla fine-tuning, the model weights were copied from the Im-
ageNet domain. The pre-trained classification head was replaced by a new one with
randomly initialized weights. The new model was then fine-tuned on the histopathol-
ogy tasks. For the pre-trained feature extractor, a smaller learning rate (10 times smaller)
was chosen.

Bioengineering 2024, 11, 19 15 of 32

3.4. Hardware and Software Implementation

Our server had two AMD EPYC 7402 24-core processors, one terabyte of random-
access memory, NVIDIA RTX A6000 graphics cards, and an Ubuntu 22.04 LTS operating
system. Various freely available software packages were used. All experiments were
implemented in Python (ver. 3.9.16). WSI data were loaded using the Python package
tiffslide (ver. 2.1.2) [109]. Model training was implemented using PyTorch (ver. 2.0.0) [110],
Keras (ver. 2.11.0), and TensorFlow (ver. 2.11.1) [111] libraries. For PyTorch training, image
augmentations used the Transforms module from Torchvision (ver. 0.15.1). For Keras
training, the same augmentations were implemented using the Albumentations (ver. 1.3.0)
package [112]. For the calculation of general sample statistics and the Bayesian signed-rank
test, we used the implementation of the Python package Autorank (ver. 1.2.0) [85]. The
Bayesian correlated t-test was calculated using baycomp (ver. 1.0.3) [113].

4. Results

In the following, the experimental results are presented. As defined in Section 3.2.2,
we begin by comparing different task adaptation techniques. We then compare the accuracy
of several algorithms for different training data sizes, as described in Section 3.2.3.

4.1. Comparison of the Task Adaptation Techniques

As described in Section 3.2.2, we trained 540 models for our first experiment on task
adaptation techniques across different tasks. Table 4 shows the aggregated results. Table 5
shows some general statistics (median, median absolute deviation from the median, and
confidence interval for the median) of the results. The statistics were ranked using the me-
dian AUC in descending order. Furthermore, the effect size was provided for the difference
from the best algorithm using Akinshin’s gamma. Based on these results, we carried out a
Bayesian signed-rank test for nine algorithms with paired samples (n = 12) and significance
levels of P(·) ≥ 0.9, 0.95, and 0.99. Using the Shapiro–Wilk test for normality with Bonfer-
roni correction, Autorank failed to reject the null hypothesis of normal distributions for
MARS-PGM (p = 0.002). Therefore, a normal distribution of the results was not given for
all algorithms. Based on the recommendations of Kruschke and Liddell [114], Autorank
used 0.1 × MAD for the region of practical equivalence (ROPE) around the median.

Autorank reported significant and practically relevant differences between the al-
gorithms L2-SP (MD = 0.930 ± 0.096; MAD = 0.021), fine-tuning (MD = 0.911 ± 0.105;
MAD = 0.042), Co-Tuning (MD = 0.898 ± 0.082; MAD = 0.038), DELTA (MD = 0.893 ± 0.136;
MAD = 0.040), SpotTune (MD = 0.889 ± 0.093; MAD = 0.020), BSS (MD = 0.881 ± 0.100;
MAD = 0.044), Bi-Tuning (MD = 0.878 ± 0.086; MAD = 0.033), MultiTune (MD = 0.849 ± 0.086;
MAD = 0.051), and MARS-PGM (MD = 0.802 ± 0.215; MAD = 0.037). Compared to the
top-ranking algorithm, L2-SP, the mean difference was inconclusive for fine-tuning and Co-
Tuning. DELTA was significantly smaller (P(≪) = 0.949) than L2-SP with a medium magni-
tude. There was a significant difference with a large magnitude for SpotTune (P(≪) = 0.962),
Bi-Tuning (P(≪) = 0.934), MultiTune (P(≪) = 1.0), and MARS-PGM (P(≪) = 1.0).

Table 6 shows the results of the Bayesian signed-rank test for all possible pair-wise com-
parisons. Figure A1 in Appendix A shows the simplex plots from Monte Carlo sampling.
Table A1 in Appendix B lists the exact aggregated probability values for all comparisons.
The pair-wise mean differences were inconclusive for the first three algorithms (L2-SP, fine-
tuning, and Co-Tuning). With some exceptions, at least one of these algorithms achieved
significantly better results than the following two-thirds. This first group was followed by a
second group of algorithms (DELTA, SpotTune, BSS, and Bi-Tuning) with inconclusive pair-
wise differences. Finally, the remaining two algorithms (MultiTune and SpotTune) showed
significant negative mean differences in almost all cases. At this point, we emphasize that
inconclusive results do not necessarily constitute evidence of equal performance.

Bioengineering 2024, 11, 19 16 of 32

Table 4. Mean and standard deviation of AUC values and per-task rank (in parentheses) for different task adaptation procedures.

Task
Baseline Distance Regularization Feature Space Regularization Layer Routing Shared

Domains

Fine-Tuning DELTA L2-SP MARS-PGM Bi-Tuning BSS MultiTune SpotTune Co-Tuning

#1 0.954 ± 0.014 (1) 0.926 ± 0.020 (5) 0.952 ± 0.014 (3) 0.780 ± 0.035 (9) 0.918 ± 0.023 (6) 0.939 ± 0.012 (4) 0.811 ± 0.044 (8) 0.901 ± 0.020 (7) 0.954 ± 0.019 (2)
#2 0.937 ± 0.028 (3) 0.676 ± 0.130 (9) 0.941 ± 0.016 (2) 0.770 ± 0.129 (8) 0.878 ± 0.071 (6) 0.919 ± 0.030 (4) 0.784 ± 0.139 (7) 0.887 ± 0.033 (5) 0.948 ± 0.009 (1)
#3 0.903 ± 0.029 (3) 0.897 ± 0.061 (4) 0.926 ± 0.023 (1) 0.763 ± 0.125 (9) 0.849 ± 0.031 (8) 0.893 ± 0.024 (5) 0.853 ± 0.044 (7) 0.866 ± 0.021 (6) 0.910 ± 0.034 (2)
#4 0.919 ± 0.024 (3) 0.943 ± 0.014 (1) 0.934 ± 0.019 (2) 0.804 ± 0.090 (8) 0.882 ± 0.049 (6) 0.832 ± 0.044 (7) 0.767 ± 0.107 (9) 0.906 ± 0.021 (4) 0.886 ± 0.035 (5)
#5 0.949 ± 0.010 (2) 0.948 ± 0.009 (3) 0.949 ± 0.009 (1) 0.837 ± 0.075 (9) 0.932 ± 0.007 (6) 0.940 ± 0.012 (4) 0.913 ± 0.014 (7) 0.891 ± 0.070 (8) 0.936 ± 0.010 (5)
#6 0.861 ± 0.051 (5) 0.848 ± 0.073 (8) 0.890 ± 0.042 (2) 0.473 ± 0.442 (9) 0.865 ± 0.050 (3) 0.864 ± 0.055 (4) 0.853 ± 0.036 (7) 0.890 ± 0.035 (1) 0.855 ± 0.076 (6)
#7 0.937 ± 0.007 (2) 0.899 ± 0.049 (9) 0.934 ± 0.012 (4) 0.902 ± 0.025 (8) 0.934 ± 0.012 (5) 0.938 ± 0.007 (1) 0.915 ± 0.015 (7) 0.916 ± 0.008 (6) 0.936 ± 0.010 (3)
#8 0.870 ± 0.023 (3) 0.888 ± 0.018 (1) 0.861 ± 0.024 (6) 0.800 ± 0.086 (9) 0.874 ± 0.017 (2) 0.870 ± 0.026 (4) 0.818 ± 0.117 (8) 0.849 ± 0.028 (7) 0.867 ± 0.021 (5)
#9 0.865 ± 0.011 (7) 0.874 ± 0.007 (3) 0.868 ± 0.011 (4) 0.831 ± 0.022 (9) 0.879 ± 0.008 (1) 0.866 ± 0.012 (5) 0.848 ± 0.019 (8) 0.865 ± 0.006 (6) 0.877 ± 0.005 (2)
#10 0.960 ± 0.009 (1) 0.928 ± 0.046 (8) 0.942 ± 0.032 (6) 0.856 ± 0.110 (9) 0.948 ± 0.028 (5) 0.953 ± 0.023 (4) 0.939 ± 0.025 (7) 0.959 ± 0.021 (2) 0.957 ± 0.015 (3)
#11 0.751 ± 0.036 (8) 0.793 ± 0.048 (1) 0.761 ± 0.037 (6) 0.737 ± 0.085 (9) 0.775 ± 0.011 (3) 0.753 ± 0.017 (7) 0.766 ± 0.010 (5) 0.773 ± 0.030 (4) 0.793 ± 0.022 (2)
#12 0.826 ± 0.020 (8) 0.808 ± 0.056 (9) 0.836 ± 0.036 (7) 0.845 ± 0.023 (4) 0.842 ± 0.079 (5) 0.842 ± 0.038 (6) 0.851 ± 0.048 (3) 0.875 ± 0.033 (1) 0.872 ± 0.015 (2)

Median (Avg.) 0.911 (3.83) 0.893 (5.08) 0.930 (3.67) 0.802 (8.33) 0.878 (4.67) 0.881 (4.58) 0.849 (6.92) 0.889 (4.75) 0.898 (3.17)

Table 5. Descriptive statistics for the ranked algorithms.

Algorithm Median MAD CI γ Magnitude P(≪) P(=)

L2-SP 0.930 0.021 [0.761, 0.952] – – – –
Fine-Tuning 0.911 0.042 [0.751, 0.960] 0.391 small 0.647 0.332
Co-Tuning 0.898 0.038 [0.793, 0.957] 0.699 medium 0.408 0.021

DELTA 0.893 0.040 [0.676, 0.948] 0.788 medium 0.948 0.003
SpotTune 0.889 0.020 [0.773, 0.959] 1.365 large 0.963 0.001

BSS 0.881 0.044 [0.753, 0.953] 0.947 large 0.899 0.093
Bi-Tuning 0.878 0.033 [0.775, 0.948] 1.276 large 0.934 0.001
MultiTune 0.849 0.051 [0.766, 0.939] 1.390 large 1.000 0.000

MARS-PGM 0.802 0.037 [0.473, 0.902] 2.898 large 1.000 0.000
MAD: mean absolute deviation of the median; CI: confidence interval; γ: Akinshin’s gamma.

Bioengineering 2024, 11, 19 17 of 32

Table 6. Decision matrix for the pair-wise comparison of the algorithms. The algorithms are sorted
by descending median performance.

Algorithm L2-SP Fine-Tuning Co-Tuning DELTA Spot-Tune BSS Bi-Tuning MultiTune MARS-PGM

L2-SP — ns ns ≪ * ≪ ** ns ≪ * ≪ *** ≪ ***
Fine-Tuning ns — ns ns ≪ * ns ≪ * ≪ *** ≪ ***
Co-Tuning ns ns — ≪ * ≪ ** ≪ * ns ≪ *** ≪ ***

DELTA ≫ * ns ≫ * — ns ns ns ns ≪ ***
SpotTune ≫ ** ≫ * ≫ ** ns — ns ns ≪ *** ≪ ***

BSS ns ns ≫ * ns ns — ns ≪ *** ≪ ***
Bi-Tuning ≫ * ≫ * ns ns ns ns — ≪ *** ≪ ***
MultiTune ≫ *** ≫ *** ≫ *** ns ≫ *** ≫ *** ≫ *** — ≪ ***

MARS-PGM ≫ *** ≫ *** ≫ *** ≫ *** ≫ *** ≫ *** ≫ *** ≫ *** —

≪: negative mean difference; ≫: positive mean difference; *: P(·) ≥ 0.9; **: P(·) ≥ 0.95; ***: P(·) ≥ 0.99; ns: not
significant.

While our baseline (fine-tuning) performed comparatively well overall, it only ranked
3.83 on average across all datasets with respect to the descriptive statistics shown in
Table 4. The question is whether it is still the best choice for all histopathological tasks. To
better understand the influencing factors, we compared it with all other task adaptation
techniques at the task level using the Bayesian correlated t-test. The aggregated results are
shown in Table 7. The exact probabilities and effect sizes are also listed in Appendix C. For
5 of the 12 tasks, significantly better results than vanilla fine-tuning with medium or large
effects were obtained by one or more task adaptation techniques. Co-Tuning and DELTA
were the most frequently represented here, with three significant results each. SpotTune
was significantly superior in two cases. Both Bi-Tuning and L2-SP achieved significantly
better results than using the fine-tuning process once. In Table A2, one can further find
a large positive effect (P(≫) = 0.896, γ = 1.692) for DELTA and a medium positive effect
(P(≫) = 0.890, d = 0.626) for L2-SP. In both cases, Bayesian testing narrowly missed the
threshold for automatic decisions. Thus, none of the algorithms consistently performed
better than the baseline across histopathology. However, the indifference in results is partly
explained by the differences in classification tasks. The positive findings include both
binary and multiclass classification tasks.

Table 7. Decision matrix for the pair-wise comparison of vanilla fine-tuning with all other algorithms
on the task level.

Task BSS Bi-Tuning Co-Tuning DELTA L2-SP MARS-PGM MultiTune Spot-Tune

#1 ≪ **, l ≪ *, l ns ns ns ≪ ***, l ≪ ***, l ≪ ***, l
#2 ns ns ns ≪ **, l ns ≪ **, l ≪ *, l ns

#3 ns ≪ ***, l ns ns ≫ *, l ≪ *, l ≪ *, l ≪ **, l
#4 ≪ **, l ns ns ≫ *, l ns ns ≪ *, l ns

#5 ≪ **, m ≪ *, l ≪ **, l ns ns ≪ **, l ≪ **, l ns

#6 ns ns ns ns ns ns ns ns

#7 ns ns ns ns ns ≪ *, l ≪ **, l ≪ ***, l
#8 ns ns ns ns ns ns ns ns

#9 ns ≫ ***, l ≫ *, l ≫ *, l ns ≪ *, l ≪ *, l ns

#10 ns ns ns ns ns ns ns ns

#11 ns ns ≫ *, l ≫ *, l ns ns ns ≫ *, m
#12 ns ns ≫ *, l ns ns ns ns ≫ **, l

≪: negative mean difference; ≫: positive mean difference; *: P(·) ≥ 0.9; **: P(·) ≥ 0.95; ***: P(·) ≥ 0.99; ns: not
significant; m: medium effect; l: large effect. Significant positive mean differences (P(≫) ≥ 0.9) are additionally
highlighted in bold.

4.2. Comparison of Training Dataset Size

As described in Section 3.2.3, we trained 180 models for the comparison of the dataset’s
size. The aggregated training results based on AUC, balanced accuracy, and F1 score for
different dataset sizes are presented in Tables 8–10, respectively. For the dataset size XLarge,
Co-Tuning achieved the highest absolute increase in performance in terms of AUC (+0.013),
balanced accuracy (+0.045), and F1 score (+0.048).

Bioengineering 2024, 11, 19 18 of 32

Table 8. Mean and standard deviation of the AUC for fine-tuning, L2-SP, and Co-Tuning relative to
different dataset size settings.

Dataset
Baseline Distance

Regularization Shared Domains

Fine-Tuning L2-SP Co-Tuning

Base 0.957 ± 0.016 0.955 ± 0.022 0.958 ± 0.014
Large 0.961 ± 0.009 0.960 ± 0.011 0.966 ± 0.010

XLarge 0.962 ± 0.013 0.966 ± 0.009 0.971 ± 0.007

Median 0.961 0.960 0.966

Table 9. Mean and standard deviation of the balanced accuracy for fine-tuning, L2-SP, and Co-Tuning
relative to different dataset size settings.

Dataset
Baseline Distance

Regularization Shared Domains

Fine-Tuning L2-SP Co-Tuning

Base 0.782 ± 0.050 0.796 ± 0.065 0.787 ± 0.048
Large 0.802 ± 0.032 0.797 ± 0.035 0.818 ± 0.032

XLarge 0.807 ± 0.036 0.819 ± 0.028 0.832 ± 0.023

Median 0.802 0.797 0.818

Table 10. Mean and standard deviation of the F1 score for fine-tuning, L2-SP, and Co-Tuning relative
to different dataset size settings.

Dataset
Baseline Distance

Regularization Shared Domains

Fine-Tuning L2-SP Co-Tuning

Base 0.776 ± 0.055 0.791 ± 0.072 0.781 ± 0.055
Large 0.798 ± 0.034 0.794 ± 0.037 0.815 ± 0.036

XLarge 0.803 ± 0.037 0.817 ± 0.029 0.829 ± 0.023

Median 0.798 0.794 0.815

Using the Bayesian correlated t-test, we carried out pair-wise comparisons between
the algorithms for all three dataset sizes. Tables 11, 13 and 15 show descriptive sample
statistics and Tables 12, 14 and 16 show the decision matrices for the settings Base, Large,
and XLarge, respectively. The posterior distributions and probability values are presented
in Figure A2 and Table A3–A5, respectively.

We started with the dataset size “Base”. According to the Shapiro–Wilk test for
normality, the results follow a normal distribution. Therefore, we used parametric statistics
to describe the samples (Table 11). The mean differences between Co-Tuning and the other
two techniques were negligible in magnitude. For Bayesian testing, we used 0.1 × STD
for the ROPE. Similarly to our experiments in Section 4.1, Bayesian testing produced
inconclusive results (Table 12).

Table 11. Descriptive statistics for the ranked algorithms using the dataset size “Base”.

Algorithm Mean STD CI d Magnitude P(≪) P(=)

Co-Tuning 0.958 0.014 [0.949, 0.967] – – – –
Fine-Tuning 0.957 0.016 [0.947, 0.967] 0.079 negligible 0.473 0.241

L2-SP 0.955 0.022 [0.941, 0.969] 0.197 negligible 0.596 0.173

STD: standard deviation; CI: confidence interval; d: Cohen’s d.

Bioengineering 2024, 11, 19 19 of 32

Table 12. Decision matrix for the pair-wise Bayesian correlated t-test of algorithms using the dataset
size “Base”.

Algorithm Fine-Tuning L2-SP Co-Tuning

Fine-Tuning — ns ns

L2-SP ns — ns

Co-Tuning ns ns —
ns: not significant.

We continued with the dataset size “Large”. According to the Shapiro–Wilk test for
normality, the results follow a normal distribution. Therefore, we used parametric statistics
to describe the samples (Table 13). There were medium differences between Co-Tuning
and the other two algorithms. For Bayesian testing, we used 0.1 × STD for the ROPE. The
differences mentioned above were inconclusive in Bayesian testing (Table 14).

Table 13. Descriptive statistics for the ranked algorithms using the dataset size “Large”.

Algorithm Mean STD CI d Magnitude P(≪) P(=)

Co-Tuning 0.966 0.010 [0.959, 0.972] – – – –
Fine-Tuning 0.961 0.009 [0.955, 0.966] 0.518 medium 0.830 0.088

L2-SP 0.960 0.011 [0.953, 0.967] 0.544 medium 0.849 0.081

STD: standard deviation; CI: confidence interval; d: Cohen’s d.

Table 14. Decision matrix for the pair-wise Bayesian correlated t-test of algorithms using the dataset
size “Large”.

Algorithm Fine-Tuning L2-SP Co-Tuning

Fine-Tuning — ns ns

L2-SP ns — ns

Co-Tuning ns ns —
ns: not significant.

We further continued with the dataset size “XLarge”. According to the Shapiro–Wilk
test for normality, the results do not follow a normal distribution. Therefore, we used
nonparametric statistics to describe the samples (Table 15). For Bayesian testing, we used
0.1 × MAD for the ROPE. There was a significant medium increase (P(≫) = 0.951, γ = 0.748)
for Co-Tuning over vanilla fine-tuning (Table 16). Overall, the results of the Bayesian testing
across all three settings of our comparison of the datasets’ size thus confirm the increase in
accuracy for the size XLarge.

Table 15. Descriptive statistics for the ranked algorithms using the dataset size “XLarge”.

Algorithm Median MAD CI γ Magnitude P(≪) P(=)

Co-Tuning 0.972 0.006 [0.964, 0.981] – – – –
L2-SP 0.967 0.005 [0.958, 0.976] 0.619 medium 0.876 0.063

Fine-Tuning 0.965 0.006 [0.951, 0.979] 0.748 medium 0.951 0.025

MAD: mean absolute deviation of the median; CI: confidence interval; γ: Akinshin’s gamma.

Table 16. Decision matrix for the pair-wise Bayesian correlated t-test of algorithms using the dataset
size “XLarge”.

Algorithm Fine-Tuning L2-SP Co-Tuning

Fine-Tuning — ns ≫ **, m
L2-SP ns — ns

Co-Tuning ≪ **, m ns —
≪: negative mean difference; ≫: positive mean difference; **: P(·) ≥ 0.95; ns: not significant; m: medium effect.

Bioengineering 2024, 11, 19 20 of 32

5. Discussion

To the best of our knowledge, we are the first to provide extensive empirical evidence
on advanced task adaptation techniques in histopathology. We showed that specific tech-
niques are, on average, better suited for histopathology than others. Interestingly, the
authors of all methods investigated in this paper observed, in their original studies, an
improvement of their method over the baseline fine-tuning technique [23,52,54]. However,
as shown in Table 6, this is not confirmed by our results for the histopathology setting.
Vanilla fine-tuning significantly outperformed SpotTune, Bi-Tuning, MultiTune, and MARS-
PGM. Three task adaptation techniques combined, namely, L2-SP, vanilla fine-tuning, and
Co-Tuning, out-performed the others regarding classification tasks in digital histopathol-
ogy. Among the three top-performing algorithms were distance regularization (L2-SP),
shared domains (Co-Tuning), and the baseline technique (fine-tuning). Moreover, the worst-
performing algorithms (MultiTune and MARS-PGM) were significantly outperformed by
almost all other techniques, whereas MARS-PGM was significantly worse than MultiTune.

However, our results reveal that the superiority of an algorithm in histopathology
depends on the task. Our systematic comparison, summarized in Table 6, did not show
a general superiority of one task adaptation technique over the others. Also, none of
the evaluated algorithms showed performances that were significantly superior to our
baseline. However, the comparison between the three highest-ranking algorithms (L2-SP,
fine-tuning, and Co-Tuning) was inconclusive as well. At first glance, this might be either
due to our experimental setup, or performances might further depend on other influencing
factors. Zhang et al. [33] already mentioned that, in addition to domain divergence and
source/target data quality, the fit between the TL algorithm and the task is essential. Our
task-level analysis confirmed this for histopathology (see Table 7). At least one technique
obtained significantly better results than the baseline in about half of the cases.

Advanced task adaptation algorithms can also be helpful when a large amount of data
are available. Our comparison of the dataset’s size showed that, by increasing the dataset
size by a factor of ten, Co-Tuning was able to outperform the baseline technique significantly.
This is in line with the results of You et al. [22]. They found that additional supervision
by Co-Tuning helps to further increase performances in large-scale classification settings
where regularization techniques, like L2-SP, do not help. Two other methods, which we
did not examine in this large-scale setting, reported related results: the study on Bi-Tuning
also reported a superior performance [54], while the study on StochNorm [56] obtained
mixed findings.

The architecture of a neural network might be an influencing factor for the effectiveness
of task adaptation. By choosing ConvNeXt, our investigation was based on an up-to-
date CNN architecture from the field of CV. In general, ImageNet performance is a good
indicator of the accuracy of CNN architectures relative to a downstream task [8]. However,
Ding et al. [97] recently showed that CNNs with larger kernel sizes (like ConvNeXt) have
higher shape biases compared to texture biases. In general research on CV, this is generally
seen as beneficial due to its similarity with human perception [97,100,115]. While this might
be true for photograph-like image data, histopathological analysis at a high magnification
relies on relatively small cell structures and the visual texture of the tissue for decisions.

The algorithm-specific influence of histopathology pre-training needs to be further
clarified. Image features from ImageNet and histopathology are likely to be different, and
domain divergence is assumed to affect the result negatively [33]. For vanilla fine-tuning,
three studies found that histopathology benefits from domain-specific pre-training [34,35,116],
while two did not [117,118]. The question arises with respect to how advanced task
adaptation techniques benefit from domain-specific pretraining and whether this effect
diverges between algorithms.

Our results are in line with other medical studies. Several authors already provided
evidence for the usefulness of advanced task adaptation techniques in a broader medical
context. Most examples can be found in radiology. Liao et al. [25] used L2-SP to avoid
catastrophic forgetting in a multitask setting called “MUSCLE”. They found that L2-SP

Bioengineering 2024, 11, 19 21 of 32

was beneficial in all tested use cases. Sagie et al. [26] evaluated L2-SP in a supervised task
adaptation setting for segmentation. L2-SP was not beneficial for ImageNet pre-training.
However, it improved performances with respect to medical pre-training. Su et al. [27]
successfully used L2-SP to carry out the supervised adaptation of an MRI-pre-trained
GAN relative to CT image generation. Unfortunately, they did not compare their results
to vanilla fine-tuning. An et al. [28] evaluated SpotTune in a supervised task adaptation
setting for segmentation, which was pre-trained on a related medical dataset. SpotTune
performed better than vanilla fine-tuning. Another example can be found in lung sound
classification. Nguyen and Pernkopf [29] evaluated Co-Tuning, Stochastic Normalization,
and a combination of both for supervised task adaptation with ImageNet pre-training.
While Co-Tuning and StochNorm were superior to vanilla fine-tuning, their performance
varied between classification tasks.

Our results add empirical evidence to CV research for the general relationship between
domain divergence and negative transfer. The findings are based on eight techniques
applied to the medical domain. We showed that the relative effectiveness of task adaptation
techniques in histopathology diverges from general CV research. This observation confirms
the assumption that performance depends on the domain [33]. Our findings might have
implications for evaluating new transfer learning techniques. Increasing the variety in
benchmark tasks has been proposed before [14,19]. In this paper, we confirmed that the
evaluation of commonly used datasets containing animals, cars, aircraft, plants, etc., is
insufficient.

However, the findings on some techniques also deviate from earlier findings in CV
research in some ways. First, Li et al. [17] reported that distance regularization does not
perform well for dissimilar source and target domains. Plested et al. [16] thus suggested
that distance regularization should be limited to earlier layers, and the number of layers
depends on the downstream dataset. Surprisingly, regular L2-SP distance regularization
performed comparatively well in histopathology. Second, our results also contradict the
conclusion of Gouk et al. [52], who reported that hard constraints perform better than
distance constraints using the penalty term. MARS-PGM performed the worst of the
algorithms compared (see Table 6).

6. Conclusions

This study is the first to provide empirical evidence on the suitability of up-to-date task
adaptation techniques for histopathological classification tasks using CNNs. Analysis at the
task level showed that, in half of the cases, one or multiple techniques, including Bi-Tuning,
Co-Tuning, DELTA, L2-SP, and SpotTune, could outperform vanilla fine-tuning, which is
the standard procedure for task adaptation. Co-Tuning can further increase performance
when a large amount of data in the target domain are available. Our results align with
earlier studies mainly from the radiological field, showing that medical AI can benefit
from advanced task adaptation techniques. We further provided evidence on the general
relationship between domain divergence and negative transfer. In this paper, we found
some deviations from the literature on distance regularization.

6.1. Limitations

Our study was limited to supervised task adaptation techniques and excluded related
research areas, like domain adaptation and zero-, one-, and few-shot learning. As we
narrowed down the evaluated task adaptation techniques to the most promising ones
in Section 3.1 for theoretical and practical reasons, our study did not cover 100% of all
available methods from the literature. Furthermore, we limited our study to techniques
that were initially designed for image classification. Our experiments did not combine
BSS with distance regularization using L2-SP or DELTA. Although the classification tasks
in Section 3.2 were based on 12 different datasets covering various cancer types and
classification tasks, not all possible scenarios from histopathology were fully covered.

Bioengineering 2024, 11, 19 22 of 32

While we demonstrated relative improvements over the baseline approach (fine-
tuning) for several tasks, our results do not show the best possible performance improve-
ment due to the substantial computational costs required in our experimental setup for
extensive hyperparameter optimization. We did not further investigate performances
under varying influencing factors beyond dataset size—like different source domains,
unsupervised pre-training, and the network’s architecture and size—or other downstream
ML tasks—like instance segmentation. In our experiments, the number of layers using
distance regularization was not adjusted relative to downstream tasks.

6.2. Outlook

This relationship between the histopathological task and the suitability of task adapta-
tion techniques needs to be better understood in the future for task adaptation to be used
in a targeted manner. More generally, the differentiated evaluation of transfer learning
algorithms should continue so that more domains beyond ImageNet-like photographs
can benefit more from task adaptation. Future studies should examine the impact of
pre-training in pathology on task adaptation outcomes. More techniques, including Bi-
Tuning [54] and StochNorm [56], should be investigated concerning their behavior in a
large-scale setting.

Author Contributions: Conceptualization, D.S. (Daniel Sauter) and M.K.; methodology, D.S. (Daniel
Sauter); software, D.S. (Daniel Sauter); validation, D.S. (Daniel Sauter), investigation, D.S. (Daniel
Sauter), G.L., F.N., D.S. (Dirk Schadendorf), E.L. and M.K.; data curation, D.S. (Daniel Sauter);
writing—original draft preparation, D.S. (Daniel Sauter) and M.K.; writing—review and editing, D.S.
(Daniel Sauter), G.L., F.N., D.S. (Dirk Schadendorf), E.L. and M.K.; visualization, D.S. (Daniel Sauter);
supervision, G.L., F.N., D.S. (Dirk Schadendorf), E.L. and M.K. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was funded by a Ph.D. grant from the DFG Research Training Group 2535
Knowledge- and data-based personalization of medicine at the point of care (WisPerMed), University
of Duisburg-Essen, Germany.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The BreCaHAD
dataset is available from Figshare at https://doi.org/10.6084/m9.figshare.7379186 (accessed on 9
March 2023). The TUPAC16 dataset can be found at: https://tupac.grand-challenge.org/ (accessed on
9 March 2023). The CAMELYON17 dataset can be found at: https://camelyon17.grand-challenge.org/
(accessed on 7 March 2023). The dataset for TIL classification is available from Zenodo at https:
//zenodo.org/record/6604094 (accessed on 28 June 2023). The CRC-5000 dataset is available from
Zenodo at https://zenodo.org/record/53169 (accessed on 9 March 2023). The DRCO dataset (K.
Lindman, M. Lindvall, C. B. Stadler, C. Lundstrom, and D. Treanor, 2019, Colon data from the Visual
Sweden project DROID) is available upon request at https://datahub.aida.scilifelab.se/10.23698
/aida/drco (accessed on 4 April 2023). The Queensland dataset is available from UQ eSpace at
https://espace.library.uq.edu.au/view/UQ:8be4bd0 (accessed on 8 March 2023). The DRSK dataset
(K. Lindman, J. F. Rose, M. Lindvall, and C. B. Stadler, 2019, Skin data from the Visual Sweden
project DROID) is available upon request at https://datahub.aida.scilifelab.se/10.23698/aida/drsk
(accessed on 4 April 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

https://doi.org/10.6084/m9.figshare.7379186
https://tupac.grand-challenge.org/
https://camelyon17.grand-challenge.org/
https://zenodo.org/record/6604094
https://zenodo.org/record/6604094
https://zenodo.org/record/53169
https://datahub.aida.scilifelab.se/10.23698/aida/drco
https://datahub.aida.scilifelab.se/10.23698/aida/drco
https://espace.library.uq.edu.au/view/UQ:8be4bd0
https://datahub.aida.scilifelab.se/10.23698/aida/drsk

Bioengineering 2024, 11, 19 23 of 32

Appendix A

Bioengineering 2024, 11, x FOR PEER REVIEW 24 of 34

https://datahub.aida.scilifelab.se/10.23698/aida/drco (accessed on 4 April 2023). The Queensland da-

taset is available from UQ eSpace at https://espace.library.uq.edu.au/view/UQ:8be4bd0 (accessed on

8 March 2023). The DRSK dataset (K. Lindman, J. F. Rose, M. Lindvall, and C. B. Stadler, 2019, Skin

data from the Visual Sweden project DROID) is available upon request at https://datahub.aida.scil-

ifelab.se/10.23698/aida/drsk (accessed on 4 April 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Figure A1. Cont.

Bioengineering 2024, 11, 19 24 of 32Bioengineering 2024, 11, x FOR PEER REVIEW 25 of 34

Figure A1. Cont.

Bioengineering 2024, 11, 19 25 of 32
Bioengineering 2024, 11, x FOR PEER REVIEW 26 of 34

Figure A1. Simplex plots for the Monte Carlo sampling results of the pair-wise Bayesian signed-

rank test.

Appendix B

Table A1. Posterior matrix with probabilities from the pair-wise Bayesian signed-rank test for

comparisons across all histopathological tasks.

Algorithm
L2‐SP Fine‐Tuning Co‐Tuning

P(≪) P(=) P(≫) P(≪) P(=) P(≫) P(≪) P(=) P(≫)
L2-SP — — — 0.647 0.332 0.021 0.408 0.021 0.571

Fine-Tuning 0.021 0.332 0.647 0.647 0.332 0.021 0.093 0.553 0.353

Co-Tuning 0.571 0.021 0.408 — — — — — —

DELTA 0.049 0.003 0.948 0.353 0.553 0.093 0.078 0.011 0.911

SpotTune 0.036 0.001 0.963 0.130 0.021 0.849 0.013 0.001 0.987

BSS 0.009 0.093 0.899 0.086 0.001 0.912 0.000 0.069 0.931

Bi-Tuning 0.064 0.001 0.934 0.004 0.588 0.408 0.001 0.115 0.884

MultiTune 0.000 0.000 1.000 0.062 0.021 0.917 0.000 0.000 1.000

MARS-PGM 0.000 0.000 1.000 0.001 0.000 0.999 0.000 0.000 1.000

Algorithm
DELTA SpotTune BSS

P(≪) P(=) P(≫) P(≪) P(=) P(≫) P(≪) P(=) P(≫)
L2-SP 0.948 0.003 0.049 0.963 0.001 0.036 0.899 0.093 0.009

Fine-Tuning 0.849 0.021 0.130 0.912 0.001 0.086 0.408 0.588 0.004

Co-Tuning 0.911 0.011 0.078 0.987 0.001 0.013 0.931 0.069 0.000

DELTA — — — 0.490 0.000 0.509 0.288 0.027 0.685

SpotTune 0.509 0.000 0.490 — — — 0.306 0.001 0.693

BSS 0.685 0.027 0.288 0.693 0.001 0.306 — — —

Bi-Tuning 0.544 0.007 0.449 0.460 0.001 0.539 0.237 0.281 0.482

MultiTune 0.103 0.000 0.897 0.000 0.000 0.999 0.000 0.001 0.999

MARS-PGM 0.002 0.000 0.998 0.000 0.000 1.000 0.000 0.000 1.000

Algorithm
Bi‐Tuning MultiTune MARS‐PGM

P(≪) P(=) P(≫) P(≪) P(=) P(≫) P(≪) P(=) P(≫)
L2-SP 0.934 0.001 0.064 1.000 0.000 0.000 1.000 0.000 0.000

Fine-Tuning 0.917 0.021 0.062 0.999 0.000 0.001 1.000 0.000 0.000

Co-Tuning 0.884 0.115 0.001 1.000 0.000 0.000 1.000 0.000 0.000

DELTA 0.449 0.007 0.544 0.897 0.000 0.103 0.998 0.000 0.002

SpotTune 0.539 0.001 0.460 0.999 0.000 0.000 1.000 0.000 0.000

BSS 0.482 0.281 0.237 0.999 0.001 0.000 1.000 0.000 0.000

Bi-Tuning — — — 0.995 0.005 0.000 1.000 0.000 0.000

MultiTune 0.000 0.005 0.995 — — — 0.998 0.000 0.002

MARS-PGM 0.000 0.000 1.000 0.002 0.000 0.998 — — —

P(≪): probability of negative mean difference; P(=): probability of equivalent results; P(≫): proba-

bility of positive mean difference. Significant values (P(·) ≥ 0.9) are highlighted in bold.

Figure A1. Simplex plots for the Monte Carlo sampling results of the pair-wise Bayesian signed-
rank test.

Appendix B

Table A1. Posterior matrix with probabilities from the pair-wise Bayesian signed-rank test for
comparisons across all histopathological tasks.

Algorithm
L2-SP Fine-Tuning Co-Tuning

P(≪) P(=) P(≫) P(≪) P(=) P(≫) P(≪) P(=) P(≫)

L2-SP — — — 0.647 0.332 0.021 0.408 0.021 0.571
Fine-Tuning 0.021 0.332 0.647 0.647 0.332 0.021 0.093 0.553 0.353
Co-Tuning 0.571 0.021 0.408 — — — — — —

DELTA 0.049 0.003 0.948 0.353 0.553 0.093 0.078 0.011 0.911
SpotTune 0.036 0.001 0.963 0.130 0.021 0.849 0.013 0.001 0.987

BSS 0.009 0.093 0.899 0.086 0.001 0.912 0.000 0.069 0.931
Bi-Tuning 0.064 0.001 0.934 0.004 0.588 0.408 0.001 0.115 0.884
MultiTune 0.000 0.000 1.000 0.062 0.021 0.917 0.000 0.000 1.000

MARS-PGM 0.000 0.000 1.000 0.001 0.000 0.999 0.000 0.000 1.000

Algorithm
DELTA SpotTune BSS

P(≪) P(=) P(≫) P(≪) P(=) P(≫) P(≪) P(=) P(≫)

L2-SP 0.948 0.003 0.049 0.963 0.001 0.036 0.899 0.093 0.009
Fine-Tuning 0.849 0.021 0.130 0.912 0.001 0.086 0.408 0.588 0.004
Co-Tuning 0.911 0.011 0.078 0.987 0.001 0.013 0.931 0.069 0.000

DELTA — — — 0.490 0.000 0.509 0.288 0.027 0.685
SpotTune 0.509 0.000 0.490 — — — 0.306 0.001 0.693

BSS 0.685 0.027 0.288 0.693 0.001 0.306 — — —
Bi-Tuning 0.544 0.007 0.449 0.460 0.001 0.539 0.237 0.281 0.482
MultiTune 0.103 0.000 0.897 0.000 0.000 0.999 0.000 0.001 0.999

MARS-PGM 0.002 0.000 0.998 0.000 0.000 1.000 0.000 0.000 1.000

Algorithm
Bi-Tuning MultiTune MARS-PGM

P(≪) P(=) P(≫) P(≪) P(=) P(≫) P(≪) P(=) P(≫)

L2-SP 0.934 0.001 0.064 1.000 0.000 0.000 1.000 0.000 0.000
Fine-Tuning 0.917 0.021 0.062 0.999 0.000 0.001 1.000 0.000 0.000
Co-Tuning 0.884 0.115 0.001 1.000 0.000 0.000 1.000 0.000 0.000

DELTA 0.449 0.007 0.544 0.897 0.000 0.103 0.998 0.000 0.002
SpotTune 0.539 0.001 0.460 0.999 0.000 0.000 1.000 0.000 0.000

BSS 0.482 0.281 0.237 0.999 0.001 0.000 1.000 0.000 0.000
Bi-Tuning — — — 0.995 0.005 0.000 1.000 0.000 0.000
MultiTune 0.000 0.005 0.995 — — — 0.998 0.000 0.002

MARS-PGM 0.000 0.000 1.000 0.002 0.000 0.998 — — —

P(≪): probability of negative mean difference; P(=): probability of equivalent results; P(≫): probability of positive
mean difference. Significant values (P(·) ≥ 0.9) are highlighted in bold.

Bioengineering 2024, 11, 19 26 of 32

Appendix C

Table A2. Posterior matrix with probabilities from the pair-wise Bayesian correlated t-test and effect
size for comparison with fine-tuning, separated by task.

Task
BSS Bi-Tuning Co-Tuning

P(≪) P(=) P(≫) d/γ P(≪) P(=) P(≫) d/γ P(≪) P(=) P(≫) d/γ

1 0.966 0.013 0.021 −1.171 0.910 0.018 0.073 −1.845 0.466 0.072 0.463 −0.004
2 0.705 0.059 0.236 −0.928 0.865 0.042 0.093 −0.755 0.293 0.044 0.664 0.653
3 0.707 0.110 0.183 −0.378 0.996 0.001 0.003 −1.801 0.172 0.181 0.648 0.222
4 0.979 0.005 0.016 −2.452 0.799 0.045 0.156 −0.955 0.871 0.035 0.094 −1.080
5 0.964 0.019 0.017 −0.780 0.931 0.015 0.054 −1.861 0.976 0.009 0.015 −1.241
6 0.226 0.340 0.434 0.065 0.274 0.258 0.468 0.077 0.490 0.170 0.340 −0.089
7 0.313 0.170 0.517 0.119 0.615 0.092 0.294 −0.324 0.493 0.157 0.351 −0.091
8 0.468 0.085 0.446 0.048 0.360 0.075 0.564 −0.379 0.544 0.067 0.388 0.102
9 0.385 0.126 0.489 0.083 0.004 0.003 0.993 1.407 0.037 0.016 0.947 1.379

10 0.643 0.080 0.277 −0.411 0.739 0.070 0.191 −0.598 0.591 0.110 0.299 −0.250
11 0.408 0.098 0.494 0.087 0.133 0.046 0.822 0.919 0.067 0.023 0.910 1.406
12 0.231 0.076 0.693 0.510 0.337 0.082 0.581 0.284 0.048 0.009 0.942 2.623

Task
DELTA L2-SP MARS-PGM

P(≪) P(=) P(≫) d/γ P(≪) P(=) P(≫) d/γ P(≪) P(=) P(≫) d/γ

1 0.891 0.023 0.087 −1.579 0.515 0.140 0.345 -0.121 0.997 0.000 0.003 −6.447
2 0.984 0.001 0.016 −16.406 0.411 0.043 0.546 0.180 0.951 0.010 0.039 −1.374
3 0.510 0.116 0.374 −0.116 0.051 0.033 0.917 0.879 0.920 0.019 0.061 −1.540
4 0.043 0.020 0.937 1.230 0.089 0.054 0.857 0.707 0.894 0.020 0.085 −1.752
5 0.493 0.209 0.298 −0.094 0.444 0.109 0.447 0.002 0.953 0.010 0.037 −2.102
6 0.599 0.157 0.244 −0.209 0.058 0.052 0.890 0.626 0.840 0.034 0.127 −1.234
7 0.841 0.038 0.121 −1.086 0.668 0.120 0.212 −0.323 0.941 0.013 0.046 −1.908
8 0.081 0.023 0.896 1.692 0.653 0.067 0.279 −0.769 0.821 0.026 0.153 −0.821
9 0.038 0.025 0.937 0.938 0.238 0.138 0.624 0.251 0.943 0.012 0.044 −1.967

10 0.828 0.044 0.128 −0.957 0.783 0.057 0.160 −0.760 0.871 0.029 0.100 −1.332
11 0.038 0.024 0.937 0.986 0.092 0.158 0.750 0.272 0.549 0.086 0.365 −0.209
12 0.669 0.085 0.246 −0.433 0.258 0.100 0.642 0.343 0.177 0.049 0.774 0.878

Task
MultiTune SpotTune

P(≪) P(=) P(≫) d/γ P(≪) P(=) P(≫) d/γ

1 0.994 0.001 0.005 −4.330 0.991 0.002 0.008 −3.048
2 0.931 0.010 0.059 −1.493 0.849 0.023 0.128 −2.275
3 0.909 0.024 0.067 −1.347 0.962 0.012 0.027 −1.480
4 0.914 0.016 0.069 −1.949 0.739 0.074 0.187 −0.571
5 0.988 0.002 0.010 −2.851 0.820 0.037 0.143 −1.144
6 0.528 0.065 0.406 −0.185 0.106 0.060 0.834 0.682
7 0.961 0.010 0.029 −1.887 0.999 0.000 0.001 −2.932
8 0.705 0.015 0.281 −0.384 0.789 0.048 0.162 −1.139
9 0.924 0.026 0.050 −1.086 0.461 0.074 0.465 0.006

10 0.811 0.037 0.152 −1.144 0.471 0.128 0.401 −0.056
11 0.264 0.062 0.673 0.573 0.045 0.042 0.912 0.670
12 0.163 0.062 0.775 0.690 0.012 0.005 0.983 1.804

P(≪): probability of negative mean difference; P(=): probability of equivalent results; P(≫): probability of positive
mean difference; d: Cohen’s d; γ: Akinshin’s gamma. Significant positive mean differences (P(·) ≥ 0.9) are
highlighted in bold.

Bioengineering 2024, 11, 19 27 of 32

Appendix D

Bioengineering 2024, 11, x FOR PEER REVIEW 28 of 34

Appendix D

(a)

(b)

(c)

Figure A2. Posterior distributions for the pair-wise comparison of fine-tuning, L2-SP, and Co-Tun-

ing using the AUC from the Bayesian correlated t-test. (a) Dataset size “Base” (×1). (b) Dataset size

“Large” (×2.5). (c) Dataset size “XLarge” (×10).

Appendix E

Table A3. Posterior matrix for the dataset size “Base” with probabilities from the pair-wise Bayes-

ian correlated t-test and effect size.

Algorithm
Fine‐Tuning L2‐SP Co‐Tuning

P(≪) P(=) P(≫) d P(≪) P(=) P(≫) d P(≪) P(=) P(≫) d

Fine-Tuning — — — — 0.525 0.173 0.302 −0.127 0.286 0.241 0.473 0.079

L2-SP 0.302 0.173 0.525 0.127 — — — — 0.231 0.173 0.596 0.197

Co-Tuning 0.473 0.241 0.286 −0.079 0.596 0.173 0.231 −0.197 — — — —

P(≪): probability of negative mean difference; P(=): probability of equivalent results; P(≫): proba-

bility of positive mean difference; d: Cohen’s d. Significant values (P(·) ≥ 0.9) are highlighted in bold.

Figure A2. Posterior distributions for the pair-wise comparison of fine-tuning, L2-SP, and Co-Tuning
using the AUC from the Bayesian correlated t-test. (a) Dataset size “Base” (×1). (b) Dataset size
“Large” (×2.5). (c) Dataset size “XLarge” (×10).

Appendix E

Table A3. Posterior matrix for the dataset size “Base” with probabilities from the pair-wise Bayesian
correlated t-test and effect size.

Algorithm
Fine-Tuning L2-SP Co-Tuning

P(≪) P(=) P(≫) d P(≪) P(=) P(≫) d P(≪) P(=) P(≫) d

Fine-Tuning — — — — 0.525 0.173 0.302 −0.127 0.286 0.241 0.473 0.079
L2-SP 0.302 0.173 0.525 0.127 — — — — 0.231 0.173 0.596 0.197

Co-Tuning 0.473 0.241 0.286 −0.079 0.596 0.173 0.231 −0.197 — — — —

P(≪): probability of negative mean difference; P(=): probability of equivalent results; P(≫): probability of positive
mean difference; d: Cohen’s d. Significant values (P(·) ≥ 0.9) are highlighted in bold.

Bioengineering 2024, 11, 19 28 of 32

Table A4. Posterior matrix for the dataset size “Large” with probabilities from the pair-wise Bayesian
correlated t-test and effect size.

Algorithm
Fine-Tuning L2-SP Co-Tuning

P(≪) P(=) P(≫) d P(≪) P(=) P(≫) d P(≪) P(=) P(≫) d

Fine-Tuning — — — — 0.476 0.170 0.355 −0.072 0.082 0.088 0.830 0.518
L2-SP 0.355 0.170 0.476 0.072 — — — — 0.070 0.081 0.849 0.544

Co-Tuning 0.830 0.088 0.082 −0.518 0.849 0.081 0.070 −0.544 — — — —

P(≪): probability of negative mean difference; P(=): probability of equivalent results; P(≫): probability of positive
mean difference; d: Cohen’s d. Significant values (P(·) ≥ 0.9) are highlighted in bold.

Table A5. Posterior matrix for the dataset size “XLarge” with probabilities from the pair-wise
Bayesian correlated t-test and effect size.

Algorithm
Fine-Tuning L2-SP Co-Tuning

P(≪) P(=) P(≫) γ P(≪) P(=) P(≫) γ P(≪) P(=) P(≫) γ

Fine-Tuning — — — — 0.198 0.099 0.703 0.164 0.024 0.025 0.951 0.748
L2-SP 0.703 0.099 0.198 −0.164 — — — — 0.061 0.063 0.876 0.619

Co-Tuning 0.951 0.025 0.024 −0.748 0.876 0.063 0.061 −0.619 — — — —

P(≪): probability of negative mean difference; P(=): probability of equivalent results; P(≫): probability of positive
mean difference; γ: Akinshin’s gamma. Significant values (P(·) ≥ 0.9) are highlighted in bold.

References
1. Acs, B.; Rantalainen, M.; Hartman, J. Artificial intelligence as the next step towards precision pathology. J. Intern. Med. 2020, 288,

62–81. [CrossRef] [PubMed]
2. Banerji, S.; Mitra, S. Deep learning in histopathology: A review. WIREs Data Min. Knowl. Discov. 2022, 12, e1439. [CrossRef]
3. Morales, S.; Engan, K.; Naranjo, V. Artificial intelligence in computational pathology—Challenges and future directions. Digit.

Signal Process. 2021, 119, 103196. [CrossRef]
4. Echle, A.; Rindtorff, N.T.; Brinker, T.J.; Luedde, T.; Pearson, A.T.; Kather, J.N. Deep learning in cancer pathology: A new generation

of clinical biomarkers. Br. J. Cancer 2021, 124, 686–696. [CrossRef] [PubMed]
5. Cui, M.; Zhang, D.Y. Artificial intelligence and computational pathology. Lab. Investig. 2021, 101, 412–422. [CrossRef] [PubMed]
6. Srinidhi, C.L.; Ciga, O.; Martel, A.L. Deep neural network models for computational histopathology: A survey. Med. Image Anal.

2021, 67, 101813. [CrossRef] [PubMed]
7. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the NIPS’14,

Montréal, QC, Canada, 8–13 December 2014; pp. 3320–3328.
8. Kornblith, S.; Shlens, J.; Le, Q.V. Do Better ImageNet Models Transfer Better? In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 2656–2666. [CrossRef]
9. He, K.; Girshick, R.; Dollar, P. Rethinking ImageNet Pre-Training. In Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4918–4927. [CrossRef]
10. Li, X.; Plataniotis, K.N. How much off-the-shelf knowledge is transferable from natural images to pathology images? PLoS ONE

2020, 15, e0240530. [CrossRef]
11. Mormont, R.; Geurts, P.; Maree, R. Comparison of Deep Transfer Learning Strategies for Digital Pathology. In Proceedings of the

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22
June 2018; pp. 2343–2352. [CrossRef]

12. Azizpour, H.; Razavian, A.S.; Sullivan, J.; Maki, A.; Carlsson, S. Factors of Transferability for a Generic ConvNet Representation.
IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1790–1802. [CrossRef]

13. Abnar, S.; Dehghani, M.; Neyshabur, B.; Sedghi, H. Exploring the Limits of Large Scale Pre-training. In Proceedings of the
International Conference on Learning Representations, Virtual, 25–29 April 2022.

14. Mahajan, D.; Girshick, R.; Ramanathan, V.; He, K.; Paluri, M.; Li, Y.; Bharambe, A.; van der Maaten, L. Exploring the Limits of
Weakly Supervised Pretraining. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 185–201. [CrossRef]

15. Wan, R.; Xiong, H.; Li, X.; Zhu, Z.; Huan, J. Towards Making Deep Transfer Learning Never Hurt. In Proceedings of the 2019
IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; pp. 578–587. [CrossRef]

16. Plested, J.; Shen, X.; Gedeon, T. Rethinking Binary Hyperparameters for Deep Transfer Learning. In Proceedings of the Neural
Information Processing, Sanur, Bali, Indonesia, 8–12 December 2021; pp. 463–475. [CrossRef]

17. Li, H.; Chaudhari, P.; Yang, H.; Lam, M.; Ravichandran, A.; Bhotika, R.; Soatto, S. Rethinking the Hyperparameters for Fine-tuning.
In Proceedings of the International Conference on Learning Representations, Virtual, 26 April–1 May 2020.

https://doi.org/10.1111/joim.13030
https://www.ncbi.nlm.nih.gov/pubmed/32128929
https://doi.org/10.1002/widm.1439
https://doi.org/10.1016/j.dsp.2021.103196
https://doi.org/10.1038/s41416-020-01122-x
https://www.ncbi.nlm.nih.gov/pubmed/33204028
https://doi.org/10.1038/s41374-020-00514-0
https://www.ncbi.nlm.nih.gov/pubmed/33454724
https://doi.org/10.1016/j.media.2020.101813
https://www.ncbi.nlm.nih.gov/pubmed/33049577
https://doi.org/10.1109/CVPR.2019.00277
https://doi.org/10.1109/ICCV.2019.00502
https://doi.org/10.1371/journal.pone.0240530
https://doi.org/10.1109/CVPRW.2018.00303
https://doi.org/10.1109/TPAMI.2015.2500224
https://doi.org/10.1007/978-3-030-01216-8_12
https://doi.org/10.1109/ICDM.2019.00068
https://doi.org/10.1007/978-3-030-92270-2_40

Bioengineering 2024, 11, 19 29 of 32

18. Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding Transfer Learning for Medical Imaging. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
pp. 3347–3357.

19. Plested, J. Beyond Binary Hyperparameters in Deep Transfer Learning for Image Classification. Ph.D. Thesis, The Australian
National University, Canberra, Australia, 2023.

20. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

21. Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and Transferring Mid-level Image Representations Using Convolutional
Neural Networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH,
USA, 23–28 June 2014; pp. 1717–1724. [CrossRef]

22. You, K.; Kou, Z.; Long, M.; Wang, J. Co-Tuning for Transfer Learning. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, Virtual, 6–12 December 2020; pp. 17236–17246.

23. Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. SpotTune: Transfer Learning Through Adaptive Fine-Tuning. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, 16–20
June 2019; pp. 4805–4814. [CrossRef]

24. Li, X.; Grandvalet, Y.; Davoine, F. Explicit Inductive Bias for Transfer Learning with Convolutional Networks. In Proceedings of
the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2825–2834.

25. Liao, W.; Xiong, H.; Wang, Q.; Mo, Y.; Li, X.; Liu, Y.; Chen, Z.; Huang, S.; Dou, D. MUSCLE: Multi-task Self-supervised Continual
Learning to Pre-train Deep Models for X-Ray Images of Multiple Body Parts. In Proceedings of the Medical Image Computing
and Computer Assisted Intervention—MICCAI 2022, Singapore, 18–22 September 2022; pp. 151–161. [CrossRef]

26. Sagie, N.; Greenspan, H.; Goldberger, J. Transfer Learning via Parameter Regularization for Medical Image Segmentation. In
Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Virtual, 23–27 August 2021; pp. 985–989.
[CrossRef]

27. Su, K.; Zhou, E.; Sun, X.; Wang, C.; Yu, D.; Luo, X. Pre-trained StyleGAN Based Data Augmentation for Small Sample Brain
CT Motion Artifacts Detection. In Proceedings of the Advanced Data Mining and Applications: 16th International Conference,
ADMA 2020, Foshan, China, 12–14 November 2020; pp. 339–346. [CrossRef]

28. An, R.; Han, T.; Wang, Y.; Ai, D.; Wang, Y.; Yang, J. Cross-Domain Transfer Learning for Vessel Segmentation in Computed
Tomographic Coronary Angiographic Images. In Proceedings of the Image and Graphics: 11th International Conference, ICIG
2021, Haikou, China, 26–28 December 2021; pp. 571–583. [CrossRef]

29. Nguyen, T.; Pernkopf, F. Lung Sound Classification Using Co-Tuning and Stochastic Normalization. IEEE. Trans. Biomed. Eng.
2022, 69, 2872–2882. [CrossRef]

30. Jiang, J.; Shu, Y.; Wang, J.; Long, M. Transferability in Deep Learning: A Survey. arXiv 2022, arXiv:2201.05867.
31. Sauter, D.; Lodde, G.; Nensa, F.; Schadendorf, D.; Livingstone, E.; Kukuk, M. Deep learning in computational dermatopathology

of melanoma: A technical systematic literature review. Comput. Biol. Med. 2023, 163, 107083. [CrossRef] [PubMed]
32. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
33. Zhang, W.; Deng, L.; Zhang, L.; Wu, D. A Survey on Negative Transfer. IEEE/CAA J. Autom. Sin. 2023, 10, 305–329. [CrossRef]
34. Sharma, Y.; Ehsan, L.; Syed, S.; Brown, D.E. HistoTransfer: Understanding Transfer Learning for Histopathology. In Proceedings

of the 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Athens, Greece, 27–30 July 2021;
pp. 1–4. [CrossRef]

35. Kim, Y.-G.; Kim, S.; Cho, C.E.; Song, I.H.; Lee, H.J.; Ahn, S.; Park, S.Y.; Gong, G.; Kim, N. Effectiveness of transfer learning for
enhancing tumor classification with a convolutional neural network on frozen sections. Sci. Rep. 2020, 10, 21899. [CrossRef]
[PubMed]

36. Tellez, D.; Litjens, G.; Bándi, P.; Bulten, W.; Bokhorst, J.-M.; Ciompi, F.; van der Laak, J. Quantifying the effects of data augmentation
and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 2019, 58, 101544.
[CrossRef] [PubMed]

37. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
38. McCloskey, M.; Cohen, N.J. Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem. In Psychology

of Learning and Motivation; Bower, G.H., Ed.; Academic Press: Cambridge, MA, USA, 1989; pp. 109–165.
39. French, R.M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 1999, 3, 128–135. [CrossRef] [PubMed]
40. Rosenstein, M.T.; Marx, Z.; Kaelbling, L.P.; Dietterich, T.G. To Transfer or Not to Transfer. In Proceedings of the NIPS 2005

Workshop on Transfer Learning, Vancouver, BC, Canada, 9 December 2005.
41. Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.; de Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; Gelly, S. Parameter-

Efficient Transfer Learning for NLP. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA,
USA, 9–15 June 2019; pp. 2790–2799.

42. Sung, Y.-L.; Cho, J.; Bansal, M. VL-Adapter: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–24 June 2022; pp.
5227–5237. [CrossRef]

https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.222
https://doi.org/10.1109/CVPR.2019.00494
https://doi.org/10.1007/978-3-031-16452-1_15
https://doi.org/10.23919/EUSIPCO54536.2021.9616331
https://doi.org/10.1007/978-3-030-65390-3_26
https://doi.org/10.1007/978-3-030-87358-5_46
https://doi.org/10.1109/TBME.2022.3156293
https://doi.org/10.1016/j.compbiomed.2023.107083
https://www.ncbi.nlm.nih.gov/pubmed/37315382
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/JAS.2022.106004
https://doi.org/10.1109/BHI50953.2021.9508542
https://doi.org/10.1038/s41598-020-78129-0
https://www.ncbi.nlm.nih.gov/pubmed/33318495
https://doi.org/10.1016/j.media.2019.101544
https://www.ncbi.nlm.nih.gov/pubmed/31466046
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1016/S1364-6613(99)01294-2
https://www.ncbi.nlm.nih.gov/pubmed/10322466
https://doi.org/10.1109/CVPR52688.2022.00516

Bioengineering 2024, 11, 19 30 of 32

43. Zhou, K.; Liu, Z.; Qiao, Y.; Xiang, T.; Loy, C.C. Domain Generalization: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45,
4396–4415. [CrossRef]

44. Muandet, K.; Balduzzi, D.; Schölkopf, B. Domain Generalization via Invariant Feature Representation. In Proceedings of the 30th
International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; pp. 10–18.

45. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a Few Examples: A Survey on Few-Shot Learning. ACM Comput. Surv.
2020, 53, 1–34. [CrossRef]

46. Pourpanah, F.; Abdar, M.; Luo, Y.; Zhou, X.; Wang, R.; Lim, C.P.; Wang, X.-Z.; Wu, Q.M.J. A Review of Generalized Zero-Shot
Learning Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 4051–4070. [CrossRef]

47. Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; Neubig, G. Pre-Train, Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing. ACM Comput. Surv. 2023, 55, 1–35. [CrossRef]

48. Shu, Y.; Kou, Z.; Cao, Z.; Wang, J.; Long, M. Zoo-Tuning: Adaptive Transfer from A Zoo of Models. In Proceedings of the 38th
International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 9626–9637.

49. Nguyen, C.; Hassner, T.; Seeger, M.; Archambeau, C. LEEP: A New Measure to Evaluate Transferability of Learned Representations.
In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 7294–7305.

50. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef] [PubMed]

51. Ding, K.; He, Y.; Dong, X.; Yang, J.; Zhang, L.; Li, A.; Zhang, X.; Mo, L. GFlow-FT: Pick a Child Network via Gradient Flow for
Efficient Fine-Tuning in Recommendation Systems. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, Atlanta, GA, USA, 17–21 October 2022; pp. 3918–3922. [CrossRef]

52. Gouk, H.; Hospedales, T.M.; Pontil, M. Distance-Based Regularisation of Deep Networks for Fine-Tuning. In Proceedings of the
International Conference on Learning Representations, Virtual, 3–7 May 2021. [CrossRef]

53. Li, X.; Xiong, H.; Wang, H.; Rao, Y.; Liu, L.; Chen, Z.; Huan, J. DELTA: DEep Learning Transfer using Feature Map with Attention
for Convolutional Networks. In Proceedings of the International Conference on Learning Representations, New Orleans, LA,
USA, 6–9 May 2019. [CrossRef]

54. Zhong, J.; Wang, X.; Kou, Z.; Wang, J.; Long, M. Bi-tuning: Efficient Transfer from Pre-trained Models. In Proceedings of
the European Conference on Machine Learning and Principles and PKDD, Torino, Italy, 18–22 September 2023; pp. 357–373.
[CrossRef]

55. Chen, X.; Wang, S.; Fu, B.; Long, M.; Wang, J. Catastrophic Forgetting Meets Negative Transfer: Batch Spectral Shrinkage for Safe
Transfer Learning. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver,
BC, Canada, 8–14 December 2019; pp. 1908–1918.

56. Kou, Z.; You, K.; Long, M.; Wang, J. Stochastic Normalization. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; pp. 16304–16314.

57. Guo, Y.; Li, Y.; Wang, L.; Rosing, T. AdaFilter: Adaptive Filter Fine-Tuning for Deep Transfer Learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 4060–4066.

58. Vrbančič, G.; Podgorelec, V. Transfer Learning with Adaptive Fine-Tuning. IEEE Access 2020, 8, 196197–196211. [CrossRef]
59. Wanjiku, R.N.; Nderu, L.; Kimwele, M. Dynamic fine-tuning layer selection using Kullback–Leibler divergence. Eng. Rep. 2023, 5,

e12595. [CrossRef]
60. Royer, A.; Lampert, C. A Flexible Selection Scheme for Minimum-Effort Transfer Learning. In Proceedings of the 2020 IEEE Winter

Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020; pp. 2180–2189. [CrossRef]
61. Wang, Y.; Plested, J.; Gedeon, T. MultiTune: Adaptive Integration of Multiple Fine-Tuning Models for Image Classification.

In Proceedings of the 27th International Conference, ICONIP 2020, Bangkok, Thailand, 18–22 November 2020; pp. 488–496.
[CrossRef]

62. Zhang, Y.; Zhang, Y.; Yang, Q. Parameter Transfer Unit for Deep Neural Networks. In Proceedings of the Advances in Knowledge
Discovery and Data Mining: 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, 14–17 April 2019; pp. 82–95. [CrossRef]

63. Nagae, S.; Kawai, S.; Nobuhara, H. Transfer Learning Layer Selection Using Genetic Algorithm. In Proceedings of the 2020 IEEE
Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–6. [CrossRef]

64. Imai, S.; Kawai, S.; Nobuhara, H. Stepwise PathNet: A layer-by-layer knowledge-selection-based transfer learning algorithm. Sci.
Rep. 2020, 10, 8132. [CrossRef] [PubMed]

65. Li, Z.; Hoiem, D. Learning without Forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2935–2947. [CrossRef] [PubMed]
66. Ge, W.; Yu, Y. Borrowing Treasures from the Wealthy: Deep Transfer Learning Through Selective Joint Fine-Tuning. In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp.
10–19. [CrossRef]

67. Mehta, R. Sparse Transfer Learning via Winning Lottery Tickets. In Proceedings of the Workshop on Learning Transferable Skills
(NeurIPS 2019), Vancouver, BC, Canada, 13–14 December 2019. [CrossRef]

68. van Soelen, R.; Sheppard, J.W. Using Winning Lottery Tickets in Transfer Learning for Convolutional Neural Networks. In
Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp.
1–8. [CrossRef]

https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1145/3386252
https://doi.org/10.1109/TPAMI.2022.3191696
https://doi.org/10.1145/3560815
https://doi.org/10.1073/pnas.1611835114
https://www.ncbi.nlm.nih.gov/pubmed/28292907
https://doi.org/10.1145/3511808.3557603
https://doi.org/10.48550/ARXIV.2002.08253
https://doi.org/10.48550/ARXIV.1901.09229
https://doi.org/10.1007/978-3-031-43424-2_22
https://doi.org/10.1109/ACCESS.2020.3034343
https://doi.org/10.1002/eng2.12595
https://doi.org/10.1109/WACV45572.2020.9093635
https://doi.org/10.1007/978-3-030-63820-7_56
https://doi.org/10.1007/978-3-030-16145-3_7
https://doi.org/10.1109/CEC48606.2020.9185501
https://doi.org/10.1038/s41598-020-64165-3
https://www.ncbi.nlm.nih.gov/pubmed/32424180
https://doi.org/10.1109/TPAMI.2017.2773081
https://www.ncbi.nlm.nih.gov/pubmed/29990101
https://doi.org/10.1109/CVPR.2017.9
https://doi.org/10.48550/ARXIV.1905.07785
https://doi.org/10.1109/IJCNN.2019.8852405

Bioengineering 2024, 11, 19 31 of 32

69. Veit, A.; Wilber, M.J.; Belongie, S. Residual Networks Behave Like Ensembles of Relatively Shallow Networks. In Proceedings of
the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 550–558.

70. Frankle, J.; Carbin, M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. In Proceedings of the ICLR
2019: International Conference for Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [CrossRef]

71. Benavoli, A.; Corani, G.; Demšar, J.; Zaffalon, M. Time for a Change: A Tutorial for Comparing Multiple Classifiers Through
Bayesian Analysis. J. Mach. Learn. Res. 2017, 18, 1–36.

72. Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30.
73. Aksac, A.; Demetrick, D.J.; Ozyer, T.; Alhajj, R. BreCaHAD: A dataset for breast cancer histopathological annotation and diagnosis.

BMC Res. Notes 2019, 12, 82. [CrossRef]
74. Veta, M.; Heng, Y.J.; Stathonikos, N.; Bejnordi, B.E.; Beca, F.; Wollmann, T.; Rohr, K.; Shah, M.A.; Wang, D.; Rousson, M.; et al.

Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge. Med. Image Anal. 2019, 54, 111–121.
[CrossRef]

75. Litjens, G.; Bandi, P.; Ehteshami Bejnordi, B.; Geessink, O.; Balkenhol, M.; Bult, P.; Halilovic, A.; Hermsen, M.; van de Loo, R.;
Vogels, R.; et al. 1399 H&E-stained sentinel lymph node sections of breast cancer patients: The CAMELYON dataset. GigaScience
2018, 7, giy065. [CrossRef] [PubMed]

76. Kaczmarzyk, J.R.; Abousamra, S.; Kurc, T.; Gupta, R.; Saltz, J. Dataset for Tumor Infiltrating Lymphocyte Classification (304,097
Image Patches from TCGA), 2022. Available online: https://zenodo.org/records/6604094 (accessed on 28 June 2023).

77. Abousamra, S.; Gupta, R.; Hou, L.; Batiste, R.; Zhao, T.; Shankar, A.; Rao, A.; Chen, C.; Samaras, D.; Kurc, T.; et al. Deep
Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer. Front. Oncol. 2022, 11,
806603. [CrossRef] [PubMed]

78. Saltz, J.; Gupta, R.; Hou, L.; Kurc, T.; Singh, P.; Nguyen, V.; Samaras, D.; Shroyer, K.R.; Zhao, T.; Batiste, R.; et al. Spatial
Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Rep.
2018, 23, 181–193. [CrossRef] [PubMed]

79. Kather, J.N.; Weis, C.-A.; Bianconi, F.; Melchers, S.M.; Schad, L.R.; Gaiser, T.; Marx, A.; Zöllner, F.G. Multi-class texture analysis in
colorectal cancer histology. Sci. Rep. 2016, 6, 27988. [CrossRef] [PubMed]

80. Stadler, C.B.; Lindvall, M.; Lundström, C.; Bodén, A.; Lindman, K.; Rose, J.; Treanor, D.; Blomma, J.; Stacke, K.; Pinchaud, N.; et al.
Proactive Construction of an Annotated Imaging Database for Artificial Intelligence Training. J. Digit. Imaging 2021, 34, 105–115.
[CrossRef] [PubMed]

81. Thomas, S.M.; Lefevre, J.G.; Baxter, G.; Hamilton, N.A. Non-melanoma skin cancer segmentation for histopathology dataset. Data
Brief 2021, 39, 107587. [CrossRef] [PubMed]

82. Varoquaux, G.; Cheplygina, V. Machine learning for medical imaging: Methodological failures and recommendations for the
future. NPJ Digit. Med. 2022, 5, 48. [CrossRef]

83. Choi, W.-S. Problems and alternatives of testing significance using null hypothesis and P-value in food research. Food Sci.
Biotechnol. 2023, 32, 1479–1487. [CrossRef]

84. Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988; ISBN 0805802835.
85. Herbold, S. Autorank: A Python package for automated ranking of classifiers. J. Open Source Softw. 2020, 5, 2173. [CrossRef]
86. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings

of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–8 December 2012; pp.
1097–1105.

87. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

88. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [CrossRef]

89. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [CrossRef]

90. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114.

91. Jaegle, A.; Borgeaud, S.; Alayrac, J.-B.; Doersch, C.; Ionescu, C.; Ding, D.; Koppula, S.; Zoran, D.; Brock, A.; Shelhamer, E.;
et al. Perceiver IO: A General Architecture for Structured Inputs & Outputs. In Proceedings of the International Conference on
Learning Representations, Virtual, 25–29 April 2022.

92. Jaegle, A.; Gimeno, F.; Brock, A.; Zisserman, A.; Vinyals, O.; Carreira, J. Perceiver: General Perception with Iterative Attention. In
Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 4651–4664.

93. Kolesnikov, A.; Dosovitskiy, A.; Weissenborn, D.; Heigold, G.; Uszkoreit, J.; Beyer, L.; Minderer, M.; Dehghani, M.; Houlsby,
N.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 9th
International Conference on Learning Representations (ICLR), Virtual, 3–7 May 2021.

94. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017.

https://doi.org/10.48550/ARXIV.1803.03635
https://doi.org/10.1186/s13104-019-4121-7
https://doi.org/10.1016/j.media.2019.02.012
https://doi.org/10.1093/gigascience/giy065
https://www.ncbi.nlm.nih.gov/pubmed/29860392
https://zenodo.org/records/6604094
https://doi.org/10.3389/fonc.2021.806603
https://www.ncbi.nlm.nih.gov/pubmed/35251953
https://doi.org/10.1016/j.celrep.2018.03.086
https://www.ncbi.nlm.nih.gov/pubmed/29617659
https://doi.org/10.1038/srep27988
https://www.ncbi.nlm.nih.gov/pubmed/27306927
https://doi.org/10.1007/s10278-020-00384-4
https://www.ncbi.nlm.nih.gov/pubmed/33169211
https://doi.org/10.1016/j.dib.2021.107587
https://www.ncbi.nlm.nih.gov/pubmed/34877372
https://doi.org/10.1038/s41746-022-00592-y
https://doi.org/10.1007/s10068-023-01348-4
https://doi.org/10.21105/joss.02173
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.195

Bioengineering 2024, 11, 19 32 of 32

95. Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986.
[CrossRef]

96. Liu, S.; Chen, T.; Chen, X.; Chen, X.; Xiao, Q.; Wu, B.; Kärkkäinen, T.; Pechenizkiy, M.; Mocanu, D.C.; Wang, Z. More ConvNets
in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity. In Proceedings of the The Eleventh International Conference on
Learning Representations, Kigali, Rwanda, 1–5 May 2023.

97. Ding, X.; Zhang, X.; Han, J.; Ding, G. Scaling Up Your Kernels to 31 × 31: Revisiting Large Kernel Design in CNNs. In Proceedings
of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June
2022; pp. 11953–11965. [CrossRef]

98. Chen, Y.; Liu, J.; Zhang, X.; Qi, X.; Jia, J. LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 13488–13498. [CrossRef]

99. Woo, S.; Debnath, S.; Hu, R.; Chen, X.; Liu, Z.; Kweon, I.S.; Xie, S. ConvNeXt V2: Co-designing and Scaling ConvNets with
Masked Autoencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver,
BC, Canada, 17–24 June 2023; pp. 16133–16142. [CrossRef]

100. Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards
texture; increasing shape bias improves accuracy and robustness. In Proceedings of the International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019.

101. PyTorch Foundation. Convnext_Tiny. Available online: https://pytorch.org/vision/main/models/generated/torchvision.
models.convnext_tiny.html (accessed on 23 May 2023).

102. Gupta, A.; Ramanath, R.; Shi, J.; Keerthi, S.S. Adam vs. SGD: Closing the generalization gap on image classification. In
Proceedings of the OPT2021: 13th Annual Workshop on Optimization for Machine Learning, Virtual, 13–14 December 2021.

103. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using
Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, 11–17 October 2021; pp. 9992–10002.

104. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520. [CrossRef]

105. Hendrycks, D.; Gimpel, K. Gaussian Error Linear Units (GELUs). arXiv 2016, arXiv:1606.08415.
106. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
107. Jiang, L.; Yuan, B.; Ma, W.; Wang, Y. JujubeNet: A high-precision lightweight jujube surface defect classification network with an

attention mechanism. Front. Plant Sci. 2023, 13, 1108437. [CrossRef] [PubMed]
108. Li, X.; Grandvalet, Y.; Davoine, F.; Cheng, J.; Cui, Y.; Zhang, H.; Belongie, S.; Tsai, Y.-H.; Yang, M.-H. Transfer learning in computer

vision tasks: Remember where you come from. Image Vis Comput 2020, 93, 103853. [CrossRef]
109. Poehlmann, A.; Villalba, S. TiffSlide—Cloud Native Openslide-Python Replacement; Zenodo: Leverkusen, Germany, 2022.
110. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Red Hoo, NY, USA, 2019; pp. 8024–8035.

111. TensorFlow Developers. TensorFlow; Zenodo: Mountain View, CA, USA, 2023.
112. Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image

Augmentations. Information 2020, 11, 125. [CrossRef]
113. Demšar, J. Baycomp. Available online: https://pypi.org/project/baycomp/ (accessed on 21 September 2023).
114. Kruschke, J.K.; Liddell, T.M. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from

a Bayesian perspective. Psychon. Bull. Rev. 2018, 25, 178–206. [CrossRef]
115. Tuli, S.; Dasgupta, I.; Grant, E.; Griffiths, T.L. Are Convolutional Neural Networks or Transformers more like human vision? In

Proceedings of the 43rd Annual Meeting of the Cognitive Science Society, Vienna, Austria, 26–29 July 2021.
116. Ray, I.; Raipuria, G.; Singhal, N. Rethinking ImageNet Pre-training for Computational Histopathology. In Proceedings of the 2022

44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July
2022; pp. 3059–3062. [CrossRef]

117. Howlader, K.; Liu, L. Transfer Learning Pre-training Dataset and Fine-tuning Effect Analysis on Cancer Histopathology Images.
In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–8
December 2022; pp. 3015–3022. [CrossRef]

118. McBee, P.; Moradinasab, N.; Brown, D.E.; Syed, S. Pre-training Segmentation Models for Histopathology. In Proceedings of the
Medical Imaging with Deep Learning, Short Paper Track, Nashville, TN, USA, 10–12 June 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1109/CVPR52688.2022.01166
https://doi.org/10.1109/CVPR52729.2023.01296
https://doi.org/10.1109/CVPR52729.2023.01548
https://pytorch.org/vision/main/models/generated/torchvision.models.convnext_tiny.html
https://pytorch.org/vision/main/models/generated/torchvision.models.convnext_tiny.html
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.3389/fpls.2022.1108437
https://www.ncbi.nlm.nih.gov/pubmed/36743544
https://doi.org/10.1016/j.imavis.2019.103853
https://doi.org/10.3390/info11020125
https://pypi.org/project/baycomp/
https://doi.org/10.3758/s13423-016-1221-4
https://doi.org/10.1109/EMBC48229.2022.9871687
https://doi.org/10.1109/BIBM55620.2022.9995076

	Introduction
	Research Background
	Transfer Learning
	Task Adaptation Techniques
	Vanilla Fine-Tuning
	Distance Regularization
	Feature Space Regularization
	Layer Routing
	Shared Domains
	Parameter Pruning

	Methodology
	Transfer Learning Techniques
	Experimental Design
	Classification Tasks and Datasets
	Comparison of the Task Adaptation Techniques
	Comparison of Training Dataset Sizes

	Exemplary Image Classification Pipeline
	Image Preprocessing
	CNN Architecture
	Hyperparameters

	Hardware and Software Implementation

	Results
	Comparison of the Task Adaptation Techniques
	Comparison of Training Dataset Size

	Discussion
	Conclusions
	Limitations
	Outlook

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References

