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Abstract: Deep learning technology has achieved breakthrough research results in the fields of
medical computer vision and image processing. Generative adversarial networks (GANs) have
demonstrated a capacity for image generation and expression ability. This paper proposes a new
method called MWG-UNet (multiple tasking Wasserstein generative adversarial network U-shape
network) as a lung field and heart segmentation model, which takes advantages of the attention
mechanism to enhance the segmentation accuracy of the generator so as to improve the performance.
In particular, the Dice similarity, precision, and F1 score of the proposed method outperform other
models, reaching 95.28%, 96.41%, and 95.90%, respectively, and the specificity surpasses the sub-
optimal models by 0.28%, 0.90%, 0.24%, and 0.90%. However, the value of the IoU is inferior to the
optimal model by 0.69%. The results show the proposed method has considerable ability in lung field
segmentation. Our multi-organ segmentation results for the heart achieve Dice similarity and IoU
values of 71.16% and 74.56%. The segmentation results on lung fields achieve Dice similarity and IoU
values of 85.18% and 81.36%.

Keywords: WGAN; organ segmentation; computer auxiliary diagnosis

1. Introduction

With the improvement in medicine, medical image analysis has become an important
auxiliary diagnosis and treatment method in medical imaging. The anatomical imaging
of organs obtained through medical imaging technologies can objectively reflect tissue
structure and pathological change. Medical image segmentation improves efficiency for
doctors, from positioning and obtaining evidence to guiding treatment. Deep learning
technology has made breakthrough research results in the field of computer vision and
image processing. Its powerful feature learning ability has attracted widespread attention.
The application of artificial intelligence to medical image processing can not only improve
the processing efficiency, but also play an auxiliary role, with doctors subsequently an-
alyzing the condition [1]. As a key branch in medical imaging research, medical image
semantic segmentation tasks have always played a pivotal role in clinical diagnosis [2].
The mainstream method studies the segmentation of the lesion area in the frontal image.
In this paper, we mainly study the segmentation of multi-position medical images.

Artificial intelligence is increasingly popular with the advancement of massive elec-
tronic data and improved technology. In the area of combining artificial intelligence and
medical treatment, multiple auxiliary diagnosis systems based on convolutional neural
networks have become an inevitable trend in developing new medical models [3], such
as the incorporation of positioning, medical image segmentation, and classification. To fa-
cilitate accurate and detailed observations of lesions, machine-learning-based automatic
recognition and segmentation of medical images can enhance processing efficiency and pro-
vide supplementary assistance to doctors to subsequently analyze patients’ conditions [4].
Due to the COVID-19 pandemic, there has been a massive research focus on lung field
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segmentation with chest X-ray or computed tomography (CT) images for auxiliary diag-
nosis. The CT images show clearer edges without overlapping organs compared to chest
X-ray images. Chest X-ray images are low contrast and have blurred borders for organ
segmentation, but chest X-ray images are in common use in hospitals because of their
low price and quick image generation. There is a great need to process large amounts of
information, which can be achieved through automatic segmentation. The combination of
lung field and heart segmentation improves the efficiency, showing the relative positions
of the organs and sizes of the lung fields and heart at the same time. The positions of the
lung fields and heart also provides information on the potential risk of the heart and lung
fields. On the one hand, lung fields and heart segmentation identifies the relative position
and sizes of the lung fields and heart to clarify the illness. On the other hand, automatic
segmentation improves the speed of doctors’ ability to deal with diseases. The automatic
segmentation of chest X-ray images has improved the image review quality and the speed
of disease diagnosis. Our interest is in helping patients to detect potential risk with chest
X-ray images and improving the speed of doctors’ diagnoses. For these reasons, this paper
focus on lung field and heart segmentation with chest X-ray images.

Medical image segmentation is a critical task in the field of medical imaging. It in-
volves the identification and delineation of specific structures or regions of interest within
medical images captured using techniques such as magnetic resonance imaging (MRI),
CT, or ultrasound scans. The purpose of segmentation is to extract accurate boundaries or
contours of anatomical structures, tumors, lesions, or other areas of clinical significance. Ac-
curate segmentation plays a crucial role in various medical applications, including disease
diagnosis, treatment planning, surgical guidance, and monitoring of disease progression. It
allows clinicians to analyze and quantify specific regions, measure volumes, track changes
over time, and assist in making informed decisions for patient care. However, medical im-
age segmentation is a challenging task due to several factors. Firstly, medical images often
exhibit low contrast, noise, and variations in intensity, making it difficult to distinguish
between different structures or tissues. Additionally, the shapes and sizes of anatomical
structures can vary significantly across patients and even within the same patient, further
complicating the segmentation process. To address these challenges, various segmentation
techniques have been developed, ranging from traditional methods to more advanced
deep learning approaches. Traditional techniques include threshold, region-based meth-
ods, active contour models, and graph cuts. These methods rely on image characteristics,
statistical information, or prior knowledge to delineate structures.

GANs are capable of generating synthetic data that closely resemble real data, making
them useful in various applications such as image synthesis, video generation, and text
generation. GANs can learn from unlabeled data, which eliminates the need for manually
labeled training examples. This makes GANs flexible and adaptable to a wide range
of domains and datasets. In novel data creation, GANs have the potential to generate
entirely new and unseen data samples. This can be valuable for creative tasks, generating
unique artwork or exploring uncharted areas of data distribution. GANs can be used
to augment existing datasets to increase their size and diversity. This helps improve the
generalization and performance of machine learning models trained on limited data. GANs
can be employed for domain adaptation, where they learn to generate data from a source
domain to match the statistics of a target domain. This facilitates transferring knowledge
learned from one domain to another.

GAN training can be challenging and unstable at times. It involves a delicate balance
between the generator and discriminator networks and finding this equilibrium can be
difficult. GANs may suffer from issues like mode collapse, where the generator fails to
explore the entire data space, or vanishing gradients. GANs are prone to skipping modes
or failing to capture the complete data distribution. This means that certain aspects or
modes of the data may not be adequately represented by the generated samples. Assessing
the quality of GAN-generated samples objectively is still an open research problem. While
subjective evaluation by human observers is often used, developing reliable quantitative
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metrics for GAN evaluation remains a challenge. Training GANs can be computation-
ally demanding and time consuming, requiring powerful hardware resources like GPUs
(graphics processing units) and extensive training iterations to achieve desirable results.
The realistic nature of GAN-generated data raises ethical concerns about potential misuse,
such as deep-fake technology or generating deceptive content. Ensuring the responsible
use of GANs is an ongoing area of concern and research.

In recent years, deep learning approaches, particularly convolutional neural networks
(CNNs), have shown remarkable success in medical image segmentation. CNN-based
architectures, such as U-Net, SegNet, and DeepLab, have demonstrated high accuracy and
efficiency in segmenting diverse medical structures with minimal manual intervention.
These models can learn hierarchical features directly from the images and capture com-
plex patterns for accurate segmentation. Supervised classifier learning is also employed.
Refs. [5,6] introduced the concept of generative adversarial networks, with impressive
results on image-generation-quality benchmarks. This approach involves the interplay
between a generator and a discriminator, enabling comprehensive training of the discrim-
inator to achieve autonomous segmentation [7]. Furthermore, deep learning techniques
incorporating multi-modal fusion are extensively employed in medical imaging for accu-
rate medical image segmentation [8]. In the book Intelligent Data Analysis for Biomedical
Application [9], the authors [10] utilized machine learning to successfully classify myocardial
ischemia using delayed contrast enhancement techniques of magnetic resonance imaging.
Additionally, addressing the domain shift problem, a new unsupervised domain adap-
tive framework called the collaborative image and feature adaptive algorithm (SIFA) [11]
was proposed and found to be effective. In another study, Ref. [12] directly extracted
features from the frequency data of vibration signals and evaluated the performance of
feature learning from the original data, and spectrum and time–frequency combined data.
This approach successfully applied deep learning in feature extraction for machine-based
diagnosis. Furthermore, Ref. [13] introduced a graph convolution method that utilized
multi-resolution pools to capture local and contextual features. Their method enabled the
learning of spatially related features in irregular domains within a multi-resolution space.
A graph-based convolution method employing product neural networks was proposed for
position and direction classification, resulting in improved pose parameter estimation and
segmentation performance. Another innovative approach, presented by [14], is the multi-
receiving domain CNN (MRFNet) method. MRFNet employs an encoder–decoder module
(EDM) with sub-net, providing optimal receiving fields for each sub-net and generating
context information at the functional map level. MRFNet exhibits exceptional performance
across all three medical image datasets.

Edge accuracy is often a key aspect and challenge in segmentation [15]. One proposal
suggests utilizing a parameter model with correlation probability density to describe the
integration method in the largest posterior form [16]. In 2019, Hiroki Tsud introduced
a method that utilizes generative adversarial networks (GANs) with multiple functions
for cell image segmentation [17]. This method demonstrates improved segmentation
accuracy compared to the traditional pix2pix approach [18]. The field of medical imaging
technology generates vast amounts of data. To address this, a heterogeneous framework
for multi-core learning based on support vector machines (SVMs) was proposed by [19].
They investigated the flexibility of this method in comparison to using SVMs and other
classifiers to process single features which can enhance the learning ability of the Math
Kernel Library (MKL) algorithm. Additionally, Nilanjan Dey proposed several medical
applications based on meta-heuristics for segmentation [20]. CT images are commonly
employed not only for analyzing X-ray films but also for examining the internal structure of
the heart, necessitating segmentation of the heart region itself [21,22]. Due to the complexity
and significance of large blood vessels attached around the atria and ventricles, a team led
by Lohendran Baskaran devised a method for multi-organ segmentation from coronary
computed tomography angiography images [23].
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In contrast, Olivier Ecabert presented a model that encompasses four heart chambers
and interconnected large blood vessels [24]. Avi Ben-cohen introduced a method utilizing a
fully convolutional network (FCN) with global context and local plaque level analysis based
on super-pixel sparse classification for the detection of liver metastases [25]. Addressing
the complementary nature of salient edge and object information, Ref. [26] proposed an
edge navigation network that employs a three-step approach to simultaneously incorporate
and model these two complementary pieces of information within a single network. The ex-
perimental results demonstrate improved performance, particularly in scenarios involving
rough object boundaries. Additionally, Ref. [27] proposed a multi-layer densely connected
super-resolution 3D network with training guided by generative adversarial networks
(GANs). This approach enables fast training and reasoning that outperforms other popular
deep learning methods by achieving four times higher image resolution restoration while
running six times faster. Furthermore, a novel system has been developed that utilizes CT
scans to generate positron emission tomography (PET) virtual images. This system offers
the potential for cardiac sarcoidosis evaluation [28]. Ref. [29] proposed multiple tasks deep
learning model for detection of peripherally inserted central catheter (PICC) which aids
in accurate identification and placement of catheters for medical procedures. Zhongrong
Wang proposed pixel-wise weighting-based fully convolutional neural networks for left
ventricle segmentation in short-axis MRI [30]. LF-SegNet [31] is a fully convolutional
encoder-decoder network designed for lung fields segmentayion from chest radiographs
images which assists in automated analysis and diagnosis of respiratory conditions for
enabling more efficient medical interventions.

While significant progress has been made in organ segmentation using deep learning
methods, there are still several gaps and challenges that exist. The availability of large-scale
annotated datasets for organ segmentation is limited. Creating accurate and comprehensive
annotations requires significant time and expertise, leading to a scarcity of labeled data.
This constraint hinders the development and evaluation of robust models. The organs can
exhibit significant variations in shape, size, and appearance across individuals and even
within the same individual due to factors such as pathology or imaging artifacts. Existing
algorithms often struggle to handle this variability, leading to sub-optimal segmentation
results. Certain organs may have indistinct boundaries or overlap with neighboring struc-
tures, making their precise delineation challenging. Algorithms need to effectively handle
these ambiguous cases and accurately differentiate organ boundaries from surrounding
tissues. Deep learning methods primarily rely on data-driven learning without explicitly
incorporating prior anatomical knowledge. Integrating prior knowledge, such as anatom-
ical atlases or spatial constraints, into the segmentation process could improve accuracy
and consistency.

The major contributions of this paper are outlined as follows.

• A designed U-Net with an SE block called AR-UNet, which takes advantages of the
attention mechanism to enhance the segmentation accuracy of the generator so as to
improve the performance.

• By applying the AR-UNet as the generator of the MWG-UNet structure, the proposed
model can both promote accurate lung field segmentation and enhance the stability in
model training.

• The proposed MWG-UNet is comprehensively evaluated on the JRST and Shenzhen
Hospital datasets and achieves the optimal performance for most evaluation metrics
except IoU.

The remainder of this paper is organized as follows. Section 2 introduces the proposed
method in detail. Section 3 presents the experimental results. Section 4 presents a discussion
of our method and others. In Section 5, conclusions are drawn.

2. Materials and Methods

The methodology includes three parts: the flaws of GANs, Wasserstein GAN, and
the improvement of WGAN. The flaws of GANs introduces the shortcomings of GANs
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from the perspective of mathematical principles. Wasserstein GAN introduces the working
principles of WGAN and the improvement compared with GAN. The improvement of
WGAN introduces the improvements that have been made based on WGAN.

2.1. GANs

Generative adversarial networks (GANs) are generative models and their training
is in the form of a confrontational game. Equation (1) is the objective loss function of
the confrontation.

V(D, G) = Ex∼Pr [logD(x)] +Ez ∼ Pg[log(1− D(G(z)))] (1)

where Pr is the true sample distribution, and Pg is the sample distribution of the generator.

D(x) =
Pr(x)

Pr(x) + Pg(x)
(2)

Equation (2) represents the simplified optimal discriminator. It is derived by setting
the derivative of Equation (1) to 0 and expresses the loss function that captures the relative
proportion of the true distribution and the probability of generating the distribution.

One challenge with GAN training is the need to avoid over-training the discriminator.
If the discriminator becomes too proficient, it hampers the reduction in the generator’s loss
function during the experimental phase. Another issue encountered in GANs is the limited
diversity of the generated samples. In scenarios where the true sample distribution and the
generator’s sample distribution exist as low-dimensional manifolds within a high-dimensional
space, the probability of their overlap being negligible approaches 1. Consequently, regardless
of how dissimilar they are, the JS divergence remains constant, resulting in the generator’s
gradient approaching (approximately) 0 and effectively disappearing.

In summary, GANs encounter challenges related to the discriminator’s proficiency
and the lack of diversity in generated outputs. Mitigating these challenges is crucial to
achieving better performance and diversity in GAN-based architecture. The Wasserstein
distance is defined as follows:

KL(Pg‖Pr) = 2JS(Pr‖Pg) (3)

There are two significant issues with this equivalent minimization objective. Firstly,
it aims to minimize the KL divergence between the true distribution and the generator’s
distribution, while simultaneously maximizing the JS divergence between them. This
approach is flawed, since the Kullback–Leibler (KL) divergence is not a symmetrical
measure, leading to intuitive absurdity and numerical gradient instability.

Furthermore, the generator tends to prioritize generating repetitive and safe sam-
ples over diverse samples, exacerbating the challenges within GAN frameworks. These
fundamental problems can be attributed to the unreasonable nature of the equivalent
optimization distance metric and the generator’s loss function, which result in unstable
gradients and imbalanced penalties between diversity and accuracy.

To address the latter concern, a proposed solution involves introducing noise to
both the generated and real samples. Intuitively, this noise “diffuses” the original low-
dimensional manifolds into the entire high-dimensional space, compelling them to have a
noticeable overlap. Once an overlap exists, enabling the presence of a gradient, the JS diver-
gence can effectively operate. Notably, as the two distributions become closer, the diffusion
of overlap reduces the JS divergence. However, despite these improvements the quest for a
quantitative indicator to measure training progress remains unresolved.

2.2. Wasserstein GAN

The Wasserstein distance, introduced in WGAN, addresses the problem of gradient
disappearance in theory. Unlike KL divergence and JS divergence, which exhibit abrupt
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changes and can only be the largest or smallest values, the Wasserstein distance maintains
smoothness. When researchers aim to optimize parameters using the gradient descent
method, KL and JS divergences fail to provide gradients altogether, while the Wasserstein
distance remains capable of providing a gradient.

Similarly, in a high-dimensional space, if two distributions lack overlap or have a
negligible overlap, KL and JS divergences cannot accurately represent the distance or
offer gradients. In contrast, the Wasserstein distance can provide meaningful gradients in
such scenarios. The key advantage of the Wasserstein distance over KL divergence and JS
divergence is its ability to reflect the distance between two distributions even when there is
no overlap.

By utilizing the Wasserstein distance instead of JS divergence, stable training and
progress indicators can be simultaneously achieved. The Wasserstein distance is defined
as follows:

W(Pr, Pg) = in fr∈∏(Pr ,Pg)E(x,y)∼r[‖x− y‖] (4)

Formula (4) represents the marginal distribution of each distribution for the true
sample distribution and the sample distribution of the generator. For each possible joint
distribution γ, the expected value of the distance of the sample under the joint distribution γ

can be calculated. The Wasserstein distance cannot be drawn directly and the loss function
becomes the following formula:

W(Pr, Pg) =
1
K

sup‖ f ‖L
(5)

When the Lipschitz continuity condition limits the maximum local variation in a con-
tinuous function, a parameter can be constructed. When the last layer of the discriminator
network is not a non-linear activation layer, the loss function will approximate the distance
between the true distribution and the generated distribution. Due to the excellent nature of
the Wasserstein distance, there will be no problem with the disappearance of the generator
gradient. The loss functions of the generator and discriminator are as follows:

minLD(Pr+ε, Pg+ε) = −Ex∼Pr+ε [logDx(x)]−Ex∼Pg+ε [log(1− Dx(x))] (6)

According to Equation (6), the smaller the value the better the training. After the improve-
ment of WGAN, there are several improvements compared to the original GAN algorithm:

• The sigmoid function is not applicable in the discriminator. GAN’s discriminator
performs a two-classification task of true and false. The discriminator in WGAN
approximates the Wasserstein distance. So there is no need for the sigmoid function.

• The loss of the generator and discriminator does not take the log function.
• It limits all parameters of the neural network to no more than a certain range.
• It completely solves the problem of GAN training instability; there is no longer a need

to carefully balance the training level of the generator and the discriminator.
• During training there is a value like cross-entropy to indicate the progress of the training.

2.3. The Overall Framework of MWG-UNet

The basic framework of our proposed method, called MWG-UNet, is shown in Figure 1.
The architecture of MWG-UNet contains a discriminator for distinguishing real and fake
data and a generator for making the distribution of generated samples close to the real
data. In the generator of MWG-UNet, we use an improved U-Net called ARU-Net, with a
squeeze and excitation (SE) block. The generator is responsible for creating synthetic data
samples and attempting to generate realistic outputs that can deceive the discriminator.
The discriminator is tasked with distinguishing between the real and fake data samples
produced by the generator. The results of the generator and the real data are input into
the discriminator to distinguish the real data from the fake data to finally realize accurate
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segmentation. The parameter from the discriminator updates the generator to improve the
performance of the generator.

Figure 1. Structure of MWG-UNet.

Figure 2 shows the details of the designed AR-UNet as the generator of MWG-UNet.
AR-UNet is U-Net transformed with an SE block and residual connection. The structure of
AR-UNet comprises an encoder and decoder. The encoder captures the high-level features
of an input image and reduces its spatial dimensions, while the decoder recovers the spatial
information and generates a segmentation mask by upsampling the encoded features
to match the original input resolution. For every step of downsampling, we take 3 × 3
convolution layers to extract the features and the SE block for boosting the discriminated
power of each channel, improving both the accuracy and efficiency in various computer
vision tasks. After that, we use a 2 × 2 max pooling operation to extract high-dimensional
features. On the contrary, for upsampling we use a 2 × 2 upsampling operation to enlarge
the feature image. Then, we use the same method as every step of downsampling before
max pooling for image processing. There are four steps for the upsampling operation
and downsampling operation. In order to map the feature, we use a 1 × 1 convolution
layer at the last layers. The skip connection enables the direct flow of low-level spatial
information from the encoder to the decoder for facilitating precise localization and fine-
grained details in the output and helps mitigate the problem of information loss during max
pooling, improving the overall segmentation accuracy of U-Net. For the sake of improving
the efficacy in medical image segmentation to obtain spatial features, we take non-linear
addition at the final step with a 1 × 1 convolution layer for the output.

The discriminator of MWG-UNet is shown in Figure 3. In every step of the discrimina-
tor, after every two convolutions, the downsampling operator is implemented. After four
steps of the max pooling operation, the final output is given by the fully connected layer.
Through a series of convolutional or fully connected layers, the discriminator learns to dis-
cern subtle patterns and features. The discriminator guides the generator’s learning process
by providing feedback on how well it can deceive the discriminator. In this study, a simple
discriminator is used for accurate segmentation and saving unnecessary computation.

Unstable training is a common issue with GANs. Although WGAN has made signifi-
cant strides in achieving stability, there are instances where it generates poor samples or
struggles to converge. The introduction of Wasserstein GAN shifts the measurement of
probability distributions in GANs from f-divergence to Wasserstein distance, resulting in
improved stability during training and generally higher-quality generated outputs. How-
ever, WGAN relies on a weight clipping strategy to enforce the Lipschitz constraint on the
critic, which can lead to undesired behavior during the training process. To address this
limitation, this paper proposes a different truncation pruning strategy known as gradient
penalty. This strategy penalizes the gradient’s norm with respect to the critic’s input. By in-
corporating gradient penalty, the training of WGAN becomes more stable, and the quality
of the the generated images improves.
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Figure 2. The architecture of AR-UNet.

Figure 3. The discriminator of MWG-UNet.

In the realm of medical image segmentation, U-Net and transformed U-Net are com-
monly used methods. Our approach aims to enhance the performance and robustness
by combining the concepts of U-Net and adversarial networks. The paper introduces the
addition of Gaussian noise to the generated images and utilizes batch normalization in
the discriminator to achieve higher-quality generated results with improved stability. We
use the structure of Wasserstein GAN for the adversarial network. In the generator, we
use the UNet structure for feature extraction. UNet, as the generator, has an encoding
path for context and extracting features and a decoding path for upsampling to recover the
spatial information lost during the encoding phase. The combination of WGAN and UNet
improves the performance on lung segmentation with regards to the Jaccard similarity and
Dice similarity metrics. Details on the value of the combination are shown in Section 4.

This paper proposes a new architecture called the multi-tasking Wasserstein generative
adversarial network U-shape network (MWG-UNet). Multi-tasking refers to the ability of a
system or an individual to perform multiple tasks simultaneously or in rapid succession.
The goal of multi-task learning is to improve the generalization and performance on each
individual task by jointly optimizing the model’s parameters across multiple tasks. In the
context of computer systems and artificial intelligence, multi-tasking refers to the capability
of a program or a model to handle and execute multiple tasks concurrently. For chest
X-ray medical images, multi-tasking improves the efficiency of diagnosis with the relative
positions and the shapes of the heart and lung fields. The combination of WGAN and UNet
improves the performance of lung segmentation with regards to Jaccard similarity and
Dice similarity.

3. Results

The Results and Discussion address two areas: image pre-processing and segmenta-
tion results. They introduce the results of using different generative adversarial networks.
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The training of the methods is conducted on a Linux system version 18.04, GPU environ-
ment, cuda10.2, cudnn7.6.5, and Python environment 3.8.

3.1. Data Pre-Processing

The original image for transformation and organs segmentation in Figure 4. The
Japanese Society of Radiological Technology (JSRT) [32] is a public dataset of chest X-ray
images with accurate annotation for lung fields and heart masks. JSRT encompasses
154 nodule and 93 non-nodule 12-bit gray-scale images with high resolution 2048 × 2048.
As we know, machine learning needs massive amounts of data to optimize the model and
avoid overfitting. The medical images used in the experiment are provided by Shenzhen
No.3 Hospital in Shenzhen [33]: 340 normal X-ray images and 275 abnormal X-ray images.
The total number of original images is 862. We use geometric transformations and rotation
for data augmentation to increase the data to avoid gradient explosion. In this paper,
the adaptive histogram equalization (CLAHE) operation is used for image enhancement.
Data augmentation is a common method used in image processing for medical image
segmentation and classification because public datasets with accurate annotation are com-
monly small, which can cause overfitting. Common data augmentation techniques can
be divided into basic image manipulation and deep learning approaches. The heart part
and the lung part of all pictures are marked by the doctor. All algorithms use 70% as the
training sample and 30% as the test sample and all images are converted to 512× 512 pixels
PNG format.

Figure 4. Chest X-ray images. (a) The original chest X-ray medical image. (b) The figure is
transformed with rotation.

3.2. Evaluation Metrics

As a binary question for organ segmentation, five measures are displayed, including
Dice similarity, IoU, recall, precision, and F1 score. Equations (7)–(11) show their mathe-
matical formulae. These metrics are based on the true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) classification results. In image segmentation,
Dice similarity, also known as the Dice coefficient, has commonly been used as a metric
to quantify the similarity or overlap between two sets or binary masks. The IoU, also
called the Jaccard similarity, reflects the similarity of the segmentation with deep learning
and the ground truth, which is the most intuitive indicator to compare the performance
with other methods. The Dice similarity, also known as the Dice coefficient, is a statistical
measure used to quantify the similarity or overlap between two sets or binary masks. It
calculates the ratio of twice the intersection of the sets to the sum of their sizes, providing
a value between 0 and 1, where 1 indicates perfect overlap and 0 indicates no overlap.
It is commonly used in image segmentation tasks to evaluate the accuracy of predicted
segmentation masks by comparing them with ground truth masks. Higher Dice similarity
scores indicate better agreement between the predicted and ground truth masks. Recall,
also known as sensitivity or true positive rate, measures the proportion of actual posi-
tive instances correctly identified by the model. Precision represents the proportion of
predicted positive instances that are actually true positives. The F1 score is the harmonic
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mean of recall and precision, providing a balanced measure that considers both metrics.
The equations of these five metrics are presented below.

Dice = 2 ∗ TP/(FP + FN + 2 ∗ TP)

= 2 ∗ (true ∗ pred_score)/[true ∗ true + pred_score ∗ pred_score]
(7)

IoU = (TP)/(TP + FP + FN) (8)

Recall = TP/(TP + FN) (9)

Precision = TP/(TP + FP) (10)

F1score = 2 ∗ TP/[(TP + FN) + (TP + FP)] = 2 ∗ (ture ∗ pre)/(true + pred) (11)

The subdivision indices of the results generated after the image segmentation are
shown in Table 1. This table compares the results of five metrics obtained by different
networks of improvised lightweight deep CNNs [34], UNet++ and HardNet [35], UNet
and EfficientNet [36], AlexNet and ResNet [37], GAN, and WGAN and MWG-UNet.
The results of other models are directly cited from the corresponding literature. The values
without citation are trained by our machine. According to the results, it is found that the
proposed MWG-UNet achieves the best results in terms of Dice, precision, and F1 score
compared with other algorithms. In particular, the Dice similarity, precision, and F1 score
of the proposed method outperform other models, reaching 95.28%, 96.41%, and 95.90%,
respectively, and the specificity surpasses the sub-optimal models by 0.28%, 0.90%, 0.24%,
and 0.90%. However, the value of IoU is inferior to the optimal model by 0.69%. In the
image segmentation, the value of Dice demonstrates the average performance and the
value of IoU tends to measure the worst performance. Our results are not as good as the
optimal model for some difficult cases, which indicates that the model’s generalization
ability needs to be improved.

However, single-organ segmentation demonstrates less information for diagnosis.
This paper also expands on a new area for lung field and heart segmentation to improve the
efficiency of diagnosis. The relative positions of the heart and lung fields can demonstrate
some heart or lung disease. The segmentation of heart and lung fields intuitively displays
the sizes and positions, allowing direct diagnosis of related diseases. Our lung field and
heart segmentation results achieve Dice similarity and IoU values of 71.16% and 74.56%.
The segmentation result of lung fields achieve Dice similarity and IoU values of 85.18% and
81.36%. Figure 5 shows the original medical images and a comparison of the ground truth
and transformed images for the heart and lung fields. Column (a) shows the original chest
X-ray images. Column (b) demonstrates the ground truth for the chest X-ray images with
the segmentation of the heart and lung fields. A comparison with column (c) and column (d)
demonstrates an increase in smoothness and clarity. However, the accuracy for each organ
in the lung field and heart segmentation has decreased much more than in single-organ
segmentation. Figure 5 shows examples of partial segmentation results. Figure 5a shows
different non-processed and pre-processed medical images for organ segmentation for the
heart and lungs. Figure 5b shows the ground truth of heart and lung segmentation with
multiple colors for different parts of organs. The blue part is the left lung. The green part is
the right lung of the lung field. The red part shows the heart segmentation. Figure 5c shows
the segmentation with WGAN. Figure 5c is the segmentation result using our method,
MWG-UNet. Comparing columns (c) and (d), the result of the segmentation in column (d)
is slightly better than column (c).
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Table 1. Segmentation results of different methods for lung fields.

Method Dice IoU Recall Precision F1 Score

Improvised
lightweight
deep CNN

90.64% 86.53% / / /

UNet++ and
HardNet 95% 93% 96.5% 94% 95%

UNet and
EfficientNet 95% 90% / 94% /

AlexNet and
ResNet 93.56% 88.07% / / /

GAN 89.16% 86.75% 90.9% 80.69% 85.49%
WGAN 92.23% 89.96% 91.95% 88.93% 90.41%

MWG-UNet 95.28% 92.31% 97.40% 94.24% 95.79 %

Figure 5. (a) The chest X-ray images and segmentation results. (b) Ground truth for chest
X-ray images. (c) Segmentation result using WGAN. (d) Segmentation result using our improved
method, MWG-UNet.

4. Discussion

In the era of big data, artificial intelligence is touching all fields, including medical
image processing. Deep learning methods for automatic organ segmentation improve the
efficiency of diagnosis. However, organ segmentation presents challenges due to irregular
shapes, occlusions, image artifacts, and the limited availability of annotated data. Devel-
oping robust and efficient algorithms capable of handling these challenges is crucial for
enhancing clinical decision making and improving patient care outcomes. Several deep
learning methods have been developed for organ segmentation in medical imaging. U-Net
is a popular architecture known for its encoder–decoder structure and skip connections,
enabling precise localization. Mask R-CNN combines object detection with instance seg-
mentation, providing accurate organ delineation. FCN utilizes fully convolutional layers to
generate pixel-wise predictions. V-Net extends U-Net with 3D convolutions, suitable for
volumetric data segmentation. DenseNet employs dense connectivity patterns to enhance
feature reuse and gradient flow. Attention-based models like DeepLab utilize spatial atten-
tion mechanisms to focus on relevant regions. These methods leverage the power of deep
neural networks in capturing intricate patterns and have shown promising results in organ
segmentation tasks.

In this paper, we proposed a new method, called MWG-UNet, for medical image
segmentation. The proposed method uses the designed AR-UNet as the generator and
several convolutional and fully connected layers as the discriminator. AR-UNet combines
the U-Net architecture for semantic segmentation with an SE block that captures channel-
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wise dependencies. The SE block re-calibrates feature maps, enhancing the discriminative
power. This integration improves both localization accuracy and feature representation in
U-Net, making it more effective for organ segmentation tasks. MWG-UNet with U-Net
combines the WGAN framework for stable training of GANs with the AR-UNet architecture
for semantic segmentation. This integration enables the generation of realistic and high-
quality segmentation masks by leveraging the benefits of both an improved loss function
and the ability to capture spatial information and preserve fine details.

The training data used were from JSRT and Shenzhen Hospital, with 862 images. The
medical images from Shenzhen No.3 Hospital in Shenzhen provide 340 normal X-ray images
and 275 abnormal X-ray images. JSRT encompasses 154 nodule and 93 non-nodule 12-bit
gray-scale images with high resolution 2048 × 2048. To handle the limited dataset, we use
geometric transformations and rotation as data augmentation to increase the data to avoid
gradient explosion. The evaluation metrics are Dice similarity, IoU, recall, precision, and F1
score. As mentioned above, our results for the Dice similarity, precision, and F1 score of the
proposed method outperform other models, reaching 95.28%, 96.41%, and 95.90% and the
specificity surpasses the sub-optimal models by 0.28%, 0.90%, 0.24%, and 0.90%. The result of
the IoU is slightly lower than the optimal method. The IoU demonstrates a worse performance
in training. In further research, improving the ability of generalization is an important step to
upgrade our algorithm. Our lung field and heart segmentation results have Dice similarity
and IoU values of 71.16% and 74.56% for the heart segmentation. The segmentation results of
the lung fields have Dice similarity and IoU values of 85.18% and 81.36%.

Based on the above discussion, it is shown that the proposed MWG-UNet is a lung
field and heart segmentation model which takes advantage of the attention mechanism
to enhance the segmentation accuracy of the generator so as to improve the performance.
Although the proposed method presents sub-optimal results on the IoU value, there is still
space for further improvement. Firstly, our novel method uses WGAN and AR-UNet for
lung segmentation in chest X-ray images and outperforms other methods. Secondly, we
proposed an improved U-Net with an SE block which is responsible for creating synthetic
data samples and attempting to generate realistic outputs. Lastly, we use multiple task
learning for multiple-organ segmentation to improve the efficiency of diagnosis with the
relative positions and sizes of the organs.

5. Conclusions

Medical image segmentation is a critical task in the field of medical imaging. In this pa-
per, we focus on overcoming the difficulties of traditional generative adversarial networks,
such as a vanishing gradient and the diversity of generators. Wasserstein GAN was intro-
duced to address the instability of GAN training and the diversity of generated samples. We
conduct an in-depth mathematical analysis to highlight the disparities between the mathe-
matical foundation and the practical training of Wasserstein GAN. The article proposes a
method, MWG-UNet, for lung field segmentation with chest X-ray images. This method
was applied to a public dataset of lung and heart segmented X-ray images. The results for
Dice similarity, precision, and F1 score of the proposed method outperform other models,
reaching 95.28%, 96.41%, and 95.90%, and the specificity surpasses the sub-optimal models
by 0.28%, 0.90%, 0.24%, and 0.90%. The result of the IoU is slightly lower than the optimal
method. Meanwhile, the paper explores the frontiers for lung field and heart segmentation
with X-ray images. Although the accuracy is lower than for single-organ segmentation,
the relative positions of the heart and lung fields provide various information for disease
diagnosis. The lung and heart segmentation results achieve Dice similarity and IoU values
of 71.16% and 74.56% for the heart segmentation. The segmentation result of the lung fields
achieve Dice similarity and IoU values of 85.18% and 81.36%. In future work, we will focus
on increasing the accuracy of the lung field and heart segmentation results and on speeding
up the training and testing.
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PICC peripherally inserted central catheter
SIFA Synergistic image and feature alignment
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