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Abstract: Photoacoustic (PA) imaging can be used to monitor high-intensity focused ultrasound
(HIFU) therapies because ablation changes the optical absorption spectrum of the tissue, and this
change can be detected with PA imaging. Multi-wavelength photoacoustic (MWPA) imaging makes
this change easier to detect by repeating PA imaging at multiple optical wavelengths and sampling
the optical absorption spectrum more thoroughly. Real-time pixel-wise classification in MWPA
imaging can assist clinicians in monitoring HIFU lesion formation and will be a crucial milestone
towards full HIFU therapy automation based on artificial intelligence. In this paper, we present a
deep-learning-based approach to segment HIFU lesions in MWPA images. Ex vivo bovine tissue is
ablated with HIFU and imaged via MWPA imaging. The acquired MWPA images are then used to
train and test a convolutional neural network (CNN) for lesion segmentation. Traditional machine
learning algorithms are also trained and tested to compare with the CNN, and the results show that
the performance of the CNN significantly exceeds traditional machine learning algorithms. Feature
selection is conducted to reduce the number of wavelengths to facilitate real-time implementation
while retaining good segmentation performance. This study demonstrates the feasibility and high
performance of the deep-learning-based lesion segmentation method in MWPA imaging to monitor
HIFU lesion formation and the potential to implement this method in real time.

Keywords: multi-wavelength photoacoustic imaging; high-intensity focused ultrasound therapy;
lesion segmentation; deep learning; machine learning; convolutional neural network

1. Introduction

High-intensity focused ultrasound (HIFU) is a minimally invasive technique for in
situ tissue destruction [1]. In HIFU ablation, ultrasound (US) waves are focused at a target
within the human body to deliver and deposit acoustic energy, causing tissue destruction
through thermal and mechanical effects [2]. The thermal effect causes a local temperature
rise that leads to irreversible cell death through coagulative necrosis. The mechanical
effect, also called cavitation, causes irreversible damage by mechanically disrupting cell
membrane permeability and altering the structure of cells [3]. In the past several decades,
HIFU has been clinically used to treat bone, breast, kidney, liver, pancreas, and prostate
cancer [4–9]; uterine fibroids [10]; and cardiac arrhythmias [11–13]. To ensure safe and
precise ablation, a reliable imaging modality is needed to guide and monitor the HIFU
therapy [14]. Two imaging modalities, magnetic resonance imaging (MRI) and US imaging,
are currently used for HIFU monitoring [15].

MRI has been used to monitor HIFU for breast fibroadenoma and uterine
fibroids [16,17]. It provides superior depiction of anatomic detail and superb real-time
thermometry [14,18]. Therefore, it allows precise spatial assessment of the tissue and is
the only imaging technique in clinical practice that provides quantitative temperature

Bioengineering 2023, 10, 1060. https://doi.org/10.3390/bioengineering10091060 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10091060
https://doi.org/10.3390/bioengineering10091060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0003-4381-455X
https://orcid.org/0000-0002-8865-5444
https://orcid.org/0000-0001-5752-468X
https://orcid.org/0000-0001-8616-6877
https://doi.org/10.3390/bioengineering10091060
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10091060?type=check_update&version=1


Bioengineering 2023, 10, 1060 2 of 20

measurements [19]. However, MRI is limited by its high cost and relatively low frame
rate [20,21]. Compared with US-based imaging modalities, MRI equipment is bulkier and
less compatible with HIFU therapies.

While MRI mainly monitors the thermal effect caused by HIFU, US imaging focuses
more on the mechanical effect, which produces a hyperechoic spot at the focal point of
the HIFU transducer [22]. This real-time and low-cost imaging modality can be easily
integrated into an HIFU system [23] and has been used to monitor HIFU therapies for
prostate cancer [24], breast fibroadenoma [25], and uterine fibroids [26,27]. However,
the biological and physical mechanisms of the hyperechoic depiction in US images are
not yet fully understood [28], which makes US imaging less reliable for HIFU monitoring.
Furthermore, US imaging has relatively low-imaging contrast, sensitivity, and specificity
for non-invasive detection [29]. Although US imaging can also provide thermometry by
measuring local changes in speed of sound, its sensitivity and accuracy of thermometry
are relatively low becuase of the complex physical nature of acoustic tissue properties and
mechanisms of cavitation [3].

Since both thermal and mechanical effects fade gradually after the cessation of HIFU
exposure, an imaging modality that focuses on monitoring the permanent tissue property
change caused by HIFU could greatly supplement or even replace MRI and US imaging.
Photoacoustic (PA) imaging is a hybrid imaging modality that combines the contrast of
optical absorption with the resolution and penetration depth of US imaging [30–33]. This
imaging modality can be used to monitor HIFU therapies because HIFU induces changes
in the optical absorption spectrum of the ablated tissue [34]. However, these changes
could be too subtle to be observed because the optical absorption spectrum does not
change very significantly at some arbitrarily chosen wavelength [35]. Multi-wavelength
photoacoustic (MWPA) imaging generates a multi-channel PA image with each channel
corresponding to a specific wavelength. This makes it easier to detect the changes in
optical absorption spectrum since changes in tissue absorption can be observed at multiple
wavelengths. An initial study on the potential of MWPA imaging in revealing HIFU-
induced tissue denaturation was reported in 2013 [36], followed by a study in 2014 [34]
that demonstrated the feasibility of MWPA imaging in detecting HIFU-induced thermal
lesions. In 2018, Iskander-Rizk et al. proposed a lesion detection algorithm based on
dual-wavelength PA imaging [37]. These studies demonstrated the feasibility of detecting
HIFU lesions with MWPA imaging. However, none of these studies provided an approach
to segment the lesions in MWPA images. A correlation-based approach to segment HIFU
lesions was reported in 2016 [38]. In this approach, each pixel was classified based on its
Pearson correlation values with the ablated and non-ablated reference spectra, respectively.
The ablated reference spectrum is obtained by averaging pixel values inside a region of
interest (ROI), which is selected based on the PA image contrast. However, this mean
value is not a comprehensive representation of the averaged pixels, especially when their
variance is not small. The non-ablated reference spectrum is obtained by normalizing the
known extinction spectrum for deoxyhemoglobin (Hb). However, the actual non-ablated
reference spectra could be different. This approach does not extract “deeper” features that
could be more effective in pixel classification than the Pearson correlation values.

Semantic segmentation is a task of simultaneous object recognition and pixel-wise clas-
sification [39]. The past eight years have witnessed the rapid development of convolutional
neural network (CNN) as a novel approach for semantic segmentation [40–45]. Compared
with the per-pixel classification approaches that process each pixel independently, CNN
captures the 2D textural features in the MWPA images in addition to the optical absorption
spectrum. It therefore has potentially better performance in lesion segmentation. In this
paper, we propose a CNN-based approach for HIFU lesion segmentation in MWPA images.
HIFU is applied on ex vivo bovine tissue to create HIFU lesions. The bovine tissue is then
imaged with MWPA imaging. The acquired MWPA images are processed with a CNN to
segment the HIFU lesions. To evaluate the performance of this approach more comprehen-
sively, traditional machine learning algorithms including quadratic discriminant analysis
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(also called quadratic classifier) [46], fully connected neural network [47], support vector
machine [48], and random forest [49] are also trained and tested, and the performance
is compared with that of the CNN. Feature selection is performed to reduce the number
of wavelengths to facilitate real-time implementation while keeping an acceptable perfor-
mance. The target application for this approach is catheter-based cardiac ablation with a
capacitive micromachined ultrasonic transducer (CMUT) array that can be used for both
imaging and ablation [50], where the lesion depth is up to 8 mm, which is comparable to
the depth of radiofrequency ablation [51]. The experiment for MWPA data acquisition and
the preprocessing of MWPA images are described in detail in Section 2. The CNN-based
approach and the traditional machine learning algorithms are also introduced in Section 2,
followed by a comparison of their performances and an analysis in Section 3. Section 4
discusses the advantages and disadvantages of the presented approach and the potential to
operate it in real time.

2. Materials and Methods
2.1. Data Acquisition and Image Preprocessing
2.1.1. Experimental Setup

A programmable imaging system (Vantage 64 LE, Verasonics Inc., Kirkland, WA, USA),
a personal computer (PC) (Precision T7910, Dell Inc., Round Rock, TX, USA), a linear US
transducer array (L7-4, Philips, Bothell, WA, USA), an HIFU transducer (5-MHz, 19-mm
circular aperture, 15-mm focal distance, Precision Acoustics Ltd., Dorchester, Dorset, UK),
and a programmable laser system (Phocus Mobile, Opotek Inc., Carlsbad, CA, USA) with a
customized dual-output laser fiber were used in the experiment (Figure 1). The laser system
worked in internal flashlamp and external Q-switch mode to ensure stable synchronization
between laser firing and PA data acquisition. The flashlamp trigger output provided the
primary clock signal that drove the system. In each iteration, the imaging system passively
waited until the rising edge of the flashlamp trigger output was detected and then waited
another 235 µs (the flashlamp to Q-switch delay value unique to the laser system for the
desired power level). After that, the imaging system sent a trigger signal to the Q-switch
trigger input port of the laser so that it fired and started acquiring PA data simultaneously.
The laser system was programmed to scan the wavelengths from 690 nm to 950 nm with a
step size of 5 nm. Because the imaging system had 64 parallel receive channels with a 2:1
multiplexing capability to receive from the 128 elements of the linear array, the laser must
fire twice at each wavelength to acquire the data needed to reconstruct a complete frame
(Figure 1). In order to increase the signal-to-noise ratio (SNR), 100 frames of PA data were
acquired and averaged at each wavelength. A summary of the experimental conditions can
be found in Table 1.

Bovine 

tissue

Imaging probe

Laser system

Flashlamp 

trigger out

Q-switch 

trigger in

Imaging 

system

Trigger in

Trigger out

PC

Pause until 

flashlamp trigger out 

signal is received

Wait for 235 µs

Send a trigger 

signal to Q-switch 

trigger in and 

acquire PA data

690 nm 690 nm 695 nm 695 nm 950 nm950 nm. . .

Figure 1. Experimental setup for multi-wavelength photoacoustic characterization of HIFU-
induced lesions.
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Table 1. Experimental Conditions.

Linear array:
Center frequency 5.2 MHz
Number of elements 128
Size (azimuth) 38 mm

Imaging system:
Sampling rate 62.5 MS/s
Number of receive channels 64
Multiplexing capability 2:1
Number of acquisitions for average 100

Laser system:
Pulse width 5 ns
Repetition rate 20 Hz *
Imaging wavelength 690 nm to 950 nm
Scanning step size 5 nm
Number of wavelengths 53
Maximum pulse energy 14.74 mJ (715 nm) **
Minimum pulse energy 7.93 mJ (950 nm) **

Dual-output fiber:
Aperture (per branch) 0.25 mm × 40 mm

* This value refers to the repetition rate of the laser. The ideal single-wavelength photoacoustic data acquisi-
tion rate of the system is 20 firing/second ÷ 2 firing/frame = 10 frames per second. Its actual value turned
out to be approximately 7 frames per second due to the overhead associated with the file I/O operations.
** The energy values were measured at the output of the dual-output fiber.

2.1.2. Experimental Procedure

Ex vivo bovine tissue (sirloin) was cut into blocks (approximately 4.0 cm × 3.0 cm × 2.5 cm)
as imaging specimens. The tissue block was then placed in a water bath on top of an agar
backdrop at room temperature for imaging. Placing the sample on this agar block eliminates
possible image artifacts due to possible reflections from the back side or light absorption in
the background. The system performed the first round of MWPA and US data acquisition
(Figure 2). Next, HIFU was applied with the HIFU transducer to create a lesion on the
block approximately 5 mm left of the block’s centerline, and the system performed the
second round of data acquisition; after that, one more lesion was created on the block
at approximately its center position, and the system performed the third round of data
acquisition; finally, a third lesion was created on the block approximately 5 mm right of
the block’s centerline, and the system performed the fourth round of data acquisition.
A 3D-printed holder held the linear array, dual-output laser fiber, and the HIFU transducer
to keep their relative geometric positions fixed and to ensure that the created lesions were
always on the imaging plane. The holder was attached to a linear stage (PRO165, Aerotech
Inc., Pittsburgh, PA, USA) to allow for accurate component movement (Figure 2). With this
data acquisition procedure, 4 frames of 53-wavelength MWPA and US data were acquired
from each block of tissue, and they contained 0, 1, 2, and 3 HIFU lesions, respectively. This
procedure was repeated on 19 samples, resulting in 4 × 19 = 76 MWPA images.

2.1.3. Multi-Wavelength Photoacoustic Image Preprocessing

MWPA and US images were reconstructed from the acquired data with the standard
delay-and-sum algorithm [52]. The image-related parameters can be found in Table 2. Each
MWPA image is a 512 × 339 × 53 array, and the value of each pixel is a 53-element vector.
Each element in the vector represents the PA signal intensity at the corresponding location
and wavelength. For example, the 5th element in the pixel at location (1, 1) represents
the intensity of PA signal at the top left corner of the image acquired at wavelength
690 + (5 − 1) × 5 = 710 nm. Likewise, each US image is a 512 × 339 array and the value of
each US image pixel is a single value representing the reflected US signal intensity at the
corresponding location.
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Linear stage

HIFU 
transducer

Imaging 
probe

Dual-output 
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3D-printed 
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Figure 2. Imaging components held by the 3D-printed holder attached to the linear stage.

Table 2. Imaging Parameters.

Imaging frequency 5.2 MHz
Distance between pixels 73.92 µm ( 1

4 wavelength)
Size of the image view 3.78 (width) cm × 2.5 (height) cm
Number of pixels 512 (width) × 339 (height)

The ablated tissue was cut open after the data acquisition process was finished,
and then color photographs of the cross-sections of the ablated tissue were taken. By visu-
ally matching the features in the color photographs and the US images and leveraging the
co-registration of the US and MWPA images, ablated and non-ablated pixels were manu-
ally labeled to generate training and test examples for the learning algorithms (Figure 3).
The red pixels were labeled as ablated and the green pixels were labeled as non-ablated.
The other pixels were not labeled because their status was uncertain. This uncertainty was
caused by uncontrollable randomness in the ablation depth, inevitable deformation when
cutting the tissue blocks, and difficulty in perfectly overlapping the cut plane with the
imaging plane as well as co-registering US images with the color photographs by visual
inspection. The uncertainty along the lateral direction was less significant because the
lateral position of the HIFU transducer with its tight lateral focus (0.25 mm) was accurately
controlled by the linear stage, which was also why the unlabeled gap area had smaller
thickness in the lateral direction than the axial direction.
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(a)

(b)

(c)

Lesion 1
Lesion 2

Lesion 3

Photoacoustic image at 715 nm Ultrasound image

Photoacoustic image at 715 nm Ultrasound image

dB

(d) (e)

Figure 3. (a) Photoacoustic and ultrasound images of the bovine tissue with three lesions created.
(b) Color photograph of the cross-section of the bovine tissue after ablation. (c) Manual labeling on top
of the photoacoustic and ultrasound images. (d) Manual labeling on top of the color photograph of the
cross-section of the bovine tissue. (e) Co-registration of the photograph of the bovine tissue with the ultra-
sound image (video: https://drive.google.com/file/d/16MRtYhNZHpTM5PQdD1bMAnRmhPvVT0
Do/view?usp=share_link, accessed on 30 December 2022). The colorbar is valid for (a,c,e).

The amplitude of PA pressure waves p0(r, T, λ) can be calculated with the following
formula [30,38]:

p0(r, T, λ) = Γ(T)µabs(r, λ)Φ(r, λ) (1)

where Γ(T) is the Grüneisen coefficient at temperature T, and µabs(r, λ) and Φ(r, λ) are
the optical absorption coefficient of the tissue and the optical fluence at location r and
wavelength λ, respectively.

Assuming the imaging system is linear [21], the pixel value v(r, T, λ) in the MWPA
image can be written as a function of the PA pressure:

v(r, T, λ) = E(r)p0(r, T, λ) + N (2)

https://drive.google.com/file/d/16MRtYhNZHpTM5PQdD1bMAnRmhPvVT0Do/view?usp=share_link
https://drive.google.com/file/d/16MRtYhNZHpTM5PQdD1bMAnRmhPvVT0Do/view?usp=share_link
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where E(r) is a constant that depends on the PA imaging system and is a function of the
location r. N is the system noise.

The optical fluence Φ(r, λ) can be calculated as [35]:

Φ(r, λ) = F(λ)γ(r, λ) (3)

where F(λ) is the optical fluence of the laser at wavelength λ measured at the output of the
dual-output laser fiber and γ(r, λ) is the percentage of laser fluence at wavelength λ that
can reach location r.

Combing Equations (1)–(3):

v(r, T, λ) = E(r)Γ(T)µabs(r, λ)F(λ)γ(r, λ) + N (4)

Assuming that the system noise N is negligible and by normalizing the pixel value
v(r, T, λ) to the laser fluence F(λ):

v(r, T, λ) = E(r)Γ(T)µabs(r, λ)γ(r, λ) (5)

PA imaging was performed at 53 wavelengths (λi, i = 1, 2, ..., 53) in the experiment
(Table 1) and each MWPA pixel is a 53-element vector. Assuming that the maximum
element of the pixel at r is at wavelength λmax and by normalizing each element to this
maximum element:

vnorm(r, T, λi) =
µabs(r, λi)γ(r, λi)

µabs(r, λmax)γ(r, λmax)
(6)

Equation (6) shows that the normalization converts the MWPA image pixel into the
optical absorption spectrum which is first weighted with the optical transmission efficiency
γ(r, λ) and then normalized to the peak value, eliminating the positional dependence
introduced by the imaging system, the wavelength dependence introduced by the laser
fluence, and the temperature dependence introduced by the Grüneisen coefficient. If one
assumes that the optical transmission efficiency at a shallow depth and relatively narrow
range of wavelengths has a weak dependence on the wavelength, Equation (6) reduces to a
normalized absorption spectrum for a given pixel.

Based on Equations (5) and (6), we came up with our preprocessing steps for each
MWPA images. First, we normalized each pixel to the laser fluence, which was measured
with an energy meter (201235B, Gentec-EO, Quebec City, QC, Canada). Second, we normal-
ized each pixel by its maximum element. The preprocessed MWPA images were fed into
the segmentation algorithms introduced in the next section.

2.2. Lesion Segmentation

The MWPA images acquired from the 19 blocks of bovine tissue were used as training
and test examples for the learning algorithms. In total, 15 were used as training examples
and 4 as test examples.

2.2.1. Lesion Segmentation with Traditional Machine Learning Algorithms

A total of four machine learning algorithms including quadratic discriminant analysis
(QDA), neural network (NN), support vector machine (SVM), and random forest (RF) were
used for lesion segmentation. Scikit-learn [53] was used to implement these algorithms.

Each pixel in the MWPA image was processed independently. Since the ablated
portion was always smaller than the non-ablated portion in each MWPA image, there was
an imbalance between the numbers of ablated and non-ablated pixels. Machine learning
algorithms tend to produce unsatisfactory classifiers when faced with imbalanced datasets.
Therefore, the non-ablated pixels were under-sampled to make the training examples
balanced. For each MWPA image, all the ablated pixels were used as positive training
and test examples, and an equal number of non-ablated pixels were selected randomly as
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negative examples. This approach eliminated the imbalance between positive and negative
examples in the training data set.

Neural network, support vector machine, and random forest involved some parame-
ters that needed to be customized. To find the optimal parameter value, the training set
(15 blocks) was divided into two groups, one group (group A, 12 blocks) for training and the
other group (group B, 3 blocks) for validation. Tentative models with different parameters
were trained on group A and tested on group B to calculate the model’s F1 score [54],
and the optimal model parameters were selected. F1 score, a commonly used metric to eval-
uate the performance of a classifier, is the harmonic mean of recall and precision. Assuming
that in the segmentation result on a MWPA image, TP (true positive) pixels are labeled as
ablated and classified as ablated, TN (true negative) pixels are labeled as non-ablated and
classified as non-ablated, FP (false positive) pixels are labeled as non-ablated and classified
as ablated, and FN pixels are labeled as ablated and classified as non-ablated, recall and
precision are defined as:

recall =
TP

TP + FN
(7)

precision =
TP

TP + FP
(8)

The F1 score is calculated as:

F1 =
2 · recall · precision
recall + precision

(9)

The F1 score of a segmentation algorithm is the average value of the algorithm’s F1
scores on the MWPA images used as test examples.

The neural network contained three layers: an input layer, a hidden layer, and an
output layer. Neural networks with different numbers of hidden layer nodes were trained
on group A and tested on group B to check how the F1 score would change as the number
of hidden layer nodes increased. Based on the F1 score vs. number of hidden layer nodes
curve (Figure 4a), the number of hidden layer nodes was set to 53 because increasing
this number further did not increase the F1 score significantly and would consume more
resources and increase the run time.

The support vector machine used the default radial basis function kernel. Models with
different values for the penalty term C [55] were trained on group A and tested on group
B to check how the F1 score would change as term C increased. Based on the F1 score vs.
log2(C) curve (Figure 4b), C was set to 16 because the F1 score was close to its maximum
value and increasing C further resulted in significantly longer run time.

Random forest classifiers with different numbers of trees were trained on group A and
tested on group B to check how the F1 score would change as the number of trees increased.
Based on the F1 score vs. number of trees curve (Figure 4c), the number of trees was set
to 50 because the F1 score was close to its maximum value and increasing the number of
trees further would consume more resources and increase the run time. Then, the num-
ber of trees was fixed, and random forest classifiers with different “minimum number of
samples in each leaf node” (min_samples_leaf [53]) were trained on group A and tested
on group B. The F1 score decreased (by approximately 5%) as the min_samples_leaf value
increased from 100 to 5000 (Figure 4d), and so does the maximum tree depth (by approxi-
mately 20) (Figure 4e). In order to prevent overfitting while retaining good performance,
the min_samples_leaf value was set to 1000.

2.2.2. Lesion Segmentation with Convolutional Neural Network

The CNN was composed of 6 layers (Figure 5). Layers 1-3 were composed of a
convolutional layer followed by rectified linear unit (ReLU) activation [56] and a max-
pooling layer. In the convolutional layer, the 53-channel input image was convolved with a
53-channel 3 × 3 convolution kernel (Table 3) to generate a single-channel output of the
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same size as the input (Figure 6). This operation was repeated with 53 different kernels
to generate a 53-channel output, and then ReLU activation function was applied to each
pixel in the output. In the max-pooling layer, a 2 × 2 window slided over each channel
with a step size of 2 in each dimension (Table 3), and the maximum value in the window
was selected as the value in the output of the max-pooling layer. With such an operation,
each max-pooling layer halved the image size without changing the number of channels.

(a) (b)

(c) (d) (e)

Figure 4. (a) F1 score vs. number of nodes in the hidden layer of the neural network. (b) F1 score vs.
log2(C) in the support vector machine. (c) F1 score vs. number of trees in the random forest. (d) F1
score vs. minimum number of samples per leaf node in the random forest. (e) Maximum tree depth
vs. minimum number of samples per leaf node in the random forest.
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Figure 5. Architecture of the convolutional neural network. The size of each image is described as
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Figure 6. Convolutional layer in layer 1–3.
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Table 3. Convolutional Neural Network Parameters.

Layer 1–3:
Convolution kernel size 3 × 3
Convolution stride 1 × 1
Activation function relu
Max-pooling kernel size 2 × 2
Max-pooling stride 2 × 2

Layer 4–5:
Convolution kernel size 1 × 1
Convolution stride 1 × 1
Activation function relu

Layers 4 and 5 did not contain max-pooling layers and their convolution kernel size
was 1 × 1 (Table 3), so layers 4 and 5 were equivalent to a pixel-wise fully connected neural
network. 53 convolution kernels were used in the convolutional layer in layer 4 and 2 were
used in layer 5 to generate a 2-channel output. Layer 6 was a bilinear upsampling layer that
interpolated the 2-channel output from layer 5 to the same size as the input MWPA image.
Each channel in the output of layer 6 was a map of scores that reflected how likely each
pixel was to belong to the class that the channel corresponded to. The argmax function was
applied to the output of layer 6 to generate the final segmentation result. The CNN was
implemented with TensorFlow [57].

The CNN was trained by minimizing a loss function. The loss function calculated a
weighted average cross entropy between the output of the network and the human labeling.
For non-ablated pixels, the weight was 1. For ablated pixels, the weight was the ratio of
the number of non-ablated to ablated pixels. For unlabeled pixels, the weight was 0. This
strategy helped minimize the impact of the imbalance between ablated and non-ablated
pixels. An Adam optimizer [58] was used for training the CNN for 200 epochs.

Data augmentation was used to generate more training examples for the CNN because
it required significantly more training examples than traditional machine learning algo-
rithms. Each image was blurred with a 3 × 3, 5 × 5, and 7 × 7 window and also corrupted
with 2 versions of random Gaussian noise (Figure 7). Additionally, the image was flipped
upside down, left to right, and rotated by 180◦. In this way, the number of examples was
multiplied by 24, resulting in 15 blocks × 4 frames/block × 24 = 1440 MWPA images
for training.

(a) (b) (c) (d) (e)

dB

Figure 7. An example for data augmentation on a photoacoustic image: (a) Original image. (b) Image
corrupted with Gaussian noise. (c) Image blurred with a 3 × 3 window. (d) Image blurred with a
5 × 5 window. (e) Image blurred with a 7 × 7 window.

2.2.3. Wavelength Selection

Scanning 53 wavelengths with a 20-Hz repetition-rate laser system would result
in a frame rate smaller than 0.5 frames per second (FPS), even when system channels
could address all transducer elements concurrently and no signal averaging is employed.
To facilitate real-time implementation, wavelength selection was conducted to reduce the
number of wavelengths that were needed to segment HIFU lesions in MWPA images.
The built-in sequential feature selection function in MATLAB (The MathWorks, Inc., Natick,
MA, USA) [59] was used for wavelength selection. The ablated and non-ablated pixel
data were shuffled and divided into two groups: one for training (90%) and the other
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for testing (10%). The algorithm started with an empty wavelength set. In each iteration,
the algorithm added each one of the unselected wavelengths to the wavelength set, fit
the training data to a quadratic classifier, and calculated its error rate on the test data.
The algorithm then selected the wavelength that produced the minimum error rate, added
it to the wavelength set, and stepped into the next iteration. This process continued
until the error rate stopped decreasing. The quadratic classifier was chosen for this step
because it was simple and trained quickly. Since the wavelength selection algorithm took a
greedy approach, the earlier-selected wavelengths were more “important”. The learning
algorithms were trained and tested with the first 5, 4, 3, and 2 most important wavelengths
to evaluate the performance as the number of wavelengths decreased. The inference time
(time needed for an algorithm to produce the segmentation result for one MWPA image)
of each algorithm for a single frame was also measured for each wavelength count on a
PC (Precision T5610, Dell Inc., Round Rock, TX, USA) with two 16-core central processing
units (CPU) (Intel Xeon processor E5-2650 v2 @ 2.6 GHz, Intel Corporation, Santa Clara,
CA, USA).

3. Results
3.1. Lesion Segmentation with All Wavelengths

The test results show that all the learning algorithms are able to capture the major part
of the lesion (Figure 8). The results of the traditional machine learning algorithms appear
significantly noisier than the CNN. The F1 score of each algorithm is calculated for the test
examples (row 1, Table 4). The F1 scores of traditional machine learning algorithms are
mostly around 90%. The F1 score of the CNN is close to 100%, which means that it achieves
almost 100% precision and recall. The test results of the CNN on the four MWPA images
from the same block of bovine tissue clearly show the process of lesions being laterally
extended after each application of HIFU (Figures 9 and 10). The lesion boundaries were
generated with the same method as in [35].
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Figure 8. Segmentation results (with 53 wavelengths) superimposed on the ultrasound image for a
training (row one) and test (row two) example that contains 3 lesions. Each column except the last
one corresponds to a specific learning algorithm (from left to right: quadratic discriminant analysis
(QDA), neural network (NN), support vector machine (SVM), random forest (RF), and convolutional
neural network (CNN)), the last column shows the manual labeling for training and measuring the
segmentation performance.

Table 4. F1 Score (%) for Machine Learning Algorithms.

Number of Wavelengths QDA NN SVM RF CNN

53 91.34 92.62 92.65 89.93 99.63
5 84.77 85.42 85.51 85.13 96.26
4 84.64 84.68 84.76 84.67 94.05
3 82.71 82.77 83.08 82.60 96.60
2 78.45 78.16 78.74 78.18 92.79
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Figure 9. Segmentation results (with 53 wavelengths) of the convolutional neural network superim-
posed on the ultrasound image showing lesion formation for a training example (row two). Each
column corresponds to a different number of lesions formed (from left to right: 0, 1, 2, 3). Row one
shows the manual labeling for training.
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Figure 10. Segmentation results (with 53 wavelengths) of the convolutional neural network superim-
posed on the ultrasound image showing lesion formation for a test example (row two). Each column
corresponds to a different number of lesions formed (from left to right: 0, 1, 2, 3). Row one shows the
manual labeling for measuring the segmentation performance.

3.2. Lesion Segmentation with Reduced Wavelengths

The sequential feature selection algorithm selected 46 wavelengths, which include
every wavelength except 695, 700, 705, 755, 765, 800 and 915 nm. As the number of
wavelengths increased from 1 to 46, the error rate went down from 27.36% to 14.69%
(Figure 11). To examine how the wavelengths selected by the automated feature selection
algorithm relate to the PA spectra of the ablated and non-ablated pixels, we calculated
an average normalized spectrum for both types of pixels. To do this, we first normalized
the measured PA spectrum by the laser energy spectrum for each class of pixels that were
manually labeled. Then the spectrum for each pixel was normalized to its own maximum
resulting in a normalized representation of optical absorption for each pixel. The spectra
for ablated and non-ablated pixels were then averaged (Figure 12a). The ratio of the
spectra was used to depict in what range the spectra of the ablated and non-ablated pixels
differ most significantly (Figure 12b). The five most “important” wavelengths in lesion
segmentation reported by the feature selection algorithm are 780, 775, 785, 790, and 720 nm
(sorted from most to least important). At these wavelengths, we observe that the ratio of
the average normalized ablated pixel value to the average normalized non-ablated pixel
value is at or close to the maximum. We chose the PA images at these wavelengths for our
reduced-wavelength MWPA images for lesion segmentation. These MWPA images were
preprocessed the same way as the 53-wavelength MWPA images before being processed by
the segmentation algorithms.
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Figure 11. Error rate vs. number of wavelengths in feature selection.
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Figure 12. (a) The average normalized ablated and non-ablated pixel value as a function of wave-
length. (b) The ratio of average normalized ablated to average normalized non-ablated pixel value
as a function of wavelength. Positions of the five vertical lines (five most “important” wavelengths)
from left to right: 720, 775, 780, 785, and 790 nm.

With 5 wavelengths instead of 53, the segmentation results of all the traditional
machine learning algorithms are noisier (Figure 13). The noise level of the results from the
CNN is not apparently higher, but the shape of its lesion segmentation appears less natural.
The F1 scores of all the learning algorithms decreased (row 2, Table 4). The F1 scores of the
traditional machine learning algorithms decreased by between 4.80% and 7.20% while the
F1 scores of the CNN decreased by less than 3.40% (row 1, Table 5). With 5 wavelengths,
the test results of the CNN on the four MWPA images from the same block of bovine tissue
still clearly show the process of lesions being laterally extended after each application of
HIFU (Figures 14 and 15).



Bioengineering 2023, 10, 1060 14 of 20

QDA NN SVM

Tr
ai

ni
ng

Te
st

RF CNN Manual labeling

Figure 13. Classification results (with 5 wavelengths) superimposed on the ultrasound image for a
training (row one) and test (row two) example that contains 3 lesions. Each column except the last
one corresponds to a specific learning algorithm (from left to right: quadratic discriminant analysis
(QDA), neural network (NN), support vector machine (SVM), random forest (RF), and convolutional
neural network (CNN)), the last column shows the manual labeling for training and measuring the
segmentation performance.

Table 5. F1 Score (%) Decrease for Machine Learning Algorithms.

Number of Wavelengths QDA NN SVM RF CNN

from 53 to 5 6.57 7.20 7.14 4.80 3.37

from 5 to 4 0.13 0.74 0.75 0.46 2.21

from 4 to 3 1.93 1.91 1.68 2.07 −2.55

from 3 to 2 4.26 4.61 4.34 4.42 3.81
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Figure 14. Segmentation results (with 5 wavelengths) of the convolutional neural network superim-
posed on the ultrasound image showing lesion formation for a training example (row two). Each
column corresponds to a different number of lesions formed (from left to right: 0, 1, 2, 3). Row one
shows the manual labeling for training.
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Figure 15. Segmentation results (with 5 wavelengths) of the convolutional neural network superim-
posed on the ultrasound image showing lesion formation for a test example (row two). Each column
corresponds to a different number of lesions formed (from left to right: 0, 1, 2, 3). Row one shows the
manual labeling for measuring the segmentation performance.
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As the number of wavelengths continued decreasing, the F1 scores continued de-
creasing in general (row 3–5, Table 4). For the traditional machine learning algorithms,
one fewer wavelength caused between 0.13% and 4.61% drop (row 2–4, Table 5). As the
number of wavelengths became smaller, the F1 score decreased at a higher rate. For the
CNN, one fewer wavelength caused between 0.01% and 3.81% drop (row 2–4, Table 5).
The F1 score of the CNN with 2 wavelengths is higher than the traditional machine learning
algorithms with 53 wavelengths, and the lesions can be clearly segmented with lower noise
level (Figure 16).
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Figure 16. Segmentation results of the convolutional neural network superimposed on the ultrasound
image for a training (row one) and test (row two) example that contains 3 lesions. Each column
except the last one corresponds to a different number of wavelengths used in segmentation (from
left to right: 2, 3, 4, 5, 53), the last column shows the manual labeling for training and measuring the
segmentation performance.

4. Discussion
4.1. High-Performance Lesion Segmentation

The CNN performs well in segmenting HIFU lesions in MWPA images. With
53 wavelengths, the F1 score is almost 100%. Even when the number of wavelengths
is reduced to 2, the F1 score is still higher than 92%. The performance of the traditional
machine learning algorithms is good with 53 wavelengths, but decreases significantly and
more quickly than the CNN as the number of wavelengths decreases. This is because the
traditional machine learning algorithms process each pixel independently and thus the
segmentation results are purely based on the optical absorption spectrum information.
Meanwhile in the CNN, the convolutional layers capture not only the optical absorption
spectrum but also the 2D textural features in the MWPA images. This also explains why
some side lobes of the lesions are classified as ablated in traditional machine learning
algorithms yet classified as non-ablated in the CNN. In MWPA image preprocessing, most
of these side lobe pixels are not labeled because they are close to the lesion boundaries and
have uncertain status. Traditional machine learning algorithms tend to classify these pixels
as ablated because their optical absorption spectrum is consistent with the lesions from
which the side lobes are derived, while the CNN is less likely to classify these pixels as
ablated because their 2D textural features could differ from real ablated pixels.

The CNN architecture used in this study was inspired by the fully convolutional
network in [40], which is the basis for the current state-of-the-art deep learning semantic
segmentation techniques [60]. A more sophisticated neural network could be used to further
improve the lesion segmentation performance if more training examples were available.

4.2. Convenient Implementation

With off-the-shelf machine/deep learning libraries, lesion segmentation in MWPA
images is a convenient software development task. The learning algorithms are trained
end-to-end, and no extra processing is required to extract “deeper” features from the
MWPA images. In our lesion segmentation task, most of the development effort was spent
tuning the parameters of the learning algorithms to find the optimal values. However, some
learning algorithms (e.g., CNN, support vector machine) require longer training times and
thus it is difficult to identify parameter values that are comprehensively optimal. Further
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data analysis is necessary in order to extend beyond the application level and explore what
features distinguish ablated and non-ablated tissue apart.

4.3. Advantages over Temperature-Measurement-Based Methods

HIFU lesion formation can also be monitored by measuring temperature in the image
view. MRI has superb temperature-mapping capability and is widely used for tempera-
ture measurement during HIFU therapies. Due to the linear dependence of the PA signal
amplitude on temperature and the linearity of the PA imaging system, temperature can
be measured indirectly from PA imaging with proper calibration [21]. A drawback of
this temperature-measurement-based approach is that the temperature change is transient.
This means that it can segment HIFU lesions only when the HIFU therapy is on, and it
is not possible to repeat the segmentation after the therapy is completed. The approach
we proposed in this work is based on the optical absorption spectrum and the 2D textural
information, which change permanently during HIFU therapies. Therefore, the segmenta-
tion can be performed during the HIFU therapy as well as after its completion. Another
drawback of the temperature-measurement-based approach with PA imaging is that it
needs calibration, which requires temperature data. In experimental settings, the data can
be acquired by inserting extra devices (e.g., thermocouples) into the tissue to measure the
temperature. However, this is challenging to perform in vivo. Furthermore, this insertion
introduces unpredictable exogenous factors that could affect the linear relation between the
temperature and the PA signal amplitude in the tissue, resulting in suboptimal calibration
results. The approach we proposed does not require additional devices to be inserted into
the tissue for calibration. So, this approach is more reliable and easier to be validated.

4.4. Potential for Real-Time Implementation

When running on a PC with two 16-core CPUs, the inference time of quadratic dis-
criminant analysis, neural network, random forest, and CNN is less than one second
(Table 6). So, all of the presented methods can process more than one frame within a second.
As the number of wavelengths decreases, the inference time of quadratic discriminant
analysis, neural network, random forest, and CNN also decreases. When the number of
wavelengths is 2, the inference time of the CNN is 157.38 ms, which corresponds to a frame
rate of 6.35 FPS, while the maximum frame rate for the current imaging system used in this
study is 5 FPS (20 repetition/second ÷ 2 repetition/wavelength ÷ 2 wavelength/frame)
when no signal averaging was employed. So, the computational power of the PC is po-
tentially sufficient to implement an MWPA imaging system with the CNN running in
real time. With accelerating hardware such as a graphics processing unit (GPU) [61] or a
field-programmable gate array [62], the inference time will be further decreased.

Table 6. Inference Time (millisecond) for Machine Learning Algorithms.

Number of Wavelengths QDA NN SVM RF CNN

53 377.99 357.57 >1000 322.55 504.20

5 45.96 127.61 >1000 307.75 170.21

4 42.29 118.73 >1000 303.97 163.19

3 34.99 112.87 >1000 271.98 161.82

2 33.65 108.06 >1000 248.31 157.38

Compared with the other algorithms, the inference time of quadratic discriminant
analysis is significantly shorter because it assumes that the distribution of each category
of pixels is a single Gaussian distribution, and this model is computationally simpler.
The inference time of support vector machine is significantly longer. This is because
its inference time complexity is O(n3) [63] where n is the number of training examples.
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The inference times of quadratic discriminant analysis, neural network, random forest,
and CNN do not change with n.

In our experiment, a commercial transducer probe (L7-4) is used for PA data acqui-
sition. In order to increase the SNR, multiple (100) acquisitions are averaged for each
frame. A 2D CMUT with integrated electronics has been shown to achieve high SNR in PA
imaging [64] and is a good alternative to commercial piezoelectric probes for HIFU lesion
segmentation in real-time MWPA imaging. For the presented application in this study,
we developed a similar system capable of HIFU ablation, and real-time ultrasound and
photoacoustic imaging [65].

4.5. Potential Improvement with Gold-Standard Training Examples

The MWPA images were not fully labeled since we labeled the ablated pixels manually
mainly by visual inspection of the tissue cross-section after completing the experiment.
With this information, it is not possible to label every pixel with complete confidence.
The difficulty lies not only in distinguishing ablated from non-ablated tissue in the tissue
picture but also in co-registering the tissue picture with the PA and US images since
deformation is inevitable when cutting the tissue blocks. Furthermore, we could not
guarantee that the cut plane perfectly overlaps with the imaging plane. An imaging
modality that can provide a gold-standard reference (such as MRI) on lesion segmentation
would improve the experiment and provide stronger validation of our approach.

5. Conclusions

In this paper, we presented a CNN-based approach to segment HIFU lesions in
MWPA images. Traditional machine learning algorithms were also trained and tested to
compare with the CNN-based approach, and the results show that the performance of
CNN significantly exceeds traditional machine learning algorithms. Feature selection was
conducted to reduce the number of wavelengths to facilitate real-time implementation.
The performance of the CNN with 2 wavelengths exceeds the traditional machine learning
algorithms with 53 wavelengths. This work demonstrates the high performance of CNN
in HIFU lesion segmentation and the potential to operate it in real time. Further work
includes running the CNN with accelerating hardware to assess its capability in monitoring
HIFU lesion formation in real time and potentially in vivo, as well as further improving the
segmentation performance with more sophisticated neural networks.
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