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Abstract: Magnetic resonance (MR) image reconstruction and super-resolution are two prominent
techniques to restore high-quality images from undersampled or low-resolution k-space data to
accelerate MR imaging. Combining undersampled and low-resolution acquisition can further im-
prove the acceleration factor. Existing methods often treat the techniques of image reconstruction
and super-resolution separately or combine them sequentially for image recovery, which can result
in error propagation and suboptimal results. In this work, we propose a novel framework for joint
image reconstruction and super-resolution, aiming to efficiently image recovery and enable fast
imaging. Specifically, we designed a framework with a reconstruction module and a super-resolution
module to formulate multi-task learning. The reconstruction module utilizes a model-based opti-
mization approach, ensuring data fidelity with the acquired k-space data. Moreover, a deep spatial
feature transform is employed to enhance the information transition between the two modules,
facilitating better integration of image reconstruction and super-resolution. Experimental evaluations
on two datasets demonstrate that our proposed method can provide superior performance both
quantitatively and qualitatively.

Keywords: MR imaging; multi-task; image reconstruction; super-resolution; deep learning

1. Introduction

Magnetic resonance imaging (MRI) has been widely used in modern medical diagnosis
as a non-invasive imaging modality. The raw data acquired in MRI are located in k-space;
however, the imaging time for MR examination is relatively long due to the data acquisition
scheme in k-space and the time for signal recovery. Prolonged scan time not only leads to
patient discomfort but also affects the image quality, particularly in high-resolution (HR)
imaging that demands even longer scan time. High-resolution images, due to their rich
anatomical information and textural details, have the potential to significantly enhance the
accuracy of medical diagnosis. Therefore, reducing imaging time and improving image
quality are of paramount importance in MR imaging.

Acquiring less data in k-space is one of the most important ways to accelerate MR
acquisition, and high-quality images can be obtained through image restoration from the
partial k-space data. Generally, there are two mainstream approaches for image restora-
tion: image reconstruction (Rec) and super-resolution (SR). The former aims to recover
artifact-free images from undersampled k-space data, while the latter infers high-resolution
(HR) images from low-resolution (LR) observations. Undersampling in k-space preserves
imaging resolution in the stage of data acquisition; however, it introduces artifacts in
the image due to the violation of the Nyquist sampling theorem. In the case of SR, al-
though data are sampled with the Nyquist sampling ratio, the absence of data fidelity in
the high frequency of k-space is prone to generating fake structures, creating puzzles in the
images. Furthermore, image reconstruction usually takes place in k-space domain [1,2] or
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hybrid domain [3,4], while super-resolution is performed in image domain. To improve
image quality, prior information is employed in both tasks, such as sparse priors [3–5].
Although optimization-based techniques have achieved numerous successes in MR Rec
and SR, there are still some limitations in practice, such as long restoration time, heavy
computational burdens, and challenges in hyper-parameter selection, which mainly include
sparse transformations, regularization parameters, and the number of iterations. Moreover,
the use of simplistic priors restricts the performance of MR restoration in achieving better
image quality.

Recently, deep learning (DL)-based methods have made significant advancements
and demonstrated remarkable improvements in various fields [6–10]. Specifically, DL has
gained popularity in image restoration tasks and has shown great potential in enhancing
image quality. In MR reconstruction, neural networks are employed to eliminate undersam-
pled artifacts in the image domain or utilized as regularization in an iterative algorithm
with end-to-end training [11–27]. For SR, neural networks learn the mapping between
LR and HR image pairs [28–37]. Research in SR focuses on designing advanced network
architectures to enhance the structures of interest and preserve sensitive detail information
in the generated HR images. However, most studies generate LR images by degrading in
the image domain, overlooking the intrinsic properties of MR imaging, where raw data are
acquired in k-space using multi-channel coils.

Although the implementation details are different, both Rec and SR tasks aim to obtain
high-quality images with fine details from partially acquired k-space data. The Rec task
ensures data consistency, while the SR task focuses on generating perceptual structures and
improving the spatial resolution of the image. By leveraging the strengths of both tasks, it
is possible to accelerate MR imaging and achieve higher image quality. Currently, there are
two common approaches for integrating Rec and SR: performing the tasks separately or
combining them sequentially using two separate sub-networks for Rec and SR. However,
these approaches have limitations. Performing the tasks separately can lead to information
loss and error propagation, while sequential approaches overlook the correlations between
the two tasks. In this work, we propose a novel multi-task framework for joint MR Rec
and SR. Instead of the sequential approaches of combining Rec and SR, we introduce
a transmission of features from the Rec task to the SR task. This feature transmission
facilitates the integration of information from both tasks, allowing the SR task to benefit
from the enhanced features obtained during the Rec task. By jointly considering Rec and SR
tasks and incorporating feature transmission, we aim to improve the overall performance
of MR image restoration, resulting in higher image quality and faster MR imaging.

The main contributions of this work are as follows:

• We introduce a novel multi-task framework that integrates the model-based deep
learning reconstruction (Rec) method with the super-resolution (SR) method, resulting
in a reduction of the scan time for MR imaging and an enhancement in image quality.

• The proposed method performs image reconstruction and super-resolution simulta-
neously, demonstrating superior performance compared to various sequential com-
binations of state-of-the-art MR Rec and SR methods, as well as other multi-task
approaches.

• We validate the efficiency of the proposed method on different datasets, including a
2D brain dataset and a 3D T1w brain and neck vessel wall dataset.

2. Related Works
2.1. DL-Based MR Image Reconstruction

DL-based MR reconstruction methods aim to remove artifacts caused by undersam-
pling. In 2016, Wang et al. [11] applied CNN to MR reconstruction, setting a precedent for
DL-based reconstruction. Subsequent studies focused on advanced networks to learn the
mapping between the zero-filled image and the fully sampled one, and combining the imag-
ing model with deep networks. For instance, Zbontar J et al. [12] proposed a Unet-based
network, and Lee et al. [13] proposed a ResNet-based network for MR image reconstruction.



Bioengineering 2023, 10, 1107 3 of 18

The main drawback of the data-driven approach is its lack of interpretability, as it does
not consider the problem from the perspective of the MR imaging model. Model-driven
methods then gained lots of attention in MR image reconstruction [14–27]. Model-based
reconstruction algorithms have inspired network innovations in model-driven methods to
make them more flexible and interpretable [38]. For example, ISTA-Net [15] and its vari-
ants [17] unroll the Iterative Shrinkage Threshold Algorithm (ISTA) to solve the problem of
MR image reconstruction. Aggarwal et al. [16] proposed integrating a CNN-based denoiser
into model-based reconstruction. ADMM-CSNet [18] unrolls the alternating direction
multiplier method (ADMM) [39] for compressed sensing applications. Advanced networks,
such as generative adversarial networks (GAN) [40] and attention mechanisms, are also
employed in MR image reconstruction [14,24–27].

2.2. DL-Based MR Image Super-Resolution

With the success of deep learning in the field of image classification and recognition,
deep learning has also found applications in image SR. The first DL attempt for image SR
was the SRCNN [28], and since then, numerous DL-based SR methods have been proposed.
For instance, Oktay et al. [41] introduced a residual convolutional neural network (CNN)
to recover the resolution of cardiac images. This network handles multiple input data
from different observation perspectives, thereby enhancing its performance. To address the
challenge of partial loss of image details, Shi et al. [42] extended the SRCNN framework
and designed a network that combined multi-scale global residual learning and local
residual learning based on shallow network blocks. Local residual learning is utilized
to recover high-frequency details of images. The lack of high-quality medical image
training samples has been a concern, leading to many SR models suffering from over-fitting
or under-fitting. To mitigate this issue, Zhao et al. [43] proposed the channel splitting
network (CSN) to alleviate the representation burden of deep models. GAN has also been
applied in the field of SR to recover texture details of SR images [29–34]. Building on the
concept of GAN, MedSRGAN [44] was introduced for the SR of medical images, including
MR images, allowing for the generation of more realistic texture details. Additionally,
the architecture of transformer [7] has been applied to image SR [35–37]. Transformer can
effectively capture remote and non-local features that facilitate image SR. In conclusion,
deep learning has significantly advanced the field of image SR, and the incorporation of
various advanced network architectures has contributed to more practical and efficient
solutions in image super-resolution.

3. Methods
3.1. Problem Statement

The multi-coil super-resolution MR forward imaging model can be formed as:

b = PFCx + δ (1)

where b is the acquired undersampled, low-resolution k-space data, x is the MR image
to be recovered, P is the sampling mask that P = MH, M is the binary undersampling
mask, H is the downsampling operator to crop out the high-frequency components of the
k-space domain, F is the Fourier transform, and C is the coil sensitivity map; δ denotes the
measurement error which can be well modeled as noise. Our objective is to reconstruct an
artifact-free SR image x from the given partial k-space data b.

However, Equation (1) is an ill-posed problem making it challenging to directly obtain
the image through operator inversion. With the aid of deep learning, we propose a network
G with parameter θ to learn the best estimate of the inversion process. The network G takes
undersampled, low-resolution MR image xLR as input and generates artifact-free SR image
x and the corresponding fully sampled high-resolution image xGT as ground truth, and the
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loss function L is used to measure the error between x and xGT . Therefore, the training
process of the network can be formulated in the following supervised manner:

θ∗G = arg min
θG

Ex[L(G(xLR; b; M; C; θG), xGT)] (2)

3.2. Overall Architecture

Our proposed network, shown in Figure 1, can simultaneously perform image super-
resolution and MR image reconstruction. The network takes an undersampled, low-
resolution MR image as input, along with the input coil sensitivity map, undersampling
mask, and undersampled k-space, and outputs super-resolution MR images corresponding
to fully sampled, high-resolution images as ground truth. The network comprises two
main components: an SR Module and a Rec Module. The SR Module extracts features from
the undersampled and low-resolution MR image and restores the resolution of the image.
The Rec Module performs the MR image reconstruction process in LR space. Since the
SR Module depends on the output of the Rec Module, we first introduce the Rec Module,
followed by the SR Module, and finally the loss function used to optimize the network.

DC RRDB

SR Module

Shared Reconstruction Feature

Rec Module
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LR image

SR image
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Figure 1. The overall architecture of our proposed network. RRDB: Residual in Residual Dense Block,
SFT: Spatial Feature Transform, DC: Data Consistency.

3.2.1. Rec Module

For the Rec Module, the reconstruction problem can be modeled as solving the follow-
ing minimization problem:

x∗rec = arg min
xrec

1
2
||Axrec − b||22 + R(xrec) (3)

xrec is the LR image to be reconstructed, R(xrec) is the regularization term, b is the k-space
data, and A = MFC is the coding matrix in MRI.

Following the strategy of unrolling, we select the proximal gradient descent (PGD)
algorithm [45] to solve the problem (3), resulting the following iterations:

xk+1
rec = proxR,η(xk

rec − η∇1
2
||Axrec − b||22)

= proxR,η(xk
rec − ηAH(Axrec − b) (4)

where η is a step size and the proximal operator prox with respect to the function R is
defined as follows:

proxR,τ(p) = arg min
p

{
R(t) +

||t− p||22
2τ

)

}
(5)
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The proximal operator proxR,τ(·) is a nonlinear operator that can be replaced by a
trainable network Γ, so the final iterative process is as follows:{

sk = xk
rec − ηAH(Axk

rec − b)
xk+1

rec = Γ(sk)
(6)

We make step size η a trainable parameter and then the iterative process in (6) is
refined into a trainable network, called PGD Net. In PGD Net, the first step involves
data consistency, which enforces data fidelity. For the proximal operation, we employ the
Residual in Residual Dense Block (RRDB) [31], as shown in Figure 2a. To enhance the
stability of the Reconstruction Module, we utilize the deep equilibrium model [46] with
Jacobian-Free back-propagation [47] to ensure the convergence of iterations and reduce the
training memory.

The PGD Net will generate LR reconstructed images after completing the iteration
process. The reconstructed LR image is represented as a reconstruction feature by a
convolutional layer, and finally transmitted to the SR module.
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Figure 2. (a) The architecture of Residual in Residual Dense Block (RRDB). β = 0.2 is a scaling
parameter. (b) The architecture of Dense Block in RRDB. (c) The detailed structure of Spatial Feature
Transform (SFT) layer.
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3.2.2. SR Module

The SR Module comprises two parts: feature extraction and upsampling recombina-
tion. In the feature extraction part, an initial convolutional layer is utilized to represent the
input image as a high-dimensional feature map, facilitating subsequent deep feature extrac-
tion. Following the convolutional layer, 23 SR blocks are connected. These blocks can be
any feature extraction blocks, and in this work, we use the architecture of RRDB. The RRDB
benefits from the combination of residual network [48] and dense connections [49], en-
hancing its ability to extract complex features and patterns in images, thereby improving
the model’s super-resolution capability. In addition, we add two skip connections in each
Dense Block of RRDB to enhance the mobility of the features. To enable the SR Module to
receive the reconstruction features from the Rec Module, we configure the Spatial Feature
Transform (SFT) layer [30] within the RRDB, thus constituting the RRDB-SFT (shown in
Figure 2). The SFT layer performs an affine transformation on the intermediate features,
with the transformation parameters obtained by transforming two convolutional layers
under an additional prior condition. Here, the prior condition is the reconstruction feature
from the Rec Module. To improve efficiency, the reconstruction feature is broadcasted to
all SFT layers, meaning that all SFT layers share the same reconstruction feature. This
approach better guides the SR Module with the assistance of the Rec Module, resulting in a
higher-quality image recovery process.

In the upsampling recombination part, there is an upsampling operation on the low-
resolution feature map obtained earlier, and the upsampling method used here is nearest
neighbor interpolation. The following two convolutional layers are used to suppress the
artifacts caused by the upsampling operation and recombine the feature map to generate
the final SR image.

3.2.3. Loss Function

To reduce the average pixel difference between recovered images x and Ground Truth
xGT , pixel loss is introduced:

LPix
SR = Ex||G(xLR)− xGT ||1 (7)

Perceptual loss [50] can enhance the semantic correlation between recovered images
x and Ground Truth xGT , and it contributes to the generation of more realistic texture
details [29], which is defined as follows:

LPer
SR = Ex||φ(G(xLR))− φ(xGT)||1 (8)

where φ is a pre-trained VGG-19 network [51].
To enhance the contribution of MR image reconstruction, reconstruction loss LRec

LR is
introduced:

LRec
LR = ExRec ||xrec − xGT

LR ||1 (9)

where xrec is the output of PGD Net; xGT
LR is the image obtained by inverse Fourier transform

of the LR k-space without undersampling.
GAN can facilitate the network to generate realistic texture details close to the Ground

Truth image [29]. We use the network G as the generator and VGG-19 network [51] as
the discriminator D, and let them perform adversarial training to improve the realism of
generated SR images. Therefore, the adversarial loss of generator LAdv

SR and the adversarial
loss of discriminator LDis

SR are introduced:

LAdv
SR = −Ex[log D(G(xLR))] (10)

LDis
SR = −Ex[log(1− D(x))]−ExGT [log D(xGT)] (11)
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Therefore, the overall loss function of the generator G is as follows:

LG = LPer
SR + γPixLPix

SR + γRecLRec
LR + γAdvLAdv

SR (12)

where γPix, γRec, γAdv are trade-off parameters of different losses.

3.3. Datasets

Two sets of data were used to evaluate the feasibility of the proposed method. One is
a set of 2D multi-contrast brain data; these contrasts include T1w, T2w, T1 FLAIR and T2
FLAIR. The other is a set of 3D T1w brain and neck vessel wall imaging (VWI) data. The two
datasets were acquired with Cartesian, rectilinear k-space sampling. Informed consent
was obtained from the imaging subjects in compliance with the Institutional Review Board
(IRB) policy.

The fully sampled HR k-space data were acquired, and we simulated to generate
LR undersampled data by cropping and undersampling. The LR-HR paired images were
generated from the corresponding LR-HR k-space data through coil combination with
ESPIRiT map. This process allowed us to obtain LR images and their corresponding HR
counterparts for training and evaluation purposes.

The two datasets are acquired on a 3.0T MR imaging system (uMR790, United Imag-
ing Healthcare, Shanghai, China). The brain dataset contains 1900 fully sampled k-space
slices acquired from 12 subjects. To reduce the computational complexity, we used the
coil compression technique GCC [52] to compress the coils of the original data into 12.
Each k-space slice has dimensions of 12 × 256 × 232 (coils × FE × PE). We used a 1D
2.5x Gaussian undersampling mask and 2x SR scaling factor to generate the undersam-
pled LR brain data. Since cropping in the FE direction cannot accelerate MRI, the final
imaging acceleration is 2 × 2.5 = 5x, and 1600 slices were used for training, 150 for vali-
dation, and 150 for testing. The 3D VWI data contains 1472 fully sampled k-space slices,
which were acquired from four healthy volunteers using T1-weighted MATRIX sequences
with non-selective excitation. The dimension of the k-space slices of the VWI data is
18× 336× 280 (coils× PE× SPE). A 2D 4x Poisson undersampling mask and 2x SR scaling
were used to generate LR data, resulting in a 2 × 2 × 4 = 16x acceleration. In the VWI
dataset, there are 1104, 184, and 184 slices for the training set, validation set, and test set,
respectively. The cropping masks, undersampling masks used to generate the datasets, and
the examples of LR-HR image pairs for both datasets are presented in Figure 3.

undersampled LR 
MR image

fully sampled HR MR image
(Ground Truth)

undersampling mask
in LR k-space

undersampled LR 
MR image

fully sampled HR MR image
(Ground Truth)

undersampling mask
in LR k-space

cropping mask

cropping mask

Figure 3. The cropping masks, undersampling masks in LR k-space and examples of undersampled
LR MR image and fully sampled HR MR image sample from the brain dataset (upper) and the VWI
dataset (lower).
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3.4. Evaluation Metrics

For a fair quantitative comparison, we use Peak Signal-to-Noise Ratio (PSNR), Struc-
ture Similarity Index Measure (SSIM) [53], and Learned Perceptual Image Patch Similarity
(LPIPS) [54] to evaluate the quality of the generated images.

The PSNR is calculated based on the mean square error (MSE) between the generated
image x and the Ground Truth image y. The larger PSNR indicates that the distortion of
the generated image is smaller, and the specific calculation formula is as follows:

MSE =
1

MN

M

∑
i=1

N

∑
j=1

[x(i, j)− y(i, j)]2 (13)

PSNR = 10 log10(
MAX2

MSE
) (14)

where M and N denote the size of the image, and MAX is the maximum possible pixel
value in the image.

The SSIM measures the similarity of the generated image x and the Ground Truth
image y based on brightness, contrast and structure, and a larger SSIM indicates better
quality of the generated image, as calculated by the following formula:

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(15)

where µ and σ represent the mean and variance of the image. σxy represents the mutual
covariance of the two images x and y, and C1 = (0.01MAX)2 and C2 = (0.03MAX)2 are
two constants.

The LPIPS is calculated based on the L2 distance of the generated image x and the
Ground Truth image y in the feature space of a pre-trained network. This metric is more in
accordance with human perception than the above two metrics. The specific calculation
formula is as follows:

LPIPS = ∑
l

1
HlWl

Hl

∑
i=1

Wl

∑
j=1

∥∥∥wl � (x̂l(i, j)− ŷl(i, j))
∥∥∥2

2
(16)

where wl is a channel-wise vector, x̂l and ŷl are the output feature map of the l-th layer of a
pre-trained network, by convention we use AlexNet [6] and Hl and Wl are the size of the
feature maps.

3.5. Training Details

In our work, we used the ADAM optimizer [55] with default parameters β1 = 0.9,
β2 = 0.999 and ε = 1× 10−8 to optimize the parameters of the generator and discriminator.
Both the generator and discriminator were trained with a learning rate of 1× 10−4, and the
learning rates were reduced by half after 50k, 100k, 200k, and 300k iterations. The batch
size for training is 4, and the sizes of the input undersampled LR MR images for the brain
dataset and VWI dataset are 128× 116 and 168× 140, respectively. As for the trade-off
parameters of different losses, to ensure the perceptual quality of the generated super-
resolution images and to highlight the role of MR image reconstruction, we set γRec to
1, γPix to 1× 10−2, and γAdv to 5× 10−3. All the experiments are implemented by the
PyTorch framework on two NVIDIA Tesla V100 GPUs.

4. Experimental Results and Analysis
4.1. Ablation Study

In this subsection, we present the results of ablation experiments conducted to validate
our motivation that integrating Rec into SR can generate images with higher quality.
The quantitative results on the brain and VWI datasets are presented in Tables 1 and 2,
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respectively. In these two tables, the following notations are used: “SR” and “Recon”
represent using only the SR or Rec Module to obtain fully sampled HR images; “Recon-SR”
refers to training reconstruction and SR separately; “Recon+SR” denotes the sequential
combination of reconstruction and SR with end-to-end training. The main difference
between the proposed method and “Recon+SR” is that in our approach, the Rec Module and
SR Module are not simply connected in series, but they are interactively connected using
SFT layers. This interactive connection allows for more effective information exchange
between the two modules, resulting in improved image quality.

Table 1. Quantitative results of ablation study on the brain dataset. The average value and standard
deviation are given for each metric. The figures in bold are the best results.

Metric PSNR SSIM LPIPS

SR 28.88 ± 2.40 0.8462 ± 0.0446 0.0559 ± 0.0155
Recon 30.23 ± 2.43 0.8483 ± 0.0416 0.1429 ± 0.0178

Recon-SR 29.27 ± 2.45 0.8320 ± 0.0479 0.0537 ± 0.0146
Recon+SR 29.40 ± 2.62 0.8625 ± 0.0403 0.0482 ± 0.0117
Proposed 30.32 ± 2.42 0.8682 ± 0.0418 0.0409 ± 0.0111

Table 2. Quantitative results of ablation study on the VWI dataset. The average value and standard
deviation are given for each metric. The figures in bold are the best results.

Metric PSNR SSIM LPIPS

SR 31.93 ± 3.11 0.8657 ± 0.0324 0.0568 ± 0.0114
Recon 32.34 ± 4.60 0.8912 ± 0.0355 0.1089 ± 0.0306

Recon-SR 32.32 ± 3.22 0.8750 ± 0.0264 0.0513 ± 0.0102
Recon+SR 32.72 ± 3.00 0.8856 ± 0.0293 0.0425 ± 0.0074
Proposed 32.91 ± 3.03 0.8948 ± 0.0288 0.0383 ± 0.0062

Comparing the results of the SR scheme and the Recon scheme, it can be observed that
the PSNR and SSIM of the SR scheme are relatively lower, while the LPIPS is significantly
higher than that of the Recon scheme, indicating that the MR images generated by the SR
scheme are closer to the original images in terms of visual perception but hold a higher
level of distortion.

In our attempt to combine super-resolution with MR image reconstruction, we devel-
oped the Recon-SR scheme. However, this scheme performs poorly in terms of PSNR and
SSIM compared to the Recon scheme. In particular, it can be seen that there is a substantial
decrease in SSIM in the brain dataset, indicating that the Recon-SR scheme did not result
in accurate MR images. The reason for this result is that super-resolution and MR image
reconstruction are still two independent processes, and the results of reconstruction in the
LR space produce errors that are amplified by the SR network. These errors cannot be
reduced by optimizing the SR network, and at the same time, the SR network also produces
errors, resulting in the accumulation of errors. As a result, the Recon-SR scheme was not
effective in improving the accuracy of MR image reconstruction and super-resolution.

The Recon+SR scheme performs better than the Recon-SR scheme in all metrics. This
is because the errors generated by the Rec network can be optimized with end-to-end
training, alleviating the problem of error accumulation that occurs when the two processes
are performed independently. Comparing our proposed method with other schemes, our
proposed method performs the best in all metrics, demonstrating that the MR images
generated by our network have precise structural information and texture details, making
the visual perception close to the original image. These results suggest that the interactive
connectivity scheme employed by our network is superior to the scheme that simply
connects the Rec module and the SR module in series and that the scheme that combines
MR image reconstruction with super-resolution is superior to the scheme that uses either
technique alone.
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The qualitative comparisons are shown in Figure 4. It can be seen from the zoomed-in
images that the proposed method can effectively preserve fine details and exhibits the best
consistency with the ground truth. In the case of the only SR task, the restoration tends to
produce fake structures, as indicated by the yellow arrow. Furthermore, visible artifacts
are present in the image generated by the Recon method. Comparing Recon+SR with
Recon-SR, it can be observed that the end-to-end training in Recon+SR yields better results,
indicating that the joint training approach benefits image restoration more than separate
training. The proposed method demonstrates its capability to enhance image quality and
maintain the fidelity of fine details, outperforming the other approaches in the qualitative
evaluation.

ProposedRecon+SR Ground Truth

Recon-SRReconSR

Ground Truth

Figure 4. Zoomed-in view of the ablation experiment. The yellow arrows point to the fake structures
in the images and the red arrows represent the fine details that can be recovered by our proposed
method compared to other methods.

4.2. Comparison Experiment

To comprehensively evaluate the performance of our proposed model, we conducted
a series of comparison experiments on the two datasets. Specifically, we compared our
method with ten other models, which include nine Recon+SR methods and one state-of-
the-art multi-task method called T2Net [56]. For the nine Recon+SR methods, we selected
three reconstruction algorithms (CG-SENSE [57], MoDL [16], and DL-ESPIRiT [20]) and
three super-resolution algorithms (bicubic, MedSRGAN [44], and BebyGAN [34]). These
algorithms were combined sequentially to form the nine comparison methods. To ensure
a fair comparison, each of these methods was carefully optimized to guarantee the best
performance and ensure equitable evaluations.

The quantitative results of different methods on the two datasets are presented in
Tables 3 and 4. These results were obtained on the entire testing dataset. Across both
datasets, our proposed method outperforms all other competing methods. The highest
PSNR values indicate that our method can generate images with the least distortion, while
the highest SSIM values suggest that it retains more global and local structural information.
Moreover, the lowest LPIPS scores indicate that our method achieves the closest visual
perception to the ground truth.
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Table 3. Quantitative results of different models on the brain dataset. The average value and standard
deviation are given for each metric. The figures in bold are the best results. The average computation
time in seconds for all models on the brain dataset is also provided.

Metric PSNR SSIM LPIPS Computation
Time

CG-SENSE+bicubic 22.41 ± 1.90 0.5805 ± 0.0606 0.4425 ± 0.0533 0.0241
CG-SENSE+MedSRGAN 23.04 ± 2.01 0.6038 ± 0.0567 0.1812 ± 0.0396 0.0517

CG-SENSE+BebyGAN 23.33 ± 3.76 0.7151 ± 0.0593 0.1570 ± 0.0354 0.0647
MoDL+bicubic 29.33 ± 2.48 0.8463 ± 0.0397 0.0929 ± 0.0190 0.0659

MoDL+MedSRGAN 29.62 ± 2.47 0.8466 ± 0.0438 0.0467 ± 0.0121 0.0935
MoDL+BebyGAN 29.84 ± 2.64 0.8590 ± 0.0464 0.0476 ± 0.0129 0.1048

DL-ESPIRiT+bicubic 29.44 ± 2.88 0.8538 ± 0.0388 0.0996 ± 0.0240 0.0220
DL-ESPIRiT+MedSRGAN 29.43 ± 2.93 0.8319 ± 0.0488 0.0477 ± 0.0146 0.0486

DL-ESPIRiT+BebyGAN 29.69 ± 3.07 0.8596 ± 0.0455 0.0455 ± 0.0141 0.0591
T2Net 28.05 ± 2.39 0.8236 ± 0.0436 0.0685 ± 0.0174 0.1820

Proposed 30.32 ± 2.42 0.8682 ± 0.0418 0.0409 ± 0.0111 0.0775

Table 4. Quantitative results of different models on the VWI dataset. The average value and standard
deviation are given for each metric. The figures in bold are the best results. The average computation
time in seconds for all models on the VWI dataset is also provided.

Metric PSNR SSIM LPIPS Computation
Time

CG-SENSE+bicubic 26.15 ± 2.95 0.7323 ± 0.1015 0.2952 ± 0.0769 0.0540
CG-SENSE+MedSRGAN 24.71 ± 4.40 0.7616 ± 0.0835 0.1799 ± 0.0416 0.1068

CG-SENSE+BebyGAN 25.31 ± 3.41 0.7886 ± 0.0681 0.1466 ± 0.0366 0.1236
MoDL+bicubic 32.24 ± 3.31 0.8753 ± 0.0284 0.0953 ± 0.0209 0.1375

MoDL+MedSRGAN 32.30 ± 3.03 0.8651 ± 0.0278 0.0448 ± 0.0088 0.1873
MoDL+BebyGAN 32.71 ± 3.46 0.8933 ± 0.0312 0.0481 ± 0.0103 0.2056

DL-ESPIRiT+bicubic 32.49 ± 3.49 0.8727 ± 0.0278 0.0859 ± 0.0192 0.0402
DL-ESPIRiT+MedSRGAN 31.82 ± 4.32 0.8707 ± 0.0307 0.0454 ± 0.0076 0.0902

DL-ESPIRiT+BebyGAN 32.43 ± 3.22 0.8707 ± 0.0260 0.0491 ± 0.0088 0.1073
T2Net 30.75 ± 3.59 0.8322 ± 0.0353 0.0808 ± 0.0191 0.3426

Proposed 32.91 ± 3.03 0.8948 ± 0.0288 0.0383 ± 0.0062 0.1385

For a more intuitive comparison, we provide visual comparisons for each method.
In Figures 5 and 6, we illustrate the axial and sagittal views of the 2D brain dataset,
respectively. In Figures 7 and 8, we display the brain image and neck image of the 3D VWI
dataset. For each method, we show the restorations along with the corresponding error
maps. The images are placed on the left, the error maps on the right, and the PSNR and
LPIPS metrics of each image are shown at the bottom right corner. From the error maps,
it is evident that our proposed method consistently produces high-quality results with
improved visual fidelity and better retention of structural information compared to the
other methods.

Figures 9 and 10 present the zoomed-in images of the enclosed parts in the ground
truth. Our proposed method can faithfully recover the fine structures, as indicated by the
red arrows, and successfully preserve the image contrast, as pointed out by the yellow
arrow. The high-fidelity restoration achieved by our method in these zoomed-in regions
further demonstrates its ability to faithfully recover fine details and enhance image quality.
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CG-SENSE+bicubic CG-SENSE+MedSRGAN
              

CG-SENSE+BebyGAN

MoDL+bicubic MoDL+MedSRGAN MoDL+BebyGAN

DL-ESPIRiT+bicubic DL-ESPIRiT+MedSRGAN DL-ESPIRiT+BebyGAN

T2Net Proposed Ground Truth

20.34/0.5690 21.42/0.2527 22.02/0.2065

28.23/0.051826.33/0.058427.77/0.1103

27.31/0.1268 28.61/0.0502 28.44/0.0521

27.02/0.0801 28.88/0.0460

Figure 5. Visual comparison of each method for a slice of axial view in the brain dataset.

27.02/0.0801

28.88/0.0460

CG-SENSE+bicubic CG-SENSE+MedSRGAN
              

CG-SENSE+BebyGAN

MoDL+bicubic MoDL+MedSRGAN MoDL+BebyGAN

DL-ESPIRiT+bicubic DL-ESPIRiT+MedSRGAN DL-ESPIRiT+BebyGAN

T2Net Proposed Ground Truth

25.59/0.4739

32.54/0.0844 33.39/0.0477

30.47/0.0521 31.78/0.047632.53/0.0989

31.14/0.0870

33.54/0.0539

33.74/0.0453

24.10/0.2129 27.23/0.1498

Figure 6. Visual comparison of each method for a slice of sagittal view in the brain dataset.
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CG-SENSE+bicubic CG-SENSE+MedSRGAN CG-SENSE+BebyGAN

MoDL+bicubic MoDL+MedSRGAN MoDL+BebyGAN

DL-ESPIRiT+bicubic DL-ESPIRiT+MedSRGAN DL-ESPIRiT+BebyGAN

T2Net Proposed Ground Truth

21.98/0.4311 17.97/0.2340 19.70/0.1770

29.11/0.1099 29.60/0.0475 28.75/0.0503

26.41/0.1066 24.02/0.0519 27.97/0.0543

30.41/0.039226.93/0.0970

Figure 7. Visual comparison of each method for a brain image in the VWI dataset.

CG-SENSE+bicubic CG-SENSE+MedSRGAN CG-SENSE+BebyGAN

MoDL+bicubic MoDL+MedSRGAN MoDL+BebyGAN

DL-ESPIRiT+bicubic DL-ESPIRiT+MedSRGAN DL-ESPIRiT+BebyGAN

T2Net Proposed Ground Truth

26.25/0.2712 27.01/0.1410 28.52/0.1040

35.70/0.0638 34.02/0.0378 35.04/0.0357

34.64/0.0671 34.74/0.0351 34.38/0.0384

34.62/0.0570 35.73/0.0301

Figure 8. Visual comparison of each method for a neck image in the VWI dataset.
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CG-SENSE+bicubic CG-SENSE+MedSRGAN CG-SENSE+BebyGAN

MoDL+bicubic MoDL+MedSRGAN MoDL+BebyGAN

DL-ESPIRiT+bicubic DL-ESPIRiT+MedSRGAN DL-ESPIRiT+BebyGAN

T2Net Proposed Ground Truth

Ground Truth

Figure 9. Zoomed-in view of the brain dataset comparison experiment.

CG-SENSE+bicubic CG-SENSE+MedSRGAN CG-SENSE+BebyGAN

MoDL+bicubic MoDL+MedSRGAN MoDL+BebyGAN

DL-ESPIRiT+bicubic DL-ESPIRiT+MedSRGAN DL-ESPIRiT+BebyGAN

T2Net Proposed Ground Truth

Ground Truth

Figure 10. Zoomed-in view of the VWI dataset comparison experiment.

5. Discussion

Although our experimental results have demonstrated the validity of our proposed
model, there are some limitations that should be noted. Firstly, the VWI dataset used in our
study is a 3D dataset, while our model is designed as a 2D model, neglecting the correlation
information between slices. Secondly, all the images used in our experiments are brain or
neck images, and the performance of our model on images of other parts of the human
body remains to be investigated. Finally, while our model has shown promising results in
simulated scenarios, its performance in real medical settings needs to be further explored.

To address these limitations, we plan to develop better models that can leverage
the correlation information between slices in 3D datasets and consider introducing data
from other parts of the human body. Additionally, we aim to validate the effectiveness of
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our proposed methods in clinical settings by testing them on real undersampled LR data
from a diverse range of participants. This will further validate the potential and utility of
our method in medical imaging and contribute to more accurate and efficient MR image
restoration for clinical diagnosis and research.

6. Conclusions

In this paper, we have introduced a novel multi-task framework for joint MR re-
construction and image super-resolution. Our proposed method incorporates two main
modules: the Rec Module responsible for image reconstruction in the LR space and the SR
Module which extracts features in the LR space and recovers the SR image. To enhance
information exchange between the modules, we introduced the SFT layer to transmit
features of the reconstructed image to the SR Module, facilitating super-resolution. The ex-
perimental results conducted on 2D brain data and 3D VWI data have demonstrated
the superior performance of our proposed method in both quantitative and qualitative
evaluations. The comparisons with other state-of-the-art methods have shown that our
approach consistently generates high-quality images with enhanced visual fidelity and
structural information.
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